File size: 8,700 Bytes
a7299bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# A reimplemented version in public environments by Xiao Fu and Mu Hu

import torch
import numpy as np
import torch.nn as nn


def init_image_coor(height, width):
    x_row = np.arange(0, width)
    x = np.tile(x_row, (height, 1))
    x = x[np.newaxis, :, :]
    x = x.astype(np.float32)
    x = torch.from_numpy(x.copy()).cuda()
    u_u0 = x - width/2.0

    y_col = np.arange(0, height)  # y_col = np.arange(0, height)
    y = np.tile(y_col, (width, 1)).T
    y = y[np.newaxis, :, :]
    y = y.astype(np.float32)
    y = torch.from_numpy(y.copy()).cuda()
    v_v0 = y - height/2.0
    return u_u0, v_v0


def depth_to_xyz(depth, focal_length):
    b, c, h, w = depth.shape
    u_u0, v_v0 = init_image_coor(h, w)
    x = u_u0 * depth / focal_length
    y = v_v0 * depth / focal_length
    z = depth
    pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
    return pw


def get_surface_normal(xyz, patch_size=3):
    # xyz: [1, h, w, 3]
    x, y, z = torch.unbind(xyz, dim=3)
    x = torch.unsqueeze(x, 0)
    y = torch.unsqueeze(y, 0)
    z = torch.unsqueeze(z, 0)

    xx = x * x
    yy = y * y
    zz = z * z
    xy = x * y
    xz = x * z
    yz = y * z
    patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda()
    xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2))
    yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2))
    zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2))
    xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2))
    xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2))
    yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2))
    ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch],
                      dim=4)
    ATA = torch.squeeze(ATA)
    ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3))
    eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1])
    ATA = ATA + eps_identity
    x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2))
    y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2))
    z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2))
    AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4)
    AT1 = torch.squeeze(AT1)
    AT1 = torch.unsqueeze(AT1, 3)

    patch_num = 4
    patch_x = int(AT1.size(1) / patch_num)
    patch_y = int(AT1.size(0) / patch_num)
    n_img = torch.randn(AT1.shape).cuda()
    overlap = patch_size // 2 + 1
    for x in range(int(patch_num)):
        for y in range(int(patch_num)):
            left_flg = 0 if x == 0 else 1
            right_flg = 0 if x == patch_num -1 else 1
            top_flg = 0 if y == 0 else 1
            btm_flg = 0 if y == patch_num - 1 else 1
            at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
                  x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
            ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
                  x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
            n_img_tmp, _ = torch.solve(at1, ata)

            n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :]
            n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select

    n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True))
    n_img_norm = n_img / n_img_L2

    # re-orient normals consistently
    orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0
    n_img_norm[orient_mask] *= -1
    return n_img_norm

def get_surface_normalv2(xyz, patch_size=3):
    """
    xyz: xyz coordinates
    patch: [p1, p2, p3,
            p4, p5, p6,
            p7, p8, p9]
    surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
    return: normal [h, w, 3, b]
    """
    b, h, w, c = xyz.shape
    half_patch = patch_size // 2
    xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
    xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz

    # xyz_left_top = xyz_pad[:, :h, :w, :]  # p1
    # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
    # xyz_left_bottom = xyz_pad[:, -h:, :w, :]   # p7
    # xyz_right_top = xyz_pad[:, :h, -w:, :]  # p3
    # xyz_cross1 = xyz_left_top - xyz_right_bottom  # p1p9
    # xyz_cross2 = xyz_left_bottom - xyz_right_top  # p7p3

    xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :]  # p4
    xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :]  # p6
    xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :]  # p2
    xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :]  # p8
    xyz_horizon = xyz_left - xyz_right  # p4p6
    xyz_vertical = xyz_top - xyz_bottom  # p2p8

    xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :]  # p4
    xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :]  # p6
    xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :]  # p2
    xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :]  # p8
    xyz_horizon_in = xyz_left_in - xyz_right_in  # p4p6
    xyz_vertical_in = xyz_top_in - xyz_bottom_in  # p2p8

    n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
    n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)

    # re-orient normals consistently
    orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
    n_img_1[orient_mask] *= -1
    orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
    n_img_2[orient_mask] *= -1

    n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
    n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)

    n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
    n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)

    # average 2 norms
    n_img_aver = n_img1_norm + n_img2_norm
    n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
    n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
    # re-orient normals consistently
    orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
    n_img_aver_norm[orient_mask] *= -1
    n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0))  # [h, w, c, b]

    # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
    # plt.imshow(np.abs(a), cmap='rainbow')
    # plt.show()
    return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))

def surface_normal_from_depth(depth, focal_length, valid_mask=None):
    # para depth: depth map, [b, c, h, w]
    b, c, h, w = depth.shape
    focal_length = focal_length[:, None, None, None]
    depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
    depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
    xyz = depth_to_xyz(depth_filter, focal_length)
    sn_batch = []
    for i in range(b):
        xyz_i = xyz[i, :][None, :, :, :]
        normal = get_surface_normalv2(xyz_i)
        sn_batch.append(normal)
    sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1))  # [b, c, h, w]
    mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
    sn_batch[mask_invalid] = 0.0

    return sn_batch


def vis_normal(normal):
    """
    Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255]
    @para normal: surface normal, [h, w, 3], numpy.array
    """
    n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True))
    n_img_norm = normal / (n_img_L2 + 1e-8)
    normal_vis = n_img_norm * 127
    normal_vis += 128
    normal_vis = normal_vis.astype(np.uint8)
    return normal_vis

def vis_normal2(normals):
    '''
    Montage of normal maps. Vectors are unit length and backfaces thresholded.
    '''
    x = normals[:, :, 0] # horizontal; pos right
    y = normals[:, :, 1] # depth; pos far
    z = normals[:, :, 2] # vertical; pos up
    backfacing = (z > 0)
    norm = np.sqrt(np.sum(normals**2, axis=2))
    zero = (norm < 1e-5)
    x += 1.0; x *= 0.5
    y += 1.0; y *= 0.5
    z = np.abs(z)
    x[zero] = 0.0
    y[zero] = 0.0
    z[zero] = 0.0
    normals[:, :, 0] = x  # horizontal; pos right
    normals[:, :, 1] = y  # depth; pos far
    normals[:, :, 2] = z # vertical; pos up
    return normals

if __name__ == '__main__':
    import cv2, os