ldldld commited on
Commit
086cd7c
1 Parent(s): c8e54d7

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,752 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What is the purpose of the Artificial Intelligence Ethics for the
46
+ Intelligence Community as mentioned in the context?
47
+ sentences:
48
+ - "You should be able to opt out, where appropriate, and \nhave access to a person\
49
+ \ who can quickly consider and \nremedy problems you encounter. You should be\
50
+ \ able to opt \nout from automated systems in favor of a human alternative, where\
51
+ \ \nappropriate. Appropriateness should be determined based on rea­\nsonable expectations\
52
+ \ in a given context and with a focus on ensuring \nbroad accessibility and protecting\
53
+ \ the public from especially harm­\nful impacts. In some cases, a human or other\
54
+ \ alternative may be re­\nquired by law. You should have access to timely human\
55
+ \ consider­\nation and remedy by a fallback and escalation process if an automat­\n\
56
+ ed system fails, it produces an error, or you would like to appeal or \ncontest\
57
+ \ its impacts on you. Human consideration and fallback \nshould be accessible,\
58
+ \ equitable, effective, maintained, accompanied \nby appropriate operator training,\
59
+ \ and should not impose an unrea­\nsonable burden on the public. Automated systems\
60
+ \ with an intended"
61
+ - "points to numerous examples of effective and proactive stakeholder engagement,\
62
+ \ including the Community-\nBased Participatory Research Program developed by\
63
+ \ the National Institutes of Health and the participatory \ntechnology assessments\
64
+ \ developed by the National Oceanic and Atmospheric Administration.18\nThe National\
65
+ \ Institute of Standards and Technology (NIST) is developing a risk \nmanagement\
66
+ \ framework to better manage risks posed to individuals, organizations, and \n\
67
+ society by AI.19 The NIST AI Risk Management Framework, as mandated by Congress,\
68
+ \ is intended for \nvoluntary use to help incorporate trustworthiness considerations\
69
+ \ into the design, development, use, and \nevaluation of AI products, services,\
70
+ \ and systems. The NIST framework is being developed through a consensus-\ndriven,\
71
+ \ open, transparent, and collaborative process that includes workshops and other\
72
+ \ opportunities to provide \ninput. The NIST framework aims to foster the development\
73
+ \ of innovative approaches to address"
74
+ - "of Artificial Intelligence Ethics for the Intelligence Community to guide personnel\
75
+ \ on whether and how to \ndevelop and use AI in furtherance of the IC's mission,\
76
+ \ as well as an AI Ethics Framework to help implement \nthese principles.22\n\
77
+ The National Science Foundation (NSF) funds extensive research to help foster\
78
+ \ the \ndevelopment of automated systems that adhere to and advance their safety,\
79
+ \ security and \neffectiveness. Multiple NSF programs support research that directly\
80
+ \ addresses many of these principles: \nthe National AI Research Institutes23\
81
+ \ support research on all aspects of safe, trustworthy, fair, and explainable\
82
+ \ \nAI algorithms and systems; the Cyber Physical Systems24 program supports research\
83
+ \ on developing safe \nautonomous and cyber physical systems with AI components;\
84
+ \ the Secure and Trustworthy Cyberspace25 \nprogram supports research on cybersecurity\
85
+ \ and privacy enhancing technologies in automated systems; the"
86
+ - source_sentence: How does the Department of Defense's approach to AI ethics differ
87
+ from that of the Department of Energy?
88
+ sentences:
89
+ - "NOTICE & \nEXPLANATION \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations\
90
+ \ for automated systems are meant to serve as a blueprint for the development\
91
+ \ of additional \ntechnical standards and practices that are tailored for particular\
92
+ \ sectors and contexts. \nTailored to the level of risk. An assessment should\
93
+ \ be done to determine the level of risk of the auto­\nmated system. In settings\
94
+ \ where the consequences are high as determined by a risk assessment, or extensive\
95
+ \ \noversight is expected (e.g., in criminal justice or some public sector settings),\
96
+ \ explanatory mechanisms should \nbe built into the system design so that the\
97
+ \ system’s full behavior can be explained in advance (i.e., only fully \ntransparent\
98
+ \ models should be used), rather than as an after-the-decision interpretation.\
99
+ \ In other settings, the \nextent of explanation provided should be tailored to\
100
+ \ the risk level."
101
+ - "SAFE AND EFFECTIVE \nSYSTEMS \nHOW THESE PRINCIPLES CAN MOVE INTO PRACTICE\n\
102
+ Real-life examples of how these principles can become reality, through laws, policies,\
103
+ \ and practical \ntechnical and sociotechnical approaches to protecting rights,\
104
+ \ opportunities, and access. ­\nSome U.S government agencies have developed specific\
105
+ \ frameworks for ethical use of AI \nsystems. The Department of Energy (DOE) has\
106
+ \ activated the AI Advancement Council that oversees coordina-\ntion and advises\
107
+ \ on implementation of the DOE AI Strategy and addresses issues and/or escalations\
108
+ \ on the \nethical use and development of AI systems.20 The Department of Defense\
109
+ \ has adopted Artificial Intelligence \nEthical Principles, and tenets for Responsible\
110
+ \ Artificial Intelligence specifically tailored to its national \nsecurity and\
111
+ \ defense activities.21 Similarly, the U.S. Intelligence Community (IC) has developed\
112
+ \ the Principles"
113
+ - "Formal Methods in the Field26 program supports research on rigorous formal verification\
114
+ \ and analysis of \nautomated systems and machine learning, and the Designing\
115
+ \ Accountable Software Systems27 program supports \nresearch on rigorous and reproducible\
116
+ \ methodologies for developing software systems with legal and regulatory \ncompliance\
117
+ \ in mind. \nSome state legislatures have placed strong transparency and validity\
118
+ \ requirements on \nthe use of pretrial risk assessments. The use of algorithmic\
119
+ \ pretrial risk assessments has been a \ncause of concern for civil rights groups.28\
120
+ \ Idaho Code Section 19-1910, enacted in 2019,29 requires that any \npretrial\
121
+ \ risk assessment, before use in the state, first be \"shown to be free of bias\
122
+ \ against any class of \nindividuals protected from discrimination by state or\
123
+ \ federal law\", that any locality using a pretrial risk \nassessment must first\
124
+ \ formally validate the claim of its being free of bias, that \"all documents,\
125
+ \ records, and"
126
+ - source_sentence: What are the expectations for automated systems intended to serve
127
+ as a blueprint for?
128
+ sentences:
129
+ - "help to mitigate biases and potential harms. \nGuarding against proxies. Directly\
130
+ \ using demographic information in the design, development, or \ndeployment of\
131
+ \ an automated system (for purposes other than evaluating a system for discrimination\
132
+ \ or using \na system to counter discrimination) runs a high risk of leading to\
133
+ \ algorithmic discrimination and should be \navoided. In many cases, attributes\
134
+ \ that are highly correlated with demographic features, known as proxies, can\
135
+ \ \ncontribute to algorithmic discrimination. In cases where use of the demographic\
136
+ \ features themselves would \nlead to illegal algorithmic discrimination, reliance\
137
+ \ on such proxies in decision-making (such as that facilitated \nby an algorithm)\
138
+ \ may also be prohibited by law. Proactive testing should be performed to identify\
139
+ \ proxies by \ntesting for correlation between demographic information and attributes\
140
+ \ in any data used as part of system"
141
+ - "describes three broad challenges for mitigating bias – datasets, testing and\
142
+ \ evaluation, and human factors – and \nintroduces preliminary guidance for addressing\
143
+ \ them. Throughout, the special publication takes a socio-\ntechnical perspective\
144
+ \ to identifying and managing AI bias. \n29\nAlgorithmic \nDiscrimination \nProtections"
145
+ - "SAFE AND EFFECTIVE \nSYSTEMS \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\n\
146
+ The expectations for automated systems are meant to serve as a blueprint for the\
147
+ \ development of additional \ntechnical standards and practices that are tailored\
148
+ \ for particular sectors and contexts. \nDerived data sources tracked and reviewed\
149
+ \ carefully. Data that is derived from other data through \nthe use of algorithms,\
150
+ \ such as data derived or inferred from prior model outputs, should be identified\
151
+ \ and \ntracked, e.g., via a specialized type in a data schema. Derived data should\
152
+ \ be viewed as potentially high-risk \ninputs that may lead to feedback loops,\
153
+ \ compounded harm, or inaccurate results. Such sources should be care­\nfully\
154
+ \ validated against the risk of collateral consequences. \nData reuse limits in\
155
+ \ sensitive domains. Data reuse, and especially data reuse in a new context, can\
156
+ \ result \nin the spreading and scaling of harms. Data from some domains, including\
157
+ \ criminal justice data and data indi­"
158
+ - source_sentence: What should individuals have access to regarding their data decisions
159
+ and the impact of surveillance technologies?
160
+ sentences:
161
+ - '•
162
+
163
+ Searches for “Black girls,” “Asian girls,” or “Latina girls” return predominantly39
164
+ sexualized content, rather
165
+
166
+ than role models, toys, or activities.40 Some search engines have been working
167
+ to reduce the prevalence of
168
+
169
+ these results, but the problem remains.41
170
+
171
+
172
+
173
+ Advertisement delivery systems that predict who is most likely to click on a job
174
+ advertisement end up deliv-
175
+
176
+ ering ads in ways that reinforce racial and gender stereotypes, such as overwhelmingly
177
+ directing supermar-
178
+
179
+ ket cashier ads to women and jobs with taxi companies to primarily Black people.42­
180
+
181
+
182
+
183
+ Body scanners, used by TSA at airport checkpoints, require the operator to select
184
+ a “male” or “female”
185
+
186
+ scanning setting based on the passenger’s sex, but the setting is chosen based
187
+ on the operator’s perception of
188
+
189
+ the passenger’s gender identity. These scanners are more likely to flag transgender
190
+ travelers as requiring
191
+
192
+ extra screening done by a person. Transgender travelers have described degrading
193
+ experiences associated'
194
+ - "information used to build or validate the risk assessment shall be open to public\
195
+ \ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
196
+ \ discovery in a criminal matter by a party to a criminal case.\" \n22"
197
+ - "tect privacy and civil liberties. Continuous surveillance and monitoring \nshould\
198
+ \ not be used in education, work, housing, or in other contexts where the \nuse\
199
+ \ of such surveillance technologies is likely to limit rights, opportunities,\
200
+ \ or \naccess. Whenever possible, you should have access to reporting that confirms\
201
+ \ \nyour data decisions have been respected and provides an assessment of the\
202
+ \ \npotential impact of surveillance technologies on your rights, opportunities,\
203
+ \ or \naccess. \nDATA PRIVACY\n30"
204
+ - source_sentence: What are the implications of the digital divide highlighted in
205
+ Andrew Kenney's article regarding unemployment benefits?
206
+ sentences:
207
+ - "cating adverse outcomes in domains such as finance, employment, and housing,\
208
+ \ is especially sensitive, and in \nsome cases its reuse is limited by law. Accordingly,\
209
+ \ such data should be subject to extra oversight to ensure \nsafety and efficacy.\
210
+ \ Data reuse of sensitive domain data in other contexts (e.g., criminal data reuse\
211
+ \ for civil legal \nmatters or private sector use) should only occur where use\
212
+ \ of such data is legally authorized and, after examina­\ntion, has benefits for\
213
+ \ those impacted by the system that outweigh identified risks and, as appropriate,\
214
+ \ reason­\nable measures have been implemented to mitigate the identified risks.\
215
+ \ Such data should be clearly labeled to \nidentify contexts for limited reuse\
216
+ \ based on sensitivity. Where possible, aggregated datasets may be useful for\
217
+ \ \nreplacing individual-level sensitive data. \nDemonstrate the safety and effectiveness\
218
+ \ of the system \nIndependent evaluation. Automated systems should be designed\
219
+ \ to allow for independent evaluation (e.g.,"
220
+ - "5. Environmental Impacts: Impacts due to high compute resource utilization in\
221
+ \ training or \noperating GAI models, and related outcomes that may adversely\
222
+ \ impact ecosystems. \n6. Harmful Bias or Homogenization: Amplification and exacerbation\
223
+ \ of historical, societal, and \nsystemic biases; performance disparities8 between\
224
+ \ sub-groups or languages, possibly due to \nnon-representative training data,\
225
+ \ that result in discrimination, amplification of biases, or \nincorrect presumptions\
226
+ \ about performance; undesired homogeneity that skews system or model \noutputs,\
227
+ \ which may be erroneous, lead to ill-founded decision-making, or amplify harmful\
228
+ \ \nbiases. \n7. Human-AI Configuration: Arrangements of or interactions between\
229
+ \ a human and an AI system \nwhich can result in the human inappropriately anthropomorphizing\
230
+ \ GAI systems or experiencing \nalgorithmic aversion, automation bias, over-reliance,\
231
+ \ or emotional entanglement with GAI \nsystems."
232
+ - 'https://bipartisanpolicy.org/blog/the-low-down-on-ballot-curing/
233
+
234
+ 101. Andrew Kenney. ''I''m shocked that they need to have a smartphone'': System
235
+ for unemployment
236
+
237
+ benefits exposes digital divide. USA Today. May 2, 2021.
238
+
239
+ https://www.usatoday.com/story/tech/news/2021/05/02/unemployment-benefits-system-leaving­
240
+
241
+ people-behind/4915248001/
242
+
243
+ 102. Allie Gross. UIA lawsuit shows how the state criminalizes the unemployed.
244
+ Detroit Metro-Times.
245
+
246
+ Sep. 18, 2015.
247
+
248
+ https://www.metrotimes.com/news/uia-lawsuit-shows-how-the-state-criminalizes-the­
249
+
250
+ unemployed-2369412
251
+
252
+ 103. Maia Szalavitz. The Pain Was Unbearable. So Why Did Doctors Turn Her Away?
253
+ Wired. Aug. 11,
254
+
255
+ 2021. https://www.wired.com/story/opioid-drug-addiction-algorithm-chronic-pain/
256
+
257
+ 104. Spencer Soper. Fired by Bot at Amazon: "It''s You Against the Machine". Bloomberg,
258
+ Jun. 28, 2021.
259
+
260
+ https://www.bloomberg.com/news/features/2021-06-28/fired-by-bot-amazon-turns-to-machine­
261
+
262
+ managers-and-workers-are-losing-out'
263
+ model-index:
264
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
265
+ results:
266
+ - task:
267
+ type: information-retrieval
268
+ name: Information Retrieval
269
+ dataset:
270
+ name: Unknown
271
+ type: unknown
272
+ metrics:
273
+ - type: cosine_accuracy@1
274
+ value: 0.73
275
+ name: Cosine Accuracy@1
276
+ - type: cosine_accuracy@3
277
+ value: 0.9
278
+ name: Cosine Accuracy@3
279
+ - type: cosine_accuracy@5
280
+ value: 0.935
281
+ name: Cosine Accuracy@5
282
+ - type: cosine_accuracy@10
283
+ value: 0.96
284
+ name: Cosine Accuracy@10
285
+ - type: cosine_precision@1
286
+ value: 0.73
287
+ name: Cosine Precision@1
288
+ - type: cosine_precision@3
289
+ value: 0.3
290
+ name: Cosine Precision@3
291
+ - type: cosine_precision@5
292
+ value: 0.187
293
+ name: Cosine Precision@5
294
+ - type: cosine_precision@10
295
+ value: 0.096
296
+ name: Cosine Precision@10
297
+ - type: cosine_recall@1
298
+ value: 0.73
299
+ name: Cosine Recall@1
300
+ - type: cosine_recall@3
301
+ value: 0.9
302
+ name: Cosine Recall@3
303
+ - type: cosine_recall@5
304
+ value: 0.935
305
+ name: Cosine Recall@5
306
+ - type: cosine_recall@10
307
+ value: 0.96
308
+ name: Cosine Recall@10
309
+ - type: cosine_ndcg@10
310
+ value: 0.8511693160760204
311
+ name: Cosine Ndcg@10
312
+ - type: cosine_mrr@10
313
+ value: 0.8155396825396827
314
+ name: Cosine Mrr@10
315
+ - type: cosine_map@100
316
+ value: 0.8172228277187864
317
+ name: Cosine Map@100
318
+ - type: dot_accuracy@1
319
+ value: 0.73
320
+ name: Dot Accuracy@1
321
+ - type: dot_accuracy@3
322
+ value: 0.9
323
+ name: Dot Accuracy@3
324
+ - type: dot_accuracy@5
325
+ value: 0.935
326
+ name: Dot Accuracy@5
327
+ - type: dot_accuracy@10
328
+ value: 0.96
329
+ name: Dot Accuracy@10
330
+ - type: dot_precision@1
331
+ value: 0.73
332
+ name: Dot Precision@1
333
+ - type: dot_precision@3
334
+ value: 0.3
335
+ name: Dot Precision@3
336
+ - type: dot_precision@5
337
+ value: 0.187
338
+ name: Dot Precision@5
339
+ - type: dot_precision@10
340
+ value: 0.096
341
+ name: Dot Precision@10
342
+ - type: dot_recall@1
343
+ value: 0.73
344
+ name: Dot Recall@1
345
+ - type: dot_recall@3
346
+ value: 0.9
347
+ name: Dot Recall@3
348
+ - type: dot_recall@5
349
+ value: 0.935
350
+ name: Dot Recall@5
351
+ - type: dot_recall@10
352
+ value: 0.96
353
+ name: Dot Recall@10
354
+ - type: dot_ndcg@10
355
+ value: 0.8511693160760204
356
+ name: Dot Ndcg@10
357
+ - type: dot_mrr@10
358
+ value: 0.8155396825396827
359
+ name: Dot Mrr@10
360
+ - type: dot_map@100
361
+ value: 0.8172228277187864
362
+ name: Dot Map@100
363
+ ---
364
+
365
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
366
+
367
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
368
+
369
+ ## Model Details
370
+
371
+ ### Model Description
372
+ - **Model Type:** Sentence Transformer
373
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
374
+ - **Maximum Sequence Length:** 512 tokens
375
+ - **Output Dimensionality:** 768 tokens
376
+ - **Similarity Function:** Cosine Similarity
377
+ <!-- - **Training Dataset:** Unknown -->
378
+ <!-- - **Language:** Unknown -->
379
+ <!-- - **License:** Unknown -->
380
+
381
+ ### Model Sources
382
+
383
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
384
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
385
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
386
+
387
+ ### Full Model Architecture
388
+
389
+ ```
390
+ SentenceTransformer(
391
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
392
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
393
+ (2): Normalize()
394
+ )
395
+ ```
396
+
397
+ ## Usage
398
+
399
+ ### Direct Usage (Sentence Transformers)
400
+
401
+ First install the Sentence Transformers library:
402
+
403
+ ```bash
404
+ pip install -U sentence-transformers
405
+ ```
406
+
407
+ Then you can load this model and run inference.
408
+ ```python
409
+ from sentence_transformers import SentenceTransformer
410
+
411
+ # Download from the 🤗 Hub
412
+ model = SentenceTransformer("ldldld/snowflake-arctic-embed-m-finetuned")
413
+ # Run inference
414
+ sentences = [
415
+ "What are the implications of the digital divide highlighted in Andrew Kenney's article regarding unemployment benefits?",
416
+ 'https://bipartisanpolicy.org/blog/the-low-down-on-ballot-curing/\n101. Andrew Kenney. \'I\'m shocked that they need to have a smartphone\': System for unemployment\nbenefits exposes digital divide. USA Today. May 2, 2021.\nhttps://www.usatoday.com/story/tech/news/2021/05/02/unemployment-benefits-system-leaving\xad\npeople-behind/4915248001/\n102. Allie Gross. UIA lawsuit shows how the state criminalizes the unemployed. Detroit Metro-Times.\nSep. 18, 2015.\nhttps://www.metrotimes.com/news/uia-lawsuit-shows-how-the-state-criminalizes-the\xad\nunemployed-2369412\n103. Maia Szalavitz. The Pain Was Unbearable. So Why Did Doctors Turn Her Away? Wired. Aug. 11,\n2021. https://www.wired.com/story/opioid-drug-addiction-algorithm-chronic-pain/\n104. Spencer Soper. Fired by Bot at Amazon: "It\'s You Against the Machine". Bloomberg, Jun. 28, 2021.\nhttps://www.bloomberg.com/news/features/2021-06-28/fired-by-bot-amazon-turns-to-machine\xad\nmanagers-and-workers-are-losing-out',
417
+ '5. Environmental Impacts: Impacts due to high compute resource utilization in training or \noperating GAI models, and related outcomes that may adversely impact ecosystems. \n6. Harmful Bias or Homogenization: Amplification and exacerbation of historical, societal, and \nsystemic biases; performance disparities8 between sub-groups or languages, possibly due to \nnon-representative training data, that result in discrimination, amplification of biases, or \nincorrect presumptions about performance; undesired homogeneity that skews system or model \noutputs, which may be erroneous, lead to ill-founded decision-making, or amplify harmful \nbiases. \n7. Human-AI Configuration: Arrangements of or interactions between a human and an AI system \nwhich can result in the human inappropriately anthropomorphizing GAI systems or experiencing \nalgorithmic aversion, automation bias, over-reliance, or emotional entanglement with GAI \nsystems.',
418
+ ]
419
+ embeddings = model.encode(sentences)
420
+ print(embeddings.shape)
421
+ # [3, 768]
422
+
423
+ # Get the similarity scores for the embeddings
424
+ similarities = model.similarity(embeddings, embeddings)
425
+ print(similarities.shape)
426
+ # [3, 3]
427
+ ```
428
+
429
+ <!--
430
+ ### Direct Usage (Transformers)
431
+
432
+ <details><summary>Click to see the direct usage in Transformers</summary>
433
+
434
+ </details>
435
+ -->
436
+
437
+ <!--
438
+ ### Downstream Usage (Sentence Transformers)
439
+
440
+ You can finetune this model on your own dataset.
441
+
442
+ <details><summary>Click to expand</summary>
443
+
444
+ </details>
445
+ -->
446
+
447
+ <!--
448
+ ### Out-of-Scope Use
449
+
450
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
451
+ -->
452
+
453
+ ## Evaluation
454
+
455
+ ### Metrics
456
+
457
+ #### Information Retrieval
458
+
459
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
460
+
461
+ | Metric | Value |
462
+ |:--------------------|:-----------|
463
+ | cosine_accuracy@1 | 0.73 |
464
+ | cosine_accuracy@3 | 0.9 |
465
+ | cosine_accuracy@5 | 0.935 |
466
+ | cosine_accuracy@10 | 0.96 |
467
+ | cosine_precision@1 | 0.73 |
468
+ | cosine_precision@3 | 0.3 |
469
+ | cosine_precision@5 | 0.187 |
470
+ | cosine_precision@10 | 0.096 |
471
+ | cosine_recall@1 | 0.73 |
472
+ | cosine_recall@3 | 0.9 |
473
+ | cosine_recall@5 | 0.935 |
474
+ | cosine_recall@10 | 0.96 |
475
+ | cosine_ndcg@10 | 0.8512 |
476
+ | cosine_mrr@10 | 0.8155 |
477
+ | **cosine_map@100** | **0.8172** |
478
+ | dot_accuracy@1 | 0.73 |
479
+ | dot_accuracy@3 | 0.9 |
480
+ | dot_accuracy@5 | 0.935 |
481
+ | dot_accuracy@10 | 0.96 |
482
+ | dot_precision@1 | 0.73 |
483
+ | dot_precision@3 | 0.3 |
484
+ | dot_precision@5 | 0.187 |
485
+ | dot_precision@10 | 0.096 |
486
+ | dot_recall@1 | 0.73 |
487
+ | dot_recall@3 | 0.9 |
488
+ | dot_recall@5 | 0.935 |
489
+ | dot_recall@10 | 0.96 |
490
+ | dot_ndcg@10 | 0.8512 |
491
+ | dot_mrr@10 | 0.8155 |
492
+ | dot_map@100 | 0.8172 |
493
+
494
+ <!--
495
+ ## Bias, Risks and Limitations
496
+
497
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
498
+ -->
499
+
500
+ <!--
501
+ ### Recommendations
502
+
503
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
504
+ -->
505
+
506
+ ## Training Details
507
+
508
+ ### Training Dataset
509
+
510
+ #### Unnamed Dataset
511
+
512
+
513
+ * Size: 600 training samples
514
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
515
+ * Approximate statistics based on the first 600 samples:
516
+ | | sentence_0 | sentence_1 |
517
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
518
+ | type | string | string |
519
+ | details | <ul><li>min: 12 tokens</li><li>mean: 20.66 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 165.88 tokens</li><li>max: 512 tokens</li></ul> |
520
+ * Samples:
521
+ | sentence_0 | sentence_1 |
522
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
523
+ | <code>What is the main purpose of the "Blueprint for an AI Bill of Rights" as indicated in the context?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
524
+ | <code>When was the "Blueprint for an AI Bill of Rights" created?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
525
+ | <code>What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy in October 2022?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology <br>Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office <br>of the President with advice on the scientific, engineering, and technological aspects of the economy, national</code> |
526
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
527
+ ```json
528
+ {
529
+ "loss": "MultipleNegativesRankingLoss",
530
+ "matryoshka_dims": [
531
+ 768,
532
+ 512,
533
+ 256,
534
+ 128,
535
+ 64
536
+ ],
537
+ "matryoshka_weights": [
538
+ 1,
539
+ 1,
540
+ 1,
541
+ 1,
542
+ 1
543
+ ],
544
+ "n_dims_per_step": -1
545
+ }
546
+ ```
547
+
548
+ ### Training Hyperparameters
549
+ #### Non-Default Hyperparameters
550
+
551
+ - `eval_strategy`: steps
552
+ - `per_device_train_batch_size`: 20
553
+ - `per_device_eval_batch_size`: 20
554
+ - `num_train_epochs`: 5
555
+ - `multi_dataset_batch_sampler`: round_robin
556
+
557
+ #### All Hyperparameters
558
+ <details><summary>Click to expand</summary>
559
+
560
+ - `overwrite_output_dir`: False
561
+ - `do_predict`: False
562
+ - `eval_strategy`: steps
563
+ - `prediction_loss_only`: True
564
+ - `per_device_train_batch_size`: 20
565
+ - `per_device_eval_batch_size`: 20
566
+ - `per_gpu_train_batch_size`: None
567
+ - `per_gpu_eval_batch_size`: None
568
+ - `gradient_accumulation_steps`: 1
569
+ - `eval_accumulation_steps`: None
570
+ - `torch_empty_cache_steps`: None
571
+ - `learning_rate`: 5e-05
572
+ - `weight_decay`: 0.0
573
+ - `adam_beta1`: 0.9
574
+ - `adam_beta2`: 0.999
575
+ - `adam_epsilon`: 1e-08
576
+ - `max_grad_norm`: 1
577
+ - `num_train_epochs`: 5
578
+ - `max_steps`: -1
579
+ - `lr_scheduler_type`: linear
580
+ - `lr_scheduler_kwargs`: {}
581
+ - `warmup_ratio`: 0.0
582
+ - `warmup_steps`: 0
583
+ - `log_level`: passive
584
+ - `log_level_replica`: warning
585
+ - `log_on_each_node`: True
586
+ - `logging_nan_inf_filter`: True
587
+ - `save_safetensors`: True
588
+ - `save_on_each_node`: False
589
+ - `save_only_model`: False
590
+ - `restore_callback_states_from_checkpoint`: False
591
+ - `no_cuda`: False
592
+ - `use_cpu`: False
593
+ - `use_mps_device`: False
594
+ - `seed`: 42
595
+ - `data_seed`: None
596
+ - `jit_mode_eval`: False
597
+ - `use_ipex`: False
598
+ - `bf16`: False
599
+ - `fp16`: False
600
+ - `fp16_opt_level`: O1
601
+ - `half_precision_backend`: auto
602
+ - `bf16_full_eval`: False
603
+ - `fp16_full_eval`: False
604
+ - `tf32`: None
605
+ - `local_rank`: 0
606
+ - `ddp_backend`: None
607
+ - `tpu_num_cores`: None
608
+ - `tpu_metrics_debug`: False
609
+ - `debug`: []
610
+ - `dataloader_drop_last`: False
611
+ - `dataloader_num_workers`: 0
612
+ - `dataloader_prefetch_factor`: None
613
+ - `past_index`: -1
614
+ - `disable_tqdm`: False
615
+ - `remove_unused_columns`: True
616
+ - `label_names`: None
617
+ - `load_best_model_at_end`: False
618
+ - `ignore_data_skip`: False
619
+ - `fsdp`: []
620
+ - `fsdp_min_num_params`: 0
621
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
622
+ - `fsdp_transformer_layer_cls_to_wrap`: None
623
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
624
+ - `deepspeed`: None
625
+ - `label_smoothing_factor`: 0.0
626
+ - `optim`: adamw_torch
627
+ - `optim_args`: None
628
+ - `adafactor`: False
629
+ - `group_by_length`: False
630
+ - `length_column_name`: length
631
+ - `ddp_find_unused_parameters`: None
632
+ - `ddp_bucket_cap_mb`: None
633
+ - `ddp_broadcast_buffers`: False
634
+ - `dataloader_pin_memory`: True
635
+ - `dataloader_persistent_workers`: False
636
+ - `skip_memory_metrics`: True
637
+ - `use_legacy_prediction_loop`: False
638
+ - `push_to_hub`: False
639
+ - `resume_from_checkpoint`: None
640
+ - `hub_model_id`: None
641
+ - `hub_strategy`: every_save
642
+ - `hub_private_repo`: False
643
+ - `hub_always_push`: False
644
+ - `gradient_checkpointing`: False
645
+ - `gradient_checkpointing_kwargs`: None
646
+ - `include_inputs_for_metrics`: False
647
+ - `eval_do_concat_batches`: True
648
+ - `fp16_backend`: auto
649
+ - `push_to_hub_model_id`: None
650
+ - `push_to_hub_organization`: None
651
+ - `mp_parameters`:
652
+ - `auto_find_batch_size`: False
653
+ - `full_determinism`: False
654
+ - `torchdynamo`: None
655
+ - `ray_scope`: last
656
+ - `ddp_timeout`: 1800
657
+ - `torch_compile`: False
658
+ - `torch_compile_backend`: None
659
+ - `torch_compile_mode`: None
660
+ - `dispatch_batches`: None
661
+ - `split_batches`: None
662
+ - `include_tokens_per_second`: False
663
+ - `include_num_input_tokens_seen`: False
664
+ - `neftune_noise_alpha`: None
665
+ - `optim_target_modules`: None
666
+ - `batch_eval_metrics`: False
667
+ - `eval_on_start`: False
668
+ - `eval_use_gather_object`: False
669
+ - `batch_sampler`: batch_sampler
670
+ - `multi_dataset_batch_sampler`: round_robin
671
+
672
+ </details>
673
+
674
+ ### Training Logs
675
+ | Epoch | Step | cosine_map@100 |
676
+ |:------:|:----:|:--------------:|
677
+ | 1.0 | 30 | 0.7953 |
678
+ | 1.6667 | 50 | 0.8326 |
679
+ | 2.0 | 60 | 0.8277 |
680
+ | 3.0 | 90 | 0.8250 |
681
+ | 3.3333 | 100 | 0.8284 |
682
+ | 4.0 | 120 | 0.8200 |
683
+ | 5.0 | 150 | 0.8172 |
684
+
685
+
686
+ ### Framework Versions
687
+ - Python: 3.10.12
688
+ - Sentence Transformers: 3.1.1
689
+ - Transformers: 4.44.2
690
+ - PyTorch: 2.4.1+cu121
691
+ - Accelerate: 0.34.2
692
+ - Datasets: 3.0.0
693
+ - Tokenizers: 0.19.1
694
+
695
+ ## Citation
696
+
697
+ ### BibTeX
698
+
699
+ #### Sentence Transformers
700
+ ```bibtex
701
+ @inproceedings{reimers-2019-sentence-bert,
702
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
703
+ author = "Reimers, Nils and Gurevych, Iryna",
704
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
705
+ month = "11",
706
+ year = "2019",
707
+ publisher = "Association for Computational Linguistics",
708
+ url = "https://arxiv.org/abs/1908.10084",
709
+ }
710
+ ```
711
+
712
+ #### MatryoshkaLoss
713
+ ```bibtex
714
+ @misc{kusupati2024matryoshka,
715
+ title={Matryoshka Representation Learning},
716
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
717
+ year={2024},
718
+ eprint={2205.13147},
719
+ archivePrefix={arXiv},
720
+ primaryClass={cs.LG}
721
+ }
722
+ ```
723
+
724
+ #### MultipleNegativesRankingLoss
725
+ ```bibtex
726
+ @misc{henderson2017efficient,
727
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
728
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
729
+ year={2017},
730
+ eprint={1705.00652},
731
+ archivePrefix={arXiv},
732
+ primaryClass={cs.CL}
733
+ }
734
+ ```
735
+
736
+ <!--
737
+ ## Glossary
738
+
739
+ *Clearly define terms in order to be accessible across audiences.*
740
+ -->
741
+
742
+ <!--
743
+ ## Model Card Authors
744
+
745
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
746
+ -->
747
+
748
+ <!--
749
+ ## Model Card Contact
750
+
751
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
752
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7027427cf7714fa771f875b485493d13f5540576c12633f755bfebc207cdae37
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff