legraphista
commited on
Commit
•
ed6dd53
1
Parent(s):
10db256
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +145 -0
imatrix.log
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 25 key-value pairs and 273 tensors from NuminaMath-7B-TIR-IMat-GGUF/NuminaMath-7B-TIR.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
4 |
+
llama_model_loader: - kv 1: general.name str = NuminaMath-7B-TIR
|
5 |
+
llama_model_loader: - kv 2: llama.block_count u32 = 30
|
6 |
+
llama_model_loader: - kv 3: llama.context_length u32 = 4096
|
7 |
+
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
|
8 |
+
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008
|
9 |
+
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
|
10 |
+
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 32
|
11 |
+
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 10000.000000
|
12 |
+
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
|
13 |
+
llama_model_loader: - kv 10: general.file_type u32 = 7
|
14 |
+
llama_model_loader: - kv 11: llama.vocab_size u32 = 102400
|
15 |
+
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
|
16 |
+
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
|
17 |
+
llama_model_loader: - kv 14: tokenizer.ggml.pre str = deepseek-llm
|
18 |
+
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,102400] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
19 |
+
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,102400] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
20 |
+
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,99757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
|
21 |
+
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 100000
|
22 |
+
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 100001
|
23 |
+
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 100001
|
24 |
+
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
|
25 |
+
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
|
26 |
+
llama_model_loader: - kv 23: tokenizer.chat_template str = {% for message in messages %}{% if (m...
|
27 |
+
llama_model_loader: - kv 24: general.quantization_version u32 = 2
|
28 |
+
llama_model_loader: - type f32: 61 tensors
|
29 |
+
llama_model_loader: - type q8_0: 212 tensors
|
30 |
+
llm_load_vocab: special tokens cache size = 2400
|
31 |
+
llm_load_vocab: token to piece cache size = 0.6659 MB
|
32 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
33 |
+
llm_load_print_meta: arch = llama
|
34 |
+
llm_load_print_meta: vocab type = BPE
|
35 |
+
llm_load_print_meta: n_vocab = 102400
|
36 |
+
llm_load_print_meta: n_merges = 99757
|
37 |
+
llm_load_print_meta: vocab_only = 0
|
38 |
+
llm_load_print_meta: n_ctx_train = 4096
|
39 |
+
llm_load_print_meta: n_embd = 4096
|
40 |
+
llm_load_print_meta: n_layer = 30
|
41 |
+
llm_load_print_meta: n_head = 32
|
42 |
+
llm_load_print_meta: n_head_kv = 32
|
43 |
+
llm_load_print_meta: n_rot = 128
|
44 |
+
llm_load_print_meta: n_swa = 0
|
45 |
+
llm_load_print_meta: n_embd_head_k = 128
|
46 |
+
llm_load_print_meta: n_embd_head_v = 128
|
47 |
+
llm_load_print_meta: n_gqa = 1
|
48 |
+
llm_load_print_meta: n_embd_k_gqa = 4096
|
49 |
+
llm_load_print_meta: n_embd_v_gqa = 4096
|
50 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
51 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
52 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
53 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
54 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
55 |
+
llm_load_print_meta: n_ff = 11008
|
56 |
+
llm_load_print_meta: n_expert = 0
|
57 |
+
llm_load_print_meta: n_expert_used = 0
|
58 |
+
llm_load_print_meta: causal attn = 1
|
59 |
+
llm_load_print_meta: pooling type = 0
|
60 |
+
llm_load_print_meta: rope type = 0
|
61 |
+
llm_load_print_meta: rope scaling = linear
|
62 |
+
llm_load_print_meta: freq_base_train = 10000.0
|
63 |
+
llm_load_print_meta: freq_scale_train = 1
|
64 |
+
llm_load_print_meta: n_ctx_orig_yarn = 4096
|
65 |
+
llm_load_print_meta: rope_finetuned = unknown
|
66 |
+
llm_load_print_meta: ssm_d_conv = 0
|
67 |
+
llm_load_print_meta: ssm_d_inner = 0
|
68 |
+
llm_load_print_meta: ssm_d_state = 0
|
69 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
70 |
+
llm_load_print_meta: model type = ?B
|
71 |
+
llm_load_print_meta: model ftype = Q8_0
|
72 |
+
llm_load_print_meta: model params = 6.91 B
|
73 |
+
llm_load_print_meta: model size = 6.84 GiB (8.50 BPW)
|
74 |
+
llm_load_print_meta: general.name = NuminaMath-7B-TIR
|
75 |
+
llm_load_print_meta: BOS token = 100000 '<|begin▁of▁sentence|>'
|
76 |
+
llm_load_print_meta: EOS token = 100001 '<|end▁of▁sentence|>'
|
77 |
+
llm_load_print_meta: PAD token = 100001 '<|end▁of▁sentence|>'
|
78 |
+
llm_load_print_meta: LF token = 126 'Ä'
|
79 |
+
llm_load_print_meta: max token length = 256
|
80 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
81 |
+
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
82 |
+
ggml_cuda_init: found 1 CUDA devices:
|
83 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
84 |
+
llm_load_tensors: ggml ctx size = 0.26 MiB
|
85 |
+
llm_load_tensors: offloading 30 repeating layers to GPU
|
86 |
+
llm_load_tensors: offloading non-repeating layers to GPU
|
87 |
+
llm_load_tensors: offloaded 31/31 layers to GPU
|
88 |
+
llm_load_tensors: CPU buffer size = 425.00 MiB
|
89 |
+
llm_load_tensors: CUDA0 buffer size = 6577.84 MiB
|
90 |
+
..........................................................................................
|
91 |
+
llama_new_context_with_model: n_ctx = 512
|
92 |
+
llama_new_context_with_model: n_batch = 512
|
93 |
+
llama_new_context_with_model: n_ubatch = 512
|
94 |
+
llama_new_context_with_model: flash_attn = 0
|
95 |
+
llama_new_context_with_model: freq_base = 10000.0
|
96 |
+
llama_new_context_with_model: freq_scale = 1
|
97 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 240.00 MiB
|
98 |
+
llama_new_context_with_model: KV self size = 240.00 MiB, K (f16): 120.00 MiB, V (f16): 120.00 MiB
|
99 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.39 MiB
|
100 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 208.00 MiB
|
101 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
|
102 |
+
llama_new_context_with_model: graph nodes = 966
|
103 |
+
llama_new_context_with_model: graph splits = 2
|
104 |
+
|
105 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
106 |
+
compute_imatrix: tokenizing the input ..
|
107 |
+
compute_imatrix: tokenization took 219.795 ms
|
108 |
+
compute_imatrix: computing over 139 chunks with batch_size 512
|
109 |
+
compute_imatrix: 0.66 seconds per pass - ETA 1.53 minutes
|
110 |
+
[1]10.4314,[2]7.3682,[3]6.7831,[4]8.2509,[5]7.7539,[6]7.2769,[7]8.2499,[8]8.2793,[9]9.5899,
|
111 |
+
save_imatrix: stored collected data after 10 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
112 |
+
[10]9.8051,[11]9.0158,[12]9.8822,[13]10.7192,[14]11.4750,[15]11.7074,[16]12.4342,[17]12.8366,[18]13.0696,[19]13.6454,
|
113 |
+
save_imatrix: stored collected data after 20 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
114 |
+
[20]12.7369,[21]12.7164,[22]13.0572,[23]13.4045,[24]13.0591,[25]13.4993,[26]13.0929,[27]13.5825,[28]13.4809,[29]13.9218,
|
115 |
+
save_imatrix: stored collected data after 30 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
116 |
+
[30]14.3508,[31]14.8240,[32]14.6801,[33]14.0268,[34]13.0593,[35]12.3150,[36]12.1439,[37]12.1304,[38]12.0899,[39]11.8205,
|
117 |
+
save_imatrix: stored collected data after 40 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
118 |
+
[40]11.7968,[41]11.4809,[42]11.2521,[43]11.4326,[44]11.5349,[45]11.8091,[46]11.8210,[47]12.4688,[48]12.9043,[49]13.2747,
|
119 |
+
save_imatrix: stored collected data after 50 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
120 |
+
[50]13.5610,[51]13.7512,[52]13.5889,[53]13.7792,[54]14.0260,[55]14.1128,[56]13.9351,[57]13.8070,[58]13.7664,[59]13.9588,
|
121 |
+
save_imatrix: stored collected data after 60 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
122 |
+
[60]14.1955,[61]14.4787,[62]14.5778,[63]14.6177,[64]14.6769,[65]14.6685,[66]14.6656,[67]14.6345,[68]14.5578,[69]14.6843,
|
123 |
+
save_imatrix: stored collected data after 70 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
124 |
+
[70]14.8954,[71]14.8467,[72]14.8260,[73]14.7263,[74]14.6219,[75]14.4769,[76]14.3974,[77]14.3304,[78]14.2765,[79]14.1135,
|
125 |
+
save_imatrix: stored collected data after 80 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
126 |
+
[80]14.0793,[81]14.0205,[82]13.9517,[83]13.8239,[84]13.7387,[85]13.6672,[86]13.5425,[87]13.4674,[88]13.4413,[89]13.4553,
|
127 |
+
save_imatrix: stored collected data after 90 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
128 |
+
[90]13.3877,[91]13.4239,[92]13.4322,[93]13.3130,[94]13.2679,[95]13.2266,[96]13.3477,[97]13.4149,[98]13.4163,[99]13.2541,
|
129 |
+
save_imatrix: stored collected data after 100 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
130 |
+
[100]13.0952,[101]12.9394,[102]12.7769,[103]12.6021,[104]12.4604,[105]12.3279,[106]12.1804,[107]12.0326,[108]11.9975,[109]12.0266,
|
131 |
+
save_imatrix: stored collected data after 110 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
132 |
+
[110]12.0979,[111]12.2131,[112]12.3274,[113]12.4241,[114]12.6192,[115]12.7171,[116]12.7818,[117]12.7623,[118]12.8884,[119]12.8693,
|
133 |
+
save_imatrix: stored collected data after 120 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
134 |
+
[120]12.8420,[121]12.7717,[122]12.7185,[123]12.8016,[124]12.8760,[125]12.8461,[126]12.8485,[127]12.8573,[128]12.9072,[129]12.9172,
|
135 |
+
save_imatrix: stored collected data after 130 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
136 |
+
[130]12.9305,[131]12.9718,[132]12.9349,[133]12.8673,[134]12.9903,[135]13.1251,[136]13.2243,[137]13.3934,[138]13.5698,[139]13.6705,
|
137 |
+
save_imatrix: stored collected data after 139 chunks in NuminaMath-7B-TIR-IMat-GGUF/imatrix.dat
|
138 |
+
|
139 |
+
llama_print_timings: load time = 9195.41 ms
|
140 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
141 |
+
llama_print_timings: prompt eval time = 71105.13 ms / 71168 tokens ( 1.00 ms per token, 1000.88 tokens per second)
|
142 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
143 |
+
llama_print_timings: total time = 80417.25 ms / 71169 tokens
|
144 |
+
|
145 |
+
Final estimate: PPL = 13.6705 +/- 0.25616
|