ylacombe commited on
Commit
195c3a3
·
1 Parent(s): b1f465e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -32,7 +32,7 @@ from transformers import pipeline
32
  dataset = load_dataset("ashraq/esc50")
33
  audio = dataset["train"]["audio"][-1]["array"]
34
 
35
- audio_classifier = pipeline(task="zero-shot-audio-classification", model="ylacombe/larger_clap_music_and_speech")
36
  output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
37
  print(output)
38
  >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]
@@ -51,8 +51,8 @@ from transformers import ClapModel, ClapProcessor
51
  librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
52
  audio_sample = librispeech_dummy[0]
53
 
54
- model = ClapModel.from_pretrained("ylacombe/larger_clap_music_and_speech")
55
- processor = ClapProcessor.from_pretrained("ylacombe/larger_clap_music_and_speech")
56
 
57
  inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
58
  audio_embed = model.get_audio_features(**inputs)
@@ -67,8 +67,8 @@ from transformers import ClapModel, ClapProcessor
67
  librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
68
  audio_sample = librispeech_dummy[0]
69
 
70
- model = ClapModel.from_pretrained("ylacombe/larger_clap_music_and_speech").to(0)
71
- processor = ClapProcessor.from_pretrained("ylacombe/larger_clap_music_and_speech")
72
 
73
  inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
74
  audio_embed = model.get_audio_features(**inputs)
 
32
  dataset = load_dataset("ashraq/esc50")
33
  audio = dataset["train"]["audio"][-1]["array"]
34
 
35
+ audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/larger_clap_music_and_speech")
36
  output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
37
  print(output)
38
  >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]
 
51
  librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
52
  audio_sample = librispeech_dummy[0]
53
 
54
+ model = ClapModel.from_pretrained("laion/larger_clap_music_and_speech")
55
+ processor = ClapProcessor.from_pretrained("laion/larger_clap_music_and_speech")
56
 
57
  inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
58
  audio_embed = model.get_audio_features(**inputs)
 
67
  librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
68
  audio_sample = librispeech_dummy[0]
69
 
70
+ model = ClapModel.from_pretrained("laion/larger_clap_music_and_speech").to(0)
71
+ processor = ClapProcessor.from_pretrained("laion/larger_clap_music_and_speech")
72
 
73
  inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
74
  audio_embed = model.get_audio_features(**inputs)