nielsr HF Staff commited on
Commit
87bbfe8
·
verified ·
1 Parent(s): 00c3abe

Add pipeline tag and library name

Browse files

This PR improves the model card by adding the `pipeline_tag`, `library_name`, and a link to the project page. The `pipeline_tag` is set to `image-feature-extraction` as this is the main functionality demonstrated in the usage examples. The `library_name` is set to `transformers`, as the model utilizes the Transformers library. Also corrected the year in bibtex citation.

Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -6,10 +6,11 @@ tags:
6
  - Vision-Language
7
  - Remote-sensing
8
  widget:
9
- - src: >-
10
- https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
11
  candidate_labels: playing music, playing sports
12
  example_title: Cat & Dog
 
 
13
  ---
14
 
15
  # Git-RSCLIP
@@ -22,6 +23,7 @@ This is a **large version**, the **base version** is here: [[**Git-RSCLIP-base**
22
 
23
  You can use the raw model for tasks like zero-shot image classification and image-text retrieval.
24
 
 
25
 
26
  ### How to use
27
 
@@ -80,7 +82,7 @@ For more code examples, we refer to the [documentation](https://huggingface.co/t
80
 
81
  ### Training data
82
 
83
- Git-RSCLIP is pre-trained on the Git-10M dataset (a global-scale remote sensing image-text pair dataset, consisting of 10 million image-text pairs) [(Liu et al., 2024)](https://github.com/chen-yang-liu/Text2Earth).
84
 
85
  ### Preprocessing
86
 
 
6
  - Vision-Language
7
  - Remote-sensing
8
  widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
 
10
  candidate_labels: playing music, playing sports
11
  example_title: Cat & Dog
12
+ pipeline_tag: image-feature-extraction
13
+ library_name: transformers
14
  ---
15
 
16
  # Git-RSCLIP
 
23
 
24
  You can use the raw model for tasks like zero-shot image classification and image-text retrieval.
25
 
26
+ Project page: https://chen-yang-liu.github.io/Text2Earth/
27
 
28
  ### How to use
29
 
 
82
 
83
  ### Training data
84
 
85
+ Git-RSCLIP is pre-trained on the Git-10M dataset (a global-scale remote sensing image-text pair dataset, consisting of 10 million image-text pairs) [(Liu et al., 2025)](https://github.com/chen-yang-liu/Text2Earth).
86
 
87
  ### Preprocessing
88