File size: 2,659 Bytes
3ded857 314572d 3ded857 314572d 3ded857 63b8f71 ca88d56 3ded857 314572d 3ded857 314572d 63b8f71 314572d 3ded857 314572d 63b8f71 314572d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
language:
- ko
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
datasets:
- wikimedia/wikipedia
- FreedomIntelligence/alpaca-gpt4-korean
---
# unsloth/Meta-Llama-3.1-8B-bnb-4bit fine tuning after Continued Pretraining
# (TREX-Lab at Seoul Cyber University)
<!-- Provide a quick summary of what the model is/does. -->
## Summary
- Base Model : unsloth/Meta-Llama-3.1-8B-bnb-4bit
- Dataset : wikimedia/wikipedia(Continued Pretraining), FreedomIntelligence/alpaca-gpt4-korean(FineTuning)
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
- Test whether fine tuning of a large language model is possible on A30 GPU*1 (successful)
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [TREX-Lab at Seoul Cyber University]
- **Language(s) (NLP):** [Korean]
- **Finetuned from model :** [unsloth/Meta-Llama-3.1-8B-bnb-4bit]
## Continued Pretraining
```
warmup_steps = 10
learning_rate = 5e-5
embedding_learning_rate = 1e-5
bf16 = True
optim = "adamw_8bit"
weight_decay = 0.01
lr_scheduler_type = "linear"
```
```
loss : 1.171600
```
## Fine Tuning Detail
```
warmup_steps = 10
learning_rate = 5e-5
embedding_learning_rate = 1e-5
bf16 = True
optim = "adamw_8bit"
weight_decay = 0.001
lr_scheduler_type = "linear"
```
```
loss : 0.699600
```
## Usage #1
```
# Prompt
model_prompt = """λ€μμ μμ
μ μ€λͺ
νλ λͺ
λ Ήμ
λλ€. μμ²μ μ μ νκ² μλ£νλ μλ΅μ μμ±νμΈμ.
### μ§μΉ¨:
{}
### μλ΅:
{}"""
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
model_prompt.format(
"μ΄μμ μ₯κ΅°μ λꡬμΈκ°μ ? μμΈνκ² μλ €μ£ΌμΈμ.",
"",
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)
tokenizer.batch_decode(outputs)
```
## Usage #2
```
from transformers import TextStreamer
# Prompt
model_prompt = """λ€μμ μμ
μ μ€λͺ
νλ λͺ
λ Ήμ
λλ€. μμ²μ μ μ νκ² μλ£νλ μλ΅μ μμ±νμΈμ.
### μ§μΉ¨:
{}
### μλ΅:
{}"""
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
model_prompt.format(
"μ§κ΅¬λ₯Ό κ΄λ²μνκ² μ€λͺ
νμΈμ.",
"",
)
], return_tensors = "pt").to("cuda")
text_streamer = TextStreamer(tokenizer)
value = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, repetition_penalty = 0.1)
``` |