legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +160 -0
imatrix.log
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
main: build = 3003 (d298382a)
|
2 |
+
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
3 |
+
main: seed = 1716748134
|
4 |
+
llama_model_loader: loaded meta data with 24 key-value pairs and 291 tensors from Mistral-7B-v0.3-IMat-GGUF/Mistral-7B-v0.3.gguf (version GGUF V3 (latest))
|
5 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
6 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
7 |
+
llama_model_loader: - kv 1: general.name str = Mistral-7B-v0.3
|
8 |
+
llama_model_loader: - kv 2: llama.block_count u32 = 32
|
9 |
+
llama_model_loader: - kv 3: llama.context_length u32 = 32768
|
10 |
+
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
|
11 |
+
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
|
12 |
+
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
|
13 |
+
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
|
14 |
+
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 1000000.000000
|
15 |
+
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
|
16 |
+
llama_model_loader: - kv 10: general.file_type u32 = 0
|
17 |
+
llama_model_loader: - kv 11: llama.vocab_size u32 = 32768
|
18 |
+
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
|
19 |
+
llama_model_loader: - kv 13: tokenizer.ggml.model str = llama
|
20 |
+
llama_model_loader: - kv 14: tokenizer.ggml.pre str = default
|
21 |
+
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32768] = ["<unk>", "<s>", "</s>", "[INST]", "[...
|
22 |
+
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32768] = [0.000000, 0.000000, 0.000000, 0.0000...
|
23 |
+
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32768] = [2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
|
24 |
+
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1
|
25 |
+
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 2
|
26 |
+
llama_model_loader: - kv 20: tokenizer.ggml.unknown_token_id u32 = 0
|
27 |
+
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
|
28 |
+
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
|
29 |
+
llama_model_loader: - kv 23: general.quantization_version u32 = 2
|
30 |
+
llama_model_loader: - type f32: 291 tensors
|
31 |
+
llm_load_vocab: special tokens definition check successful ( 1027/32768 ).
|
32 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
33 |
+
llm_load_print_meta: arch = llama
|
34 |
+
llm_load_print_meta: vocab type = SPM
|
35 |
+
llm_load_print_meta: n_vocab = 32768
|
36 |
+
llm_load_print_meta: n_merges = 0
|
37 |
+
llm_load_print_meta: n_ctx_train = 32768
|
38 |
+
llm_load_print_meta: n_embd = 4096
|
39 |
+
llm_load_print_meta: n_head = 32
|
40 |
+
llm_load_print_meta: n_head_kv = 8
|
41 |
+
llm_load_print_meta: n_layer = 32
|
42 |
+
llm_load_print_meta: n_rot = 128
|
43 |
+
llm_load_print_meta: n_embd_head_k = 128
|
44 |
+
llm_load_print_meta: n_embd_head_v = 128
|
45 |
+
llm_load_print_meta: n_gqa = 4
|
46 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
47 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
48 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
49 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
50 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
51 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
52 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
53 |
+
llm_load_print_meta: n_ff = 14336
|
54 |
+
llm_load_print_meta: n_expert = 0
|
55 |
+
llm_load_print_meta: n_expert_used = 0
|
56 |
+
llm_load_print_meta: causal attn = 1
|
57 |
+
llm_load_print_meta: pooling type = 0
|
58 |
+
llm_load_print_meta: rope type = 0
|
59 |
+
llm_load_print_meta: rope scaling = linear
|
60 |
+
llm_load_print_meta: freq_base_train = 1000000.0
|
61 |
+
llm_load_print_meta: freq_scale_train = 1
|
62 |
+
llm_load_print_meta: n_yarn_orig_ctx = 32768
|
63 |
+
llm_load_print_meta: rope_finetuned = unknown
|
64 |
+
llm_load_print_meta: ssm_d_conv = 0
|
65 |
+
llm_load_print_meta: ssm_d_inner = 0
|
66 |
+
llm_load_print_meta: ssm_d_state = 0
|
67 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
68 |
+
llm_load_print_meta: model type = 7B
|
69 |
+
llm_load_print_meta: model ftype = all F32
|
70 |
+
llm_load_print_meta: model params = 7.25 B
|
71 |
+
llm_load_print_meta: model size = 27.00 GiB (32.00 BPW)
|
72 |
+
llm_load_print_meta: general.name = Mistral-7B-v0.3
|
73 |
+
llm_load_print_meta: BOS token = 1 '<s>'
|
74 |
+
llm_load_print_meta: EOS token = 2 '</s>'
|
75 |
+
llm_load_print_meta: UNK token = 0 '<unk>'
|
76 |
+
llm_load_print_meta: LF token = 781 '<0x0A>'
|
77 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
78 |
+
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
79 |
+
ggml_cuda_init: found 1 CUDA devices:
|
80 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
81 |
+
llm_load_tensors: ggml ctx size = 0.30 MiB
|
82 |
+
llm_load_tensors: offloading 25 repeating layers to GPU
|
83 |
+
llm_load_tensors: offloaded 25/33 layers to GPU
|
84 |
+
llm_load_tensors: CPU buffer size = 27649.02 MiB
|
85 |
+
llm_load_tensors: CUDA0 buffer size = 20800.78 MiB
|
86 |
+
...................................................................................................
|
87 |
+
llama_new_context_with_model: n_ctx = 512
|
88 |
+
llama_new_context_with_model: n_batch = 512
|
89 |
+
llama_new_context_with_model: n_ubatch = 512
|
90 |
+
llama_new_context_with_model: flash_attn = 0
|
91 |
+
llama_new_context_with_model: freq_base = 1000000.0
|
92 |
+
llama_new_context_with_model: freq_scale = 1
|
93 |
+
llama_kv_cache_init: CUDA_Host KV buffer size = 14.00 MiB
|
94 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 50.00 MiB
|
95 |
+
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
|
96 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.12 MiB
|
97 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 584.00 MiB
|
98 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
|
99 |
+
llama_new_context_with_model: graph nodes = 1030
|
100 |
+
llama_new_context_with_model: graph splits = 81
|
101 |
+
|
102 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
103 |
+
compute_imatrix: tokenizing the input ..
|
104 |
+
compute_imatrix: tokenization took 133.793 ms
|
105 |
+
compute_imatrix: computing over 228 chunks with batch_size 512
|
106 |
+
compute_imatrix: 0.84 seconds per pass - ETA 3.18 minutes
|
107 |
+
[1]3.6887,[2]2.7710,[3]2.8053,[4]2.9263,[5]3.2772,[6]3.2192,[7]2.9588,[8]3.3808,[9]3.5098,
|
108 |
+
save_imatrix: stored collected data after 10 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
109 |
+
[10]3.8600,[11]4.0156,[12]3.9434,[13]4.1868,[14]3.9891,[15]4.3176,[16]4.4575,[17]4.6694,[18]4.7922,[19]4.9315,
|
110 |
+
save_imatrix: stored collected data after 20 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
111 |
+
[20]5.0376,[21]5.1603,[22]5.0485,[23]4.8667,[24]4.9439,[25]4.7118,[26]4.5371,[27]4.4214,[28]4.3613,[29]4.3522,
|
112 |
+
save_imatrix: stored collected data after 30 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
113 |
+
[30]4.4437,[31]4.5603,[32]4.6703,[33]4.6912,[34]4.7585,[35]4.6052,[36]4.5137,[37]4.4660,[38]4.4682,[39]4.4583,
|
114 |
+
save_imatrix: stored collected data after 40 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
115 |
+
[40]4.4212,[41]4.4608,[42]4.4195,[43]4.4770,[44]4.5632,[45]4.5759,[46]4.6612,[47]4.7868,[48]4.8921,[49]5.0255,
|
116 |
+
save_imatrix: stored collected data after 50 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
117 |
+
[50]5.1063,[51]5.1274,[52]5.0926,[53]5.0579,[54]4.9702,[55]5.0257,[56]5.0751,[57]5.1272,[58]5.1711,[59]5.1854,
|
118 |
+
save_imatrix: stored collected data after 60 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
119 |
+
[60]5.2564,[61]5.2934,[62]5.3388,[63]5.3548,[64]5.3775,[65]5.4095,[66]5.4457,[67]5.4879,[68]5.5328,[69]5.5510,
|
120 |
+
save_imatrix: stored collected data after 70 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
121 |
+
[70]5.5758,[71]5.5393,[72]5.5005,[73]5.4730,[74]5.4483,[75]5.4336,[76]5.4238,[77]5.4001,[78]5.3556,[79]5.3346,
|
122 |
+
save_imatrix: stored collected data after 80 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
123 |
+
[80]5.3310,[81]5.3055,[82]5.3476,[83]5.3814,[84]5.3983,[85]5.3469,[86]5.3646,[87]5.3315,[88]5.2861,[89]5.2791,
|
124 |
+
save_imatrix: stored collected data after 90 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
125 |
+
[90]5.2740,[91]5.2863,[92]5.2868,[93]5.3020,[94]5.2958,[95]5.2515,[96]5.2190,[97]5.2123,[98]5.2387,[99]5.2521,
|
126 |
+
save_imatrix: stored collected data after 100 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
127 |
+
[100]5.2495,[101]5.2227,[102]5.2017,[103]5.2084,[104]5.2047,[105]5.1942,[106]5.1811,[107]5.1837,[108]5.1907,[109]5.2046,
|
128 |
+
save_imatrix: stored collected data after 110 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
129 |
+
[110]5.1906,[111]5.1971,[112]5.1900,[113]5.1854,[114]5.1776,[115]5.1848,[116]5.1825,[117]5.1759,[118]5.1510,[119]5.1563,
|
130 |
+
save_imatrix: stored collected data after 120 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
131 |
+
[120]5.1792,[121]5.1875,[122]5.1834,[123]5.1921,[124]5.1992,[125]5.2200,[126]5.1767,[127]5.1732,[128]5.1547,[129]5.1287,
|
132 |
+
save_imatrix: stored collected data after 130 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
133 |
+
[130]5.1449,[131]5.1199,[132]5.0965,[133]5.0710,[134]5.0473,[135]5.0219,[136]4.9990,[137]4.9776,[138]4.9583,[139]4.9439,
|
134 |
+
save_imatrix: stored collected data after 140 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
135 |
+
[140]4.9404,[141]4.9330,[142]4.9132,[143]4.9075,[144]4.8956,[145]4.8864,[146]4.8768,[147]4.8661,[148]4.8616,[149]4.8490,
|
136 |
+
save_imatrix: stored collected data after 150 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
137 |
+
[150]4.8407,[151]4.8543,[152]4.8336,[153]4.8377,[154]4.8609,[155]4.8827,[156]4.8943,[157]4.9074,[158]4.9254,[159]4.9562,
|
138 |
+
save_imatrix: stored collected data after 160 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
139 |
+
[160]4.9729,[161]4.9883,[162]4.9924,[163]4.9994,[164]5.0147,[165]5.0150,[166]5.0230,[167]5.0376,[168]5.0464,[169]5.0597,
|
140 |
+
save_imatrix: stored collected data after 170 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
141 |
+
[170]5.0592,[171]5.0757,[172]5.0884,[173]5.0913,[174]5.1014,[175]5.0897,[176]5.1058,[177]5.1118,[178]5.1265,[179]5.1225,
|
142 |
+
save_imatrix: stored collected data after 180 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
143 |
+
[180]5.1375,[181]5.1385,[182]5.1383,[183]5.1360,[184]5.1356,[185]5.1441,[186]5.1511,[187]5.1701,[188]5.1731,[189]5.1560,
|
144 |
+
save_imatrix: stored collected data after 190 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
145 |
+
[190]5.1865,[191]5.2168,[192]5.2454,[193]5.2908,[194]5.3229,[195]5.3319,[196]5.3409,[197]5.3252,[198]5.3296,[199]5.3455,
|
146 |
+
save_imatrix: stored collected data after 200 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
147 |
+
[200]5.3699,[201]5.3676,[202]5.3656,[203]5.3719,[204]5.3840,[205]5.3879,[206]5.3943,[207]5.4031,[208]5.4108,[209]5.4244,
|
148 |
+
save_imatrix: stored collected data after 210 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
149 |
+
[210]5.4449,[211]5.4363,[212]5.4373,[213]5.4324,[214]5.4289,[215]5.4240,[216]5.4178,[217]5.4146,[218]5.4271,[219]5.4128,
|
150 |
+
save_imatrix: stored collected data after 220 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
151 |
+
[220]5.4227,[221]5.4519,[222]5.4685,[223]5.4930,[224]5.5081,[225]5.5092,[226]5.4868,[227]5.4691,[228]5.4543,
|
152 |
+
save_imatrix: stored collected data after 228 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
|
153 |
+
|
154 |
+
llama_print_timings: load time = 3151.50 ms
|
155 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
156 |
+
llama_print_timings: prompt eval time = 180433.68 ms / 116736 tokens ( 1.55 ms per token, 646.97 tokens per second)
|
157 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
158 |
+
llama_print_timings: total time = 183387.46 ms / 116737 tokens
|
159 |
+
|
160 |
+
Final estimate: PPL = 5.4543 +/- 0.04992
|