|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import gc |
|
import hashlib |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
from huggingface_hub import create_repo, upload_folder |
|
from peft import LoraConfig, set_peft_model_state_dict |
|
from peft.utils import get_peft_model_state_dict |
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import crop |
|
from tqdm.auto import tqdm |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
SD3Transformer2DModel, |
|
StableDiffusion3Pipeline, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import ( |
|
cast_training_params, |
|
compute_density_for_timestep_sampling, |
|
compute_loss_weighting_for_sd3, |
|
) |
|
from diffusers.utils import ( |
|
check_min_version, |
|
convert_unet_state_dict_to_peft, |
|
is_wandb_available, |
|
) |
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
images=None, |
|
base_model: str = None, |
|
train_text_encoder=False, |
|
instance_prompt=None, |
|
validation_prompt=None, |
|
repo_folder=None, |
|
): |
|
widget_dict = [] |
|
if images is not None: |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
widget_dict.append( |
|
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} |
|
) |
|
|
|
model_description = f""" |
|
# SD3 DreamBooth LoRA - {repo_id} |
|
|
|
<Gallery /> |
|
|
|
## Model description |
|
|
|
These are {repo_id} DreamBooth weights for {base_model}. |
|
|
|
The weights were trained using [DreamBooth](https://dreambooth.github.io/). |
|
|
|
LoRA for the text encoder was enabled: {train_text_encoder}. |
|
|
|
## Trigger words |
|
|
|
You should use {instance_prompt} to trigger the image generation. |
|
|
|
## Download model |
|
|
|
[Download]({repo_id}/tree/main) them in the Files & versions tab. |
|
|
|
## License |
|
|
|
Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE). |
|
""" |
|
model_card = load_or_create_model_card( |
|
repo_id_or_path=repo_id, |
|
from_training=True, |
|
license="openrail++", |
|
base_model=base_model, |
|
prompt=instance_prompt, |
|
model_description=model_description, |
|
widget=widget_dict, |
|
) |
|
tags = [ |
|
"text-to-image", |
|
"diffusers-training", |
|
"diffusers", |
|
"lora", |
|
"sd3", |
|
"sd3-diffusers", |
|
"template:sd-lora", |
|
] |
|
|
|
model_card = populate_model_card(model_card, tags=tags) |
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
def log_validation( |
|
pipeline, |
|
args, |
|
accelerator, |
|
pipeline_args, |
|
epoch, |
|
is_final_validation=False, |
|
): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
|
|
autocast_ctx = nullcontext() |
|
|
|
with autocast_ctx: |
|
images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)] |
|
|
|
for tracker in accelerator.trackers: |
|
phase_name = "test" if is_final_validation else "validation" |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
phase_name: [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
return images |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
help=("A folder containing the training data. "), |
|
) |
|
parser.add_argument( |
|
"--data_df_path", |
|
type=str, |
|
default=None, |
|
help=("Path to the parquet file serialized with compute_embeddings.py."), |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", |
|
) |
|
parser.add_argument( |
|
"--max_sequence_length", |
|
type=int, |
|
default=77, |
|
help="Maximum sequence length to use with with the T5 text encoder", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=50, |
|
help=( |
|
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=4, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="sd3-dreambooth-lora", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
|
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--weighting_scheme", |
|
type=str, |
|
default="logit_normal", |
|
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"], |
|
) |
|
parser.add_argument( |
|
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." |
|
) |
|
parser.add_argument( |
|
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." |
|
) |
|
parser.add_argument( |
|
"--mode_scale", |
|
type=float, |
|
default=1.29, |
|
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", |
|
) |
|
parser.add_argument( |
|
"--optimizer", |
|
type=str, |
|
default="AdamW", |
|
help=('The optimizer type to use. Choose between ["AdamW"]'), |
|
) |
|
|
|
parser.add_argument( |
|
"--use_8bit_adam", |
|
action="store_true", |
|
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", |
|
) |
|
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") |
|
|
|
parser.add_argument( |
|
"--adam_epsilon", |
|
type=float, |
|
default=1e-08, |
|
help="Epsilon value for the Adam optimizer.", |
|
) |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prior_generation_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp32", "fp16", "bf16"], |
|
help=( |
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.instance_data_dir is None: |
|
raise ValueError("Specify `instance_data_dir`.") |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
data_df_path, |
|
instance_data_root, |
|
instance_prompt, |
|
size=1024, |
|
center_crop=False, |
|
): |
|
|
|
self.size = size |
|
self.center_crop = center_crop |
|
|
|
self.instance_prompt = instance_prompt |
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
|
|
instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] |
|
image_hashes = [self.generate_image_hash(path) for path in list(Path(instance_data_root).iterdir())] |
|
self.instance_images = instance_images |
|
self.image_hashes = image_hashes |
|
|
|
|
|
self.pixel_values = self.apply_image_transformations( |
|
instance_images=instance_images, size=size, center_crop=center_crop |
|
) |
|
|
|
|
|
self.data_dict = self.map_image_hash_embedding(data_df_path=data_df_path) |
|
|
|
self.num_instance_images = len(instance_images) |
|
self._length = self.num_instance_images |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = self.pixel_values[index % self.num_instance_images] |
|
image_hash = self.image_hashes[index % self.num_instance_images] |
|
prompt_embeds, pooled_prompt_embeds = self.data_dict[image_hash] |
|
example["instance_images"] = instance_image |
|
example["prompt_embeds"] = prompt_embeds |
|
example["pooled_prompt_embeds"] = pooled_prompt_embeds |
|
return example |
|
|
|
def apply_image_transformations(self, instance_images, size, center_crop): |
|
pixel_values = [] |
|
|
|
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) |
|
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) |
|
train_flip = transforms.RandomHorizontalFlip(p=1.0) |
|
train_transforms = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
for image in instance_images: |
|
image = exif_transpose(image) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = train_resize(image) |
|
if args.random_flip and random.random() < 0.5: |
|
|
|
image = train_flip(image) |
|
if args.center_crop: |
|
y1 = max(0, int(round((image.height - args.resolution) / 2.0))) |
|
x1 = max(0, int(round((image.width - args.resolution) / 2.0))) |
|
image = train_crop(image) |
|
else: |
|
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) |
|
image = crop(image, y1, x1, h, w) |
|
image = train_transforms(image) |
|
pixel_values.append(image) |
|
|
|
return pixel_values |
|
|
|
def convert_to_torch_tensor(self, embeddings: list): |
|
prompt_embeds = embeddings[0] |
|
pooled_prompt_embeds = embeddings[1] |
|
prompt_embeds = np.array(prompt_embeds).reshape(154, 4096) |
|
pooled_prompt_embeds = np.array(pooled_prompt_embeds).reshape(2048) |
|
return torch.from_numpy(prompt_embeds), torch.from_numpy(pooled_prompt_embeds) |
|
|
|
def map_image_hash_embedding(self, data_df_path): |
|
hashes_df = pd.read_parquet(data_df_path) |
|
data_dict = {} |
|
for i, row in hashes_df.iterrows(): |
|
embeddings = [row["prompt_embeds"], row["pooled_prompt_embeds"]] |
|
prompt_embeds, pooled_prompt_embeds = self.convert_to_torch_tensor(embeddings=embeddings) |
|
data_dict.update({row["image_hash"]: (prompt_embeds, pooled_prompt_embeds)}) |
|
return data_dict |
|
|
|
def generate_image_hash(self, image_path): |
|
with open(image_path, "rb") as f: |
|
img_data = f.read() |
|
return hashlib.sha256(img_data).hexdigest() |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = [example["instance_images"] for example in examples] |
|
prompt_embeds = [example["prompt_embeds"] for example in examples] |
|
pooled_prompt_embeds = [example["pooled_prompt_embeds"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
prompt_embeds = torch.stack(prompt_embeds) |
|
pooled_prompt_embeds = torch.stack(pooled_prompt_embeds) |
|
|
|
batch = { |
|
"pixel_values": pixel_values, |
|
"prompt_embeds": prompt_embeds, |
|
"pooled_prompt_embeds": pooled_prompt_embeds, |
|
} |
|
return batch |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
kwargs_handlers=[kwargs], |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
exist_ok=True, |
|
).repo_id |
|
|
|
|
|
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="scheduler" |
|
) |
|
noise_scheduler_copy = copy.deepcopy(noise_scheduler) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="vae", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
transformer = SD3Transformer2DModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant |
|
) |
|
|
|
transformer.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
vae.to(accelerator.device, dtype=torch.float32) |
|
transformer.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if args.gradient_checkpointing: |
|
transformer.enable_gradient_checkpointing() |
|
|
|
|
|
transformer_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
transformer.add_adapter(transformer_lora_config) |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
transformer_lora_layers_to_save = None |
|
for model in models: |
|
if isinstance(model, type(unwrap_model(transformer))): |
|
transformer_lora_layers_to_save = get_peft_model_state_dict(model) |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
weights.pop() |
|
|
|
StableDiffusion3Pipeline.save_lora_weights( |
|
output_dir, |
|
transformer_lora_layers=transformer_lora_layers_to_save, |
|
) |
|
|
|
def load_model_hook(models, input_dir): |
|
transformer_ = None |
|
|
|
while len(models) > 0: |
|
model = models.pop() |
|
|
|
if isinstance(model, type(unwrap_model(transformer))): |
|
transformer_ = model |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
lora_state_dict = StableDiffusion3Pipeline.lora_state_dict(input_dir) |
|
|
|
transformer_state_dict = { |
|
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") |
|
} |
|
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) |
|
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") |
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
models = [transformer_] |
|
|
|
cast_training_params(models) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
if args.allow_tf32 and torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
models = [transformer] |
|
|
|
cast_training_params(models, dtype=torch.float32) |
|
|
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) |
|
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} |
|
params_to_optimize = [transformer_parameters_with_lr] |
|
|
|
|
|
if not args.optimizer.lower() == "adamw": |
|
logger.warning( |
|
f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include [adamW]." |
|
"Defaulting to adamW" |
|
) |
|
args.optimizer = "adamw" |
|
|
|
if args.use_8bit_adam and not args.optimizer.lower() == "adamw": |
|
logger.warning( |
|
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " |
|
f"set to {args.optimizer.lower()}" |
|
) |
|
|
|
if args.optimizer.lower() == "adamw": |
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = DreamBoothDataset( |
|
data_df_path=args.data_df_path, |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=lambda examples: collate_fn(examples), |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
transformer, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_name = "dreambooth-sd3-lora-miniature" |
|
accelerator.init_trackers(tracker_name, config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): |
|
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) |
|
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) |
|
timesteps = timesteps.to(accelerator.device) |
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < n_dim: |
|
sigma = sigma.unsqueeze(-1) |
|
return sigma |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
transformer.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
models_to_accumulate = [transformer] |
|
with accelerator.accumulate(models_to_accumulate): |
|
pixel_values = batch["pixel_values"].to(dtype=vae.dtype) |
|
|
|
|
|
model_input = vae.encode(pixel_values).latent_dist.sample() |
|
model_input = model_input * vae.config.scaling_factor |
|
model_input = model_input.to(dtype=weight_dtype) |
|
|
|
|
|
noise = torch.randn_like(model_input) |
|
bsz = model_input.shape[0] |
|
|
|
|
|
|
|
u = compute_density_for_timestep_sampling( |
|
weighting_scheme=args.weighting_scheme, |
|
batch_size=bsz, |
|
logit_mean=args.logit_mean, |
|
logit_std=args.logit_std, |
|
mode_scale=args.mode_scale, |
|
) |
|
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() |
|
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) |
|
|
|
|
|
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) |
|
noisy_model_input = sigmas * noise + (1.0 - sigmas) * model_input |
|
|
|
|
|
prompt_embeds, pooled_prompt_embeds = batch["prompt_embeds"], batch["pooled_prompt_embeds"] |
|
prompt_embeds = prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) |
|
pooled_prompt_embeds = pooled_prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) |
|
model_pred = transformer( |
|
hidden_states=noisy_model_input, |
|
timestep=timesteps, |
|
encoder_hidden_states=prompt_embeds, |
|
pooled_projections=pooled_prompt_embeds, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
|
|
model_pred = model_pred * (-sigmas) + noisy_model_input |
|
|
|
|
|
|
|
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) |
|
|
|
|
|
target = model_input |
|
|
|
|
|
loss = torch.mean( |
|
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), |
|
1, |
|
) |
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = transformer_lora_parameters |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompt is not None and epoch % args.validation_epochs == 0: |
|
pipeline = StableDiffusion3Pipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
transformer=accelerator.unwrap_model(transformer), |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline_args = {"prompt": args.validation_prompt} |
|
images = log_validation( |
|
pipeline=pipeline, |
|
args=args, |
|
accelerator=accelerator, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
transformer = unwrap_model(transformer) |
|
transformer = transformer.to(torch.float32) |
|
transformer_lora_layers = get_peft_model_state_dict(transformer) |
|
|
|
StableDiffusion3Pipeline.save_lora_weights( |
|
save_directory=args.output_dir, |
|
transformer_lora_layers=transformer_lora_layers, |
|
) |
|
|
|
|
|
|
|
pipeline = StableDiffusion3Pipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
pipeline.load_lora_weights(args.output_dir) |
|
|
|
|
|
images = [] |
|
if args.validation_prompt and args.num_validation_images > 0: |
|
pipeline_args = {"prompt": args.validation_prompt} |
|
images = log_validation( |
|
pipeline=pipeline, |
|
args=args, |
|
accelerator=accelerator, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
is_final_validation=True, |
|
) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
images=images, |
|
base_model=args.pretrained_model_name_or_path, |
|
instance_prompt=args.instance_prompt, |
|
validation_prompt=args.validation_prompt, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|