{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e9621eb6950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9621eb69e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e9621eb6a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9621eb6b00>", "_build": "<function ActorCriticPolicy._build at 0x7e9621eb6b90>", "forward": "<function ActorCriticPolicy.forward at 0x7e9621eb6c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9621eb6cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9621eb6d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7e9621eb6dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9621eb6e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9621eb6ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9621eb6f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e95c6ddc0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735768320358530880, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1cOD0peES66jsMsbZFCDFU9MG61kPisAAAgD8AAIA/gC00veQq+z0WLtk9cgWBvttZxDwFmPs7AAAAAAAAAADKI02+G54sP5BlOT5RJs2+MXEwvSYPbj0AAAAAAAAAAE1YTD7IeqG8kt7kPXCYNrzGSg2+Z3sQvQAAgD8AAIA/zQ7pvEsCFT+JlLA95hCtvjewLjxwgeC8AAAAAAAAAABNFJK9YJnkPgq5fj6HXWO+Sj2RPXqokr0AAAAAAAAAAA35ij2d3wY/+ZWAvYaQkr4aTPI8Nl46vQAAAAAAAAAAGqgZPQKclz9aYN89g2T/vrHfoLwaZZA9AAAAAAAAAAAzjAM9FrexP2Jk3j4zM2O+FtOIvIWXdz0AAAAAAAAAAGaGMzuPLkK6goohszNBNK9WTQQ6tSHRMwAAgD8AAIA/TYB8vdzrOz1oKLQ+u2w9vitELT5SdEo9AAAAAAAAAAAAZPq79oxMuqXOq7R/Qluw5uyyt+6eajMAAIA/AACAP00wGz6PV2e8QMamvPTdBj3AQdG9mNLUPQAAgD8AAIA/4DBzPuHOx7z2wl87JjiguTm+Mr4+8He6AACAPwAAgD8tyGW+uv0ZP1e4JT41tKi+7VBgvVbFGD4AAAAAAAAAAF3uU77hDhw/HqQBPoN0v77dXaW96eADPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuZLqUu+SMAWyUTRUBjAF0lEdAkrnY150KZ3V9lChoBkdAbYnW3jMmnmgHTR0BaAhHQJK6CVKPGQ11fZQoaAZHQHHNsDB/I81oB00hAWgIR0CSulMibDuSdX2UKGgGR0BwSv6uW8h+aAdNFAFoCEdAkrqn225QQHV9lChoBkdAcnpRjSXt0GgHTToBaAhHQJK694wAU+N1fZQoaAZHQHLlz28IzFdoB00gAWgIR0CSu0hTwUg0dX2UKGgGR0BxXEzXSSeRaAdNLgFoCEdAkruYAfdRBXV9lChoBkdAcjIQUHpr12gHTVsBaAhHQJK7yrJbMX91fZQoaAZHQHBJiEtdzGRoB0v2aAhHQJK89omG/N91fZQoaAZHQHGq6i48U21oB00+AWgIR0CSvdiaRZEEdX2UKGgGR0BwnUfvF3pwaAdNHQFoCEdAkr3Tdk8RtnV9lChoBkdAcQ8zHCGetmgHTR0BaAhHQJK+6f9P1th1fZQoaAZHQHKXzQAuIyloB0v4aAhHQJLAssUZeiV1fZQoaAZHQFJlu7HyVfNoB0vzaAhHQJLA6CGvfTF1fZQoaAZHQG9oi5d4VypoB00LAWgIR0CSwSH5aePJdX2UKGgGR0BywcLtu1neaAdNOgFoCEdAksE2OAAhjnV9lChoBkdAbHpiobXHzmgHTRgBaAhHQJLBdX7tRel1fZQoaAZHQHE5NRvWH1xoB00vAWgIR0CSweaYeDFqdX2UKGgGR0BwnrTc6/7BaAdNRQFoCEdAksKvd/J/5XV9lChoBkdAbUqGlANXo2gHTSgBaAhHQJLC3ylN1yN1fZQoaAZHQG8gdhZyMk1oB00jAWgIR0CSwxeO4oZydX2UKGgGR0BuruaScLBsaAdNJAFoCEdAksPLm2b5M3V9lChoBkdAcWh1Tzd1uGgHTWEBaAhHQJLFJweeWfN1fZQoaAZHQHFIrbYbsGBoB0v+aAhHQJLFPlHSWqt1fZQoaAZHQHC9Cbx3FDRoB01NAWgIR0CSxT+irT6SdX2UKGgGR0BwESZgG8mKaAdNPgFoCEdAksaD9fkWAXV9lChoBkdASnHetSydF2gHS9hoCEdAkseH+AEt/XV9lChoBkdAcOtDkELYw2gHTUIBaAhHQJLH7nnuAqd1fZQoaAZHQHI1h/d69kBoB00xAWgIR0CSyN5sTFl1dX2UKGgGR0BwuqHfuTibaAdL+GgIR0CSyUwpvxYrdX2UKGgGR0Bwke2LHdXUaAdNDwFoCEdAkspT94u9OHV9lChoBkdAcN3s6aLGaWgHTRsBaAhHQJLKco/iYLN1fZQoaAZHQG+RC0OVgQZoB00TAWgIR0CSytLIPsiTdX2UKGgGR0BvaQYgq3EyaAdNKQFoCEdAksw1t4zJp3V9lChoBkdAcKwrcj7hvWgHTQkBaAhHQJLMttelbeN1fZQoaAZHQG1m51V5rxloB00XAWgIR0CSzOtvXK8tdX2UKGgGR0BzMNbHIZIhaAdNLgFoCEdAks2TIaLn93V9lChoBkdAcZkrj5sTFmgHTQEBaAhHQJLQ5poK2KF1fZQoaAZHQG+67j94u9RoB01UAWgIR0CS0OeIVM24dX2UKGgGR0BxqZAB1cMWaAdNKwFoCEdAktE2tU4rBnV9lChoBkdAbPKcWCVbA2gHTTQBaAhHQJLRsqLCN0h1fZQoaAZHQHEfWiL2pQ1oB004AWgIR0CS0eGRmseXdX2UKGgGR0Ago+2VmjCYaAdL4mgIR0CS01wyIpH7dX2UKGgGR0Bwr/U7Sy+paAdL/GgIR0CS1B6ij+JhdX2UKGgGR0ByjiQU5+6RaAdNVAFoCEdAkuakaZQYUHV9lChoBkdAcOEPvrnkk2gHTVwBaAhHQJLnRdMTN+t1fZQoaAZHQHB1a6BiCrdoB00fAWgIR0CS56EPlMh6dX2UKGgGR0BvgQljVhCuaAdNEgFoCEdAkujatozvZ3V9lChoBkdAbfJpQk5ZKWgHTWoBaAhHQJLo7oyKvV51fZQoaAZHQHAMSPp6hQFoB00vAWgIR0CS6Wq2jO9ndX2UKGgGR0BwqD7yhBZ7aAdNMwFoCEdAkuoQAU+LWXV9lChoBkdAcZVP8AJb+2gHTSkBaAhHQJLqQ/0NBnl1fZQoaAZHQGXIWuPmxMZoB03RAWgIR0CS69qk/KQrdX2UKGgGR0Bx5Yo2GZeBaAdNEAFoCEdAkuwE9yLhrHV9lChoBkdAbsQqioKlYWgHTQ0BaAhHQJLsIw1zhgp1fZQoaAZHQHFIPWlMyrRoB00UAWgIR0CS7COx0MgEdX2UKGgGR0BvZwm1IAfdaAdNEgFoCEdAkuynO4XoDHV9lChoBkdAUCptuUD+zmgHS+hoCEdAkuzA7cO9WnV9lChoBkdAcI2J53Tuv2gHTSoBaAhHQJLtKAiFCcB1fZQoaAZHQHJpinpB5X5oB00LAWgIR0CS7jvphWo4dX2UKGgGR0BuuTJEH+qBaAdNGwFoCEdAku86H9FWn3V9lChoBkdAchqctGus92gHS/NoCEdAku/0r9VFQXV9lChoBkdAcEJ10knkUGgHTTkBaAhHQJLwtvjwQUZ1fZQoaAZHQHBx0QTVUddoB00SAWgIR0CS8QHk92X+dX2UKGgGR0BwxiEPDpC8aAdNEAFoCEdAkvFop+c6NnV9lChoBkdAa7i6EJ0GNmgHS/5oCEdAkvF/LLZBcHV9lChoBkdAb89rFfiPyWgHTQgBaAhHQJLx79ehPCV1fZQoaAZHQHGcYI8hcJNoB01mAWgIR0CS8lUZNwirdX2UKGgGR0A9LfWMCLdfaAdL5mgIR0CS8pR8+iaidX2UKGgGR0BxA+hmGucMaAdNEAFoCEdAkvN73j+72HV9lChoBkdAcUeNg0CRwWgHTRMBaAhHQJLztjRUm2N1fZQoaAZHQG5H79ZRsM1oB00PAWgIR0CS87T3qRlpdX2UKGgGR0BuQG47Rv3raAdNCwFoCEdAkvQW25QP7XV9lChoBkdAcJxeVcD8tWgHTSYBaAhHQJL02Uu+RHR1fZQoaAZHQHLCAHeJpFloB00jAWgIR0CS9SryDqW1dX2UKGgGR0Bycu3uuzQeaAdNGAFoCEdAkvXuarmyPnV9lChoBkdAceoQarFOwmgHS/hoCEdAkvajcRDkVHV9lChoBkdAcjybdrO7hGgHS+JoCEdAkvb0a2nbZnV9lChoBkdAcR2oYekpJGgHTQkBaAhHQJL31b1RLsd1fZQoaAZHQHMFWvjfek5oB01EAWgIR0CS+CDTSb6QdX2UKGgGR0BtuP/xUedTaAdNBAFoCEdAkvhTx9XtB3V9lChoBkdAckJIw/PgN2gHTQIBaAhHQJL4zZ5AyEd1fZQoaAZHQG+owpe/pMZoB00kAWgIR0CS+Uk1dgOSdX2UKGgGR0BwMGCTUy57aAdNEgFoCEdAkvmgyVObiXV9lChoBkdAQTAGdI5HVmgHS/VoCEdAkvpEmD15B3V9lChoBkdAcqROOKfnOmgHTRwBaAhHQJL7kgvDgqF1fZQoaAZHQG2A5Lh73PBoB01EAWgIR0CS+9pvgm7bdX2UKGgGR0BxgZzr/sE8aAdNGAFoCEdAkvxf/WDpT3V9lChoBkdAcDJ9CeEqUmgHTQsBaAhHQJL9BuWKMvR1fZQoaAZHQHIb5YxL0z1oB00wAWgIR0CS/ycQAdXDdX2UKGgGR0BxjhVHWjGlaAdNQwFoCEdAkwF6o60Y0nV9lChoBkdAbVVDEWIoE2gHTZwBaAhHQJMBdYEGJN11fZQoaAZHQHF+fvv0AcVoB0v9aAhHQJMCLfj0cwR1fZQoaAZHQHAXPICEHt5oB00GAWgIR0CTA27J4jbBdX2UKGgGR0BwSZJkGzKLaAdNOwFoCEdAkwRCylenh3V9lChoBkdAb/83rD63zGgHTTABaAhHQJMEQXXRPXV1fZQoaAZHQHDHDriVB2RoB01sAWgIR0CTBJ0Qsf7rdX2UKGgGR0Bv+L48EFGHaAdNFQFoCEdAkwTd5prULHV9lChoBkdAcN9rULDyfGgHTSYBaAhHQJMGhk5IYm91fZQoaAZHQHL7kq6OHWVoB00gAWgIR0CTB1IeHSF5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |