BioinspiredZephyr-7B: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials

To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties.

The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity.

The model is based on HuggingFaceH4/zephyr-7b-beta.

image/png

This model is based on work reported in https://doi.org/10.1002/advs.202306724.

This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended).

Hugging Face transformers files: Loading and inference

from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import infer_auto_device_map

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    device_map="auto", #device_map="cuda:0",
    torch_dtype=  torch.bfloat16,
    # use_flash_attention_2=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

Chat template

messages = [
    {"role": "system", "content": "You are a friendly materials scientist."},
    {"role": "user", "content": "What is the strongest spider silk material?"},
    {"role": "assistant", "content": "Sample response."},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

'<|system|>\nYou are a friendly materials scientist.\n<|user|>\nWhat is the strongest spider silk material?\n<|assistant|>\nSample response.\n<|assistant|>\n'

device='cuda'
def generate_response (text_input="Biological materials offer amazing possibilities, such as",
                      num_return_sequences=1,
                      temperature=1.,  
                      max_new_tokens=127,
                      num_beams=1,
                      top_k = 50,
                      top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False,
                      exponential_decay_length_penalty_fac=None,
                      ):

    inputs = tokenizer.encode(text_input,  add_special_tokens  =False,  return_tensors ='pt')
    if verbatim:
        print ("Length of input, tokenized: ", inputs.shape, inputs)
    with torch.no_grad():
          outputs = model.generate(input_ids=inputs.to(device), 
                                   max_new_tokens=max_new_tokens,
                                   temperature=temperature, #value used to modulate the next token probabilities.
                                   num_beams=num_beams,
                                   top_k = top_k,
                                   top_p =top_p,
                                   num_return_sequences = num_return_sequences, eos_token_id=eos_token_id,
                                   do_sample =True, 
                                   repetition_penalty=repetition_penalty,
                                  )
    return tokenizer.batch_decode(outputs[:,inputs.shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)

Then:

messages = [
    {"role": "system", "content": "You are a friendly materials scientist."},
    {"role": "user", "content": "What is the strongest spider silk material?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

output_text=generate_response (text_input=prompt, eos_token_id=eos_token,
                                num_return_sequences=1, repetition_penalty=1.,
                                top_p=0.9, top_k=512,  
                                temperature=0.1,max_new_tokens=512, verbatim=False,
                               )
print (output_text)

GGUF files: Loading and inference

from llama_cpp import Llama

model_path='./BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf'
chat_format="mistral-instruct"

llm = Llama(model_path=model_path,
            n_gpu_layers=-1,verbose= True, 
            n_ctx=10000,
            #main_gpu=0,
            chat_format=chat_format,
            #split_mode=llama_cpp.LLAMA_SPLIT_LAYER
            )

Or, download directly from Hugging Face:

from llama_cpp import Llama

model_path='lamm-mit/BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf'
chat_format="mistral-instruct"

llm = Llama.from_pretrained(
    repo_id=model_path,
    filename="*q5_K_M.gguf",
    verbose=True,
    n_gpu_layers=-1, 
    n_ctx=10000,
    #main_gpu=0,
    chat_format=chat_format,
)

For inference:

def generate_BioinspiredZephyr_7B(system_prompt='You are an expert in biological materials, mechanics and related topics.',
                                  prompt="What is spider silk?",
                                  temperature=0.0,
                                  max_tokens=10000,  
                                  ):
    if system_prompt==None:
        messages=[
            {"role": "user", "content": prompt},
            ]
    else:
        messages=[
            {"role": "system",  "content": system_prompt},
            {"role": "user", "content": prompt},
        ]

    result=llm.create_chat_completion(
            messages=messages,
            temperature=temperature,
            max_tokens=max_tokens,
        )

start_time = time.time()
result=generate_BioinspiredZephyr_7B(system_prompt='You respond accurately.', 
                        prompt="What is graphene? Answer with detail.",
                        max_tokens=512, temperature=0.7,  )
print (result)
deltat=time.time() - start_time
print("--- %s seconds ---" % deltat)
toked=tokenizer(res)
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat)

arXiv: https://arxiv.org/abs/2309.08788

Downloads last month
37
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lamm-mit/BioinspiredZephyr-7B

Quantizations
2 models

Collection including lamm-mit/BioinspiredZephyr-7B