Text-to-Speech
ESPnet
English
audio
File size: 7,930 Bytes
48a6d04
b4da82b
 
 
 
 
 
 
 
48a6d04
b4da82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---

## ESPnet2 TTS model

### `language-and-voice-lab/talromur_e_loudnorm_xvector_finetune_fastspeech2`

This model was trained by G-Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).

### Demo: How to use in ESPnet2

Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.

```bash
cd espnet
git checkout d0047402e830a3c53e8b590064af4bf70415fb3b
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model language-and-voice-lab/talromur_e_loudnorm_xvector_finetune_fastspeech2
```



## TTS config

<details><summary>expand</summary>

```
config: ./conf/tuning/finetune_xvector_fastspeech2.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: sequence
valid_iterator_type: null
output_dir: exp/tts_finetune_e_loudnorm_xvector_fastspeech2
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - loss
    - min
-   - train
    - loss
    - min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 8
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
use_adapter: false
adapter: lora
save_strategy: all
adapter_conf: {}
pretrain_path: null
init_param:
- /users/home/gunnaro/talromur_1and2_spk_avg_xvector_fastspeech2/exp/tts_xvector_fastspeech2_spk_avg_combined/valid.loss.ave_5best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 800
batch_size: 20
valid_batch_size: null
batch_bins: 4500000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_e/train/text_shape.phn
- exp/tts_stats_e/train/speech_shape
valid_shape_file:
- exp/tts_stats_e/valid/text_shape.phn
- exp/tts_stats_e/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_default_fs: null
train_data_path_and_name_and_type:
-   - dump/raw/train_e/text
    - text
    - text
-   - data/train_e/durations
    - durations
    - text_int
-   - dump/raw/train_e/wav.scp
    - speech
    - sound
-   - dump/xvector/train_e/xvector.scp
    - spembs
    - kaldi_ark
valid_data_path_and_name_and_type:
-   - dump/raw/dev_e/text
    - text
    - text
-   - data/dev_e/durations
    - durations
    - text_int
-   - dump/raw/dev_e/wav.scp
    - speech
    - sound
-   - dump/xvector/dev_e/xvector.scp
    - spembs
    - kaldi_ark
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: false
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.1
scheduler: noamlr
scheduler_conf:
    model_size: 384
    warmup_steps: 4000
token_list:
- <blank>
- <unk>
- a
- r
- sil
- I
- t
- n
- s
- D
- Y
- E
- l
- v
- m
- h
- k
- j
- G
- T
- f
- p
- 'E:'
- c
- i
- 'au:'
- 'O:'
- 'a:'
- ei
- 'i:'
- r_0
- t_h
- O
- k_h
- ou
- ai
- '9'
- au
- 'I:'
- 'ou:'
- u
- 'ei:'
- N
- l_0
- 'u:'
- n_0
- '9:'
- 'ai:'
- 9i
- c_h
- p_h
- x
- C
- '9i:'
- 'Y:'
- J
- N_0
- m_0
- Oi
- Yi
- J_0
- spn
- '1'
- '7'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
    n_fft: 1024
    hop_length: 256
    win_length: null
    fs: 22050
    fmin: 80
    fmax: 7600
    n_mels: 80
normalize: global_mvn
normalize_conf:
    stats_file: exp/tts_stats_e/train/feats_stats.npz
tts: fastspeech2
tts_conf:
    adim: 384
    aheads: 2
    elayers: 4
    eunits: 1536
    dlayers: 4
    dunits: 1536
    positionwise_layer_type: conv1d
    positionwise_conv_kernel_size: 3
    duration_predictor_layers: 2
    duration_predictor_chans: 256
    duration_predictor_kernel_size: 3
    postnet_layers: 5
    postnet_filts: 5
    postnet_chans: 256
    use_masking: true
    use_scaled_pos_enc: true
    encoder_normalize_before: true
    decoder_normalize_before: true
    reduction_factor: 1
    init_type: xavier_uniform
    init_enc_alpha: 1.0
    init_dec_alpha: 1.0
    transformer_enc_dropout_rate: 0.2
    transformer_enc_positional_dropout_rate: 0.2
    transformer_enc_attn_dropout_rate: 0.2
    transformer_dec_dropout_rate: 0.2
    transformer_dec_positional_dropout_rate: 0.2
    transformer_dec_attn_dropout_rate: 0.2
    pitch_predictor_layers: 5
    pitch_predictor_chans: 256
    pitch_predictor_kernel_size: 5
    pitch_predictor_dropout: 0.5
    pitch_embed_kernel_size: 1
    pitch_embed_dropout: 0.0
    stop_gradient_from_pitch_predictor: true
    energy_predictor_layers: 2
    energy_predictor_chans: 256
    energy_predictor_kernel_size: 3
    energy_predictor_dropout: 0.5
    energy_embed_kernel_size: 1
    energy_embed_dropout: 0.0
    stop_gradient_from_energy_predictor: false
    spk_embed_dim: 512
    spk_embed_integration_type: add
pitch_extract: dio
pitch_extract_conf:
    fs: 22050
    n_fft: 1024
    hop_length: 256
    f0max: 400
    f0min: 80
    reduction_factor: 1
pitch_normalize: global_mvn
pitch_normalize_conf:
    stats_file: exp/tts_stats_e/train/pitch_stats.npz
energy_extract: energy
energy_extract_conf:
    fs: 22050
    n_fft: 1024
    hop_length: 256
    win_length: null
    reduction_factor: 1
energy_normalize: global_mvn
energy_normalize_conf:
    stats_file: exp/tts_stats_e/train/energy_stats.npz
required:
- output_dir
- token_list
version: '202402'
distributed: false
```

</details>



### Citing ESPnet

```BibTex
@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}




@inproceedings{hayashi2020espnet,
  title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
  author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
  booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7654--7658},
  year={2020},
  organization={IEEE}
}


```

or arXiv:

```bibtex
@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit},
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```