Commit
·
29092e8
1
Parent(s):
e5bb9ca
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.36 +/- 0.36
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6dc35d79ee99e8b30df8baed5a1f8b3663330389c29635998b67386b512156a
|
3 |
+
size 109998
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,21 +33,21 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "
|
48 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
@@ -91,5 +91,5 @@
|
|
91 |
"bounded_above": "[ True True True]",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
-
"n_envs":
|
95 |
}
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1684062644401435043,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAQgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAlVwJv3aepz+8S4U+ILWJPxqKij8jsBG/iLA6PwUmpz+NP6M/etmlvqgPyL6tXNC/1gGBv3JoBD8r08K/xXRlv5JwDD8KzZA/1jQHPuKAmb83J7g+wy+4vyTbhL6nrLQ/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAABCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjuUaA5LCEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]]",
|
38 |
+
"desired_goal": "[[-0.53656894 1.3095233 0.26034343]\n [ 1.07584 1.0823395 -0.5690939 ]\n [ 0.72925615 1.3058478 1.2753769 ]\n [-0.32392484 -0.39074445 -1.6278282 ]\n [-1.0078685 0.5172187 -1.5220693 ]\n [-0.896313 0.5485927 1.1312573 ]\n [ 0.13203749 -1.1992457 0.3596742 ]\n [-1.4389576 -0.2594844 1.4115189 ]]",
|
39 |
+
"observation": "[[ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAg63oPTnqh72R8y8+G5+bPcldvr27IYw+6NU6PUVpSb2dtzo+Hpr5PQxYOb2AflA+FTbovdPnAT56yDo9U04ZvrPfvj3Hy6s9or6wvY7xuL1M04s+LXYRvWLZRb1emE89lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.1136122 -0.06636471 0.17182757]\n [ 0.07598706 -0.09295232 0.27369484]\n [ 0.04561415 -0.04917266 0.18234105]\n [ 0.12187599 -0.04524998 0.20360756]\n [-0.1133844 0.1268609 0.04560135]\n [-0.14971285 0.09320011 0.08388477]\n [-0.0863011 -0.09030448 0.27309644]\n [-0.03551309 -0.04830302 0.05068242]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3uS36GQpAMCUhpRSlIwBbJRLMowBdJRHQJNvmYc/+sJ1fZQoaAZoCWgPQwiuDoC4q1f2v5SGlFKUaBVLMmgWR0CTb1mkWRA9dX2UKGgGaAloD0MI5Pc2/dnvAMCUhpRSlGgVSzJoFkdAk28c9nscAHV9lChoBmgJaA9DCNZ0PdF1YfG/lIaUUpRoFUsyaBZHQJNu3s3Q2Mt1fZQoaAZoCWgPQwhuFFlrKLXvv5SGlFKUaBVLMmgWR0CTczc7hegMdX2UKGgGaAloD0MIk4/dBUrK+L+UhpRSlGgVSzJoFkdAk3LwP/aQFXV9lChoBmgJaA9DCL0ZNV8ln++/lIaUUpRoFUsyaBZHQJNysBGQSzx1fZQoaAZoCWgPQwgmxccnZOf4v5SGlFKUaBVLMmgWR0CTcm53kgfVdX2UKGgGaAloD0MIUn5S7dPx67+UhpRSlGgVSzJoFkdAk3IreANG3HV9lChoBmgJaA9DCIiE7/0NGvK/lIaUUpRoFUsyaBZHQJNx63mV7hN1fZQoaAZoCWgPQwj6Jk2Donnwv5SGlFKUaBVLMmgWR0CTca557gKndX2UKGgGaAloD0MIUil2NA61+r+UhpRSlGgVSzJoFkdAk3FwMMI/q3V9lChoBmgJaA9DCKZ+3lSkwvy/lIaUUpRoFUsyaBZHQJN1ab+cYqJ1fZQoaAZoCWgPQwg7Vik908v8v5SGlFKUaBVLMmgWR0CTdSLIPsiTdX2UKGgGaAloD0MIZvSj4ZR5+7+UhpRSlGgVSzJoFkdAk3TidWhh6XV9lChoBmgJaA9DCO4E+69z0/m/lIaUUpRoFUsyaBZHQJN0oQPI4l11fZQoaAZoCWgPQwgr24e85ar1v5SGlFKUaBVLMmgWR0CTdF4FA3UAdX2UKGgGaAloD0MIyHxAoDMp8r+UhpRSlGgVSzJoFkdAk3QeFQEZBXV9lChoBmgJaA9DCGqEfqZed/W/lIaUUpRoFUsyaBZHQJNz4V9F4LV1fZQoaAZoCWgPQwga+ie4WNH8v5SGlFKUaBVLMmgWR0CTc6M0gr6MdX2UKGgGaAloD0MIw7rx7siY+r+UhpRSlGgVSzJoFkdAk3erFS88LnV9lChoBmgJaA9DCMwpATEJ1/y/lIaUUpRoFUsyaBZHQJN3ZEiMYMx1fZQoaAZoCWgPQwgeb/JbdBIBwJSGlFKUaBVLMmgWR0CTdyQf6oETdX2UKGgGaAloD0MIkrOwpx3+7L+UhpRSlGgVSzJoFkdAk3bij59E1HV9lChoBmgJaA9DCO3YCMTr+vS/lIaUUpRoFUsyaBZHQJN2n433pOh1fZQoaAZoCWgPQwhCl3DoLV74v5SGlFKUaBVLMmgWR0CTdl/L1VYIdX2UKGgGaAloD0MIVTIAVHEj+7+UhpRSlGgVSzJoFkdAk3YjRlYlp3V9lChoBmgJaA9DCCb9vRQetPi/lIaUUpRoFUsyaBZHQJN15UADJU51fZQoaAZoCWgPQwg2lNqLaBsAwJSGlFKUaBVLMmgWR0CTehlvZRKpdX2UKGgGaAloD0MIzcmLTMBPAMCUhpRSlGgVSzJoFkdAk3nSkfs/p3V9lChoBmgJaA9DCBaiQ+BI4PW/lIaUUpRoFUsyaBZHQJN5kkyDZlF1fZQoaAZoCWgPQwiIghlTsIb/v5SGlFKUaBVLMmgWR0CTeVDDjzZpdX2UKGgGaAloD0MI8Z9uoMC7/L+UhpRSlGgVSzJoFkdAk3kN8eCCjHV9lChoBmgJaA9DCGGL3T6rjALAlIaUUpRoFUsyaBZHQJN4zkxREWt1fZQoaAZoCWgPQwiAuKtXkVH9v5SGlFKUaBVLMmgWR0CTeJF6Rhc8dX2UKGgGaAloD0MIcsKE0ays/b+UhpRSlGgVSzJoFkdAk3hTa4+bE3V9lChoBmgJaA9DCIo+H2XERfG/lIaUUpRoFUsyaBZHQJN8QiNbTtt1fZQoaAZoCWgPQwjuPVxy3Onxv5SGlFKUaBVLMmgWR0CTe/tOmBOIdX2UKGgGaAloD0MIiBOYTuv2+r+UhpRSlGgVSzJoFkdAk3u7KvFFUnV9lChoBmgJaA9DCOLLRBFS9/e/lIaUUpRoFUsyaBZHQJN7ebZvkzZ1fZQoaAZoCWgPQwgzUBn/PqPyv5SGlFKUaBVLMmgWR0CTezahYeT3dX2UKGgGaAloD0MIZLK4/8gUBcCUhpRSlGgVSzJoFkdAk3r2tlqagHV9lChoBmgJaA9DCD6veOqRxv6/lIaUUpRoFUsyaBZHQJN6ufkFOfx1fZQoaAZoCWgPQwj4a7JGPcT7v5SGlFKUaBVLMmgWR0CTenvnr6cidX2UKGgGaAloD0MIHekMjLys6L+UhpRSlGgVSzJoFkdAk351PrOZ9nV9lChoBmgJaA9DCETdByC1Sf2/lIaUUpRoFUsyaBZHQJN+LkMkQf91fZQoaAZoCWgPQwjK+WLvxZfov5SGlFKUaBVLMmgWR0CTfe384xUOdX2UKGgGaAloD0MIlWWIY13c7b+UhpRSlGgVSzJoFkdAk32sajvd/XV9lChoBmgJaA9DCClauReYFfK/lIaUUpRoFUsyaBZHQJN9aU9pyp91fZQoaAZoCWgPQwghVn+EYUD+v5SGlFKUaBVLMmgWR0CTfSlkYoAodX2UKGgGaAloD0MIt5xLcVVZ9b+UhpRSlGgVSzJoFkdAk3zsneBQN3V9lChoBmgJaA9DCEvqBDQRNu+/lIaUUpRoFUsyaBZHQJN8rljmSyN1fZQoaAZoCWgPQwiiKqbSTzj5v5SGlFKUaBVLMmgWR0CTgPAAQxvfdX2UKGgGaAloD0MIYviImBLJ7r+UhpRSlGgVSzJoFkdAk4CpDRc/uHV9lChoBmgJaA9DCNiarbzk/+m/lIaUUpRoFUsyaBZHQJOAaOmzjWF1fZQoaAZoCWgPQwi/C1uzlZf2v5SGlFKUaBVLMmgWR0CTgCdIoVmBdX2UKGgGaAloD0MItBzoobYN7L+UhpRSlGgVSzJoFkdAk3/kUfxMFnV9lChoBmgJaA9DCNulDYelAeu/lIaUUpRoFUsyaBZHQJN/pHDrJKd1fZQoaAZoCWgPQwjcvdwnRwHwv5SGlFKUaBVLMmgWR0CTf2eRPoFFdX2UKGgGaAloD0MIi1BsBU3L+7+UhpRSlGgVSzJoFkdAk38pT6zmfXV9lChoBmgJaA9DCOcYkL3evfO/lIaUUpRoFUsyaBZHQJODH6InBtV1fZQoaAZoCWgPQwh33PC76Vbxv5SGlFKUaBVLMmgWR0CTgtixFAmidX2UKGgGaAloD0MIwkzbv7JS+b+UhpRSlGgVSzJoFkdAk4KYgieNDXV9lChoBmgJaA9DCDNTWn9LgO6/lIaUUpRoFUsyaBZHQJOCVv1lGw11fZQoaAZoCWgPQwjggmxZvq7xv5SGlFKUaBVLMmgWR0CTghQAMlTndX2UKGgGaAloD0MIXOhKBKqfAMCUhpRSlGgVSzJoFkdAk4HUJng5znV9lChoBmgJaA9DCKqZtRSQ9vm/lIaUUpRoFUsyaBZHQJOBl16mfoR1fZQoaAZoCWgPQwhCzZAqihfwv5SGlFKUaBVLMmgWR0CTgVlSjxkNdX2UKGgGaAloD0MIibK3lPMlAMCUhpRSlGgVSzJoFkdAk4VjOHFglXV9lChoBmgJaA9DCGgG8YEdf++/lIaUUpRoFUsyaBZHQJOFHHGS6lN1fZQoaAZoCWgPQwiIvVDAdvD9v5SGlFKUaBVLMmgWR0CThNxd6cAjdX2UKGgGaAloD0MIRBX+DG/W7b+UhpRSlGgVSzJoFkdAk4SazZ6D5HV9lChoBmgJaA9DCCeIug9A6u2/lIaUUpRoFUsyaBZHQJOEV+4LCvZ1fZQoaAZoCWgPQwhBSBYwgdvyv5SGlFKUaBVLMmgWR0CThBgKWszVdX2UKGgGaAloD0MIPgeWI2Rg9b+UhpRSlGgVSzJoFkdAk4PbQb+98XV9lChoBmgJaA9DCBwLCoMyje+/lIaUUpRoFUsyaBZHQJODnS0BwMp1fZQoaAZoCWgPQwjKwWwCDMvzv5SGlFKUaBVLMmgWR0CTh4mpEQXidX2UKGgGaAloD0MIkrJF0m40+b+UhpRSlGgVSzJoFkdAk4dCu6mO2nV9lChoBmgJaA9DCB9KtOTxtOy/lIaUUpRoFUsyaBZHQJOHAoc7yQR1fZQoaAZoCWgPQwg5Y5gTtMntv5SGlFKUaBVLMmgWR0CThsELH+6zdX2UKGgGaAloD0MImWclrfiG9b+UhpRSlGgVSzJoFkdAk4Z9/jKgZnV9lChoBmgJaA9DCML8FTJXBu+/lIaUUpRoFUsyaBZHQJOGPkFOful1fZQoaAZoCWgPQwivBigNNWoBwJSGlFKUaBVLMmgWR0CThgGr0aqCdX2UKGgGaAloD0MIEHaKVYNw8L+UhpRSlGgVSzJoFkdAk4XDnmq5snV9lChoBmgJaA9DCFQ2rKksCvy/lIaUUpRoFUsyaBZHQJOJs2YOUdJ1fZQoaAZoCWgPQwhenPhqR/Htv5SGlFKUaBVLMmgWR0CTiWxzq8lHdX2UKGgGaAloD0MIJQaBlUOrAMCUhpRSlGgVSzJoFkdAk4ksT37DVHV9lChoBmgJaA9DCCkEcokjj++/lIaUUpRoFUsyaBZHQJOI6sMiKSB1fZQoaAZoCWgPQwidLSC0Hr7pv5SGlFKUaBVLMmgWR0CTiKegL7XQdX2UKGgGaAloD0MIDMufbwu2AMCUhpRSlGgVSzJoFkdAk4hnvMKTjnV9lChoBmgJaA9DCFjnGJC93vG/lIaUUpRoFUsyaBZHQJOIKucMEzR1fZQoaAZoCWgPQwiDF30FaUb7v5SGlFKUaBVLMmgWR0CTh+zl90A+dX2UKGgGaAloD0MIngjiPJwA8b+UhpRSlGgVSzJoFkdAk4vkV32VV3V9lChoBmgJaA9DCP65aMh4FAPAlIaUUpRoFUsyaBZHQJOLnV3EAHV1fZQoaAZoCWgPQwjnFyXoL/Tvv5SGlFKUaBVLMmgWR0CTi103wTdtdX2UKGgGaAloD0MIBjBl4ICW67+UhpRSlGgVSzJoFkdAk4sbhBJI2HV9lChoBmgJaA9DCD+Ne/Mbpv+/lIaUUpRoFUsyaBZHQJOK2GgzxgB1fZQoaAZoCWgPQwiPUglP6LX5v5SGlFKUaBVLMmgWR0CTipiKBNEgdX2UKGgGaAloD0MIH2lwW1t4/b+UhpRSlGgVSzJoFkdAk4pbw4KhMHV9lChoBmgJaA9DCBDs+C8QxPK/lIaUUpRoFUsyaBZHQJOKHdcjZ+R1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 25000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
91 |
"bounded_above": "[ True True True]",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
+
"n_envs": 8
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b47fe36701b068141f87152bf8a091727ee93559e1d08da774677fc38174d40e
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d78f2453e48e74286e42f3deb24ae66de358eff9fc6428023dfe0931bbb0f3
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9f598c2710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f598bb6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684060792711088733, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL2xhYmljcXVldHRlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL2xhYmljcXVldHRlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHK/jPh4HCD1MVxc/HK/jPh4HCD1MVxc/HK/jPh4HCD1MVxc/HK/jPh4HCD1MVxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1gXYv8lrrb+cQo0/4T2aPu9DCL4mr4E/9bbJP6l50D95uCA+1IdfPwk4kD/mPCK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcr+M+HgcIPUxXFz9MTbC6cs2eOx8UGbscr+M+HgcIPUxXFz9MTbC6cs2eOx8UGbscr+M+HgcIPUxXFz9MTbC6cs2eOx8UGbscr+M+HgcIPUxXFz9MTbC6cs2eOx8UGbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44469535 0.03320991 0.5911758 ]\n [0.44469535 0.03320991 0.5911758 ]\n [0.44469535 0.03320991 0.5911758 ]\n [0.44469535 0.03320991 0.5911758 ]]", "desired_goal": "[[-1.6876781 -1.3548518 1.1035953 ]\n [ 0.30125335 -0.13307165 1.0131576 ]\n [ 1.5758959 1.6287128 0.1569537 ]\n [ 0.8731663 1.12671 -0.63374174]]", "observation": "[[ 0.44469535 0.03320991 0.5911758 -0.00134508 0.00484627 -0.00233579]\n [ 0.44469535 0.03320991 0.5911758 -0.00134508 0.00484627 -0.00233579]\n [ 0.44469535 0.03320991 0.5911758 -0.00134508 0.00484627 -0.00233579]\n [ 0.44469535 0.03320991 0.5911758 -0.00134508 0.00484627 -0.00233579]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi/dcPKNGZr25lYs+L1+tPJVcEb5SHNU9/veHPVV6Eb6xJPs9EaY+PFqmJz0RmlY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01348675 -0.05621971 0.27262667]\n [ 0.02116355 -0.14195473 0.10405792]\n [ 0.06639098 -0.14206822 0.12262858]\n [ 0.01163627 0.04093013 0.20957209]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9BlQb0YNF8CUhpRSlIwBbJRLMowBdJRHQJgME5DJEIB1fZQoaAZoCWgPQwgFb0ijArcUwJSGlFKUaBVLMmgWR0CYC9X9R77bdX2UKGgGaAloD0MIwylz842YEsCUhpRSlGgVSzJoFkdAmAuZc1O0s3V9lChoBmgJaA9DCHC044bfxSHAlIaUUpRoFUsyaBZHQJgLXiHZbpx1fZQoaAZoCWgPQwj/zCA+sEMIwJSGlFKUaBVLMmgWR0CYDRpztCzDdX2UKGgGaAloD0MIeXWOAdl7HsCUhpRSlGgVSzJoFkdAmAzc63iJf3V9lChoBmgJaA9DCF+4c2GkDyHAlIaUUpRoFUsyaBZHQJgMoAyVObl1fZQoaAZoCWgPQwjkhAmjWfkOwJSGlFKUaBVLMmgWR0CYDGTjvNNbdX2UKGgGaAloD0MI7Uj1nV90DMCUhpRSlGgVSzJoFkdAmA4hVuJk5XV9lChoBmgJaA9DCP6d7dEbXhvAlIaUUpRoFUsyaBZHQJgN48nuy/t1fZQoaAZoCWgPQwiFsBpLWDsTwJSGlFKUaBVLMmgWR0CYDacOby6MdX2UKGgGaAloD0MI0cq9wKzIIcCUhpRSlGgVSzJoFkdAmA1rxEv0y3V9lChoBmgJaA9DCB5rRga5uyDAlIaUUpRoFUsyaBZHQJgPMeS0Sh91fZQoaAZoCWgPQwj6YBkbujkPwJSGlFKUaBVLMmgWR0CYDvRYA80UdX2UKGgGaAloD0MIidAINq7PIMCUhpRSlGgVSzJoFkdAmA63lfZ26nV9lChoBmgJaA9DCN7Jp8e2nBXAlIaUUpRoFUsyaBZHQJgOfFrEcbR1fZQoaAZoCWgPQwgVHcnlP+QewJSGlFKUaBVLMmgWR0CYEDnMMZxadX2UKGgGaAloD0MIxO47hscOFMCUhpRSlGgVSzJoFkdAmA/8MmWt2nV9lChoBmgJaA9DCET5ghYSMBXAlIaUUpRoFUsyaBZHQJgPv1PFefJ1fZQoaAZoCWgPQwiJKCZvgPkWwJSGlFKUaBVLMmgWR0CYD4QUpNKzdX2UKGgGaAloD0MIezL/6JvUDMCUhpRSlGgVSzJoFkdAmBFeTeO4onV9lChoBmgJaA9DCA9HV+nuChfAlIaUUpRoFUsyaBZHQJgRILjPv8Z1fZQoaAZoCWgPQwhrDaX2ImIgwJSGlFKUaBVLMmgWR0CYEOPbwjMWdX2UKGgGaAloD0MIOMDMd/DTCcCUhpRSlGgVSzJoFkdAmBComgJ1JXV9lChoBmgJaA9DCH7Er1jDpQbAlIaUUpRoFUsyaBZHQJgSYrK/2011fZQoaAZoCWgPQwhAFqJD4FgSwJSGlFKUaBVLMmgWR0CYEiUTtb9qdX2UKGgGaAloD0MIildZ2xSPEsCUhpRSlGgVSzJoFkdAmBHoO+ZgHHV9lChoBmgJaA9DCInrGFdcDBLAlIaUUpRoFUsyaBZHQJgRrPqs2eh1fZQoaAZoCWgPQwh6cHfWbgsgwJSGlFKUaBVLMmgWR0CYE2sOXmeUdX2UKGgGaAloD0MI7GtdaoROEcCUhpRSlGgVSzJoFkdAmBMtd7fHgnV9lChoBmgJaA9DCGiu00hLdRjAlIaUUpRoFUsyaBZHQJgS8JJGvwF1fZQoaAZoCWgPQwhwehfvx30QwJSGlFKUaBVLMmgWR0CYErVNpM6BdX2UKGgGaAloD0MIB+xq8pQlEMCUhpRSlGgVSzJoFkdAmBSC6QNkOXV9lChoBmgJaA9DCA75ZwbxgQfAlIaUUpRoFUsyaBZHQJgURVtGd7R1fZQoaAZoCWgPQwgLmwEuyPYQwJSGlFKUaBVLMmgWR0CYFAiZv1lHdX2UKGgGaAloD0MIV12HakrSD8CUhpRSlGgVSzJoFkdAmBPNke6qbXV9lChoBmgJaA9DCE1oklhSHiDAlIaUUpRoFUsyaBZHQJgVjOD8Lrp1fZQoaAZoCWgPQwgYtJCA0ZUTwJSGlFKUaBVLMmgWR0CYFU9VWCEpdX2UKGgGaAloD0MI7YFWYMhCIsCUhpRSlGgVSzJoFkdAmBUSb6P8ynV9lChoBmgJaA9DCGYUyy2t1hTAlIaUUpRoFUsyaBZHQJgU1zU7SzB1fZQoaAZoCWgPQwjiIvd0dbcVwJSGlFKUaBVLMmgWR0CYFqEgGKQ8dX2UKGgGaAloD0MIeei7W1lCG8CUhpRSlGgVSzJoFkdAmBZjifg75nV9lChoBmgJaA9DCGOARBMoMhTAlIaUUpRoFUsyaBZHQJgWJrk8zRB1fZQoaAZoCWgPQwj1RxgGLPkVwJSGlFKUaBVLMmgWR0CYFetnwob5dX2UKGgGaAloD0MIVwbVBifyEcCUhpRSlGgVSzJoFkdAmBeuXRgJC3V9lChoBmgJaA9DCN6ul6YIIBPAlIaUUpRoFUsyaBZHQJgXcMc6vJR1fZQoaAZoCWgPQwjiWYKMgFogwJSGlFKUaBVLMmgWR0CYFzPnB+F2dX2UKGgGaAloD0MIihwibk5lGMCUhpRSlGgVSzJoFkdAmBb4plSS/3V9lChoBmgJaA9DCLEzhc5rTA/AlIaUUpRoFUsyaBZHQJgYwIqslsx1fZQoaAZoCWgPQwieCrjn+dMQwJSGlFKUaBVLMmgWR0CYGIL/jsD5dX2UKGgGaAloD0MIyy2thsQtG8CUhpRSlGgVSzJoFkdAmBhGSQo1DXV9lChoBmgJaA9DCJW1TfG4qBLAlIaUUpRoFUsyaBZHQJgYCxQizLR1fZQoaAZoCWgPQwgDeXb51ncWwJSGlFKUaBVLMmgWR0CYGdBIFvAHdX2UKGgGaAloD0MIX3zRHi+kF8CUhpRSlGgVSzJoFkdAmBmSvkili3V9lChoBmgJaA9DCBSwHYzYlxDAlIaUUpRoFUsyaBZHQJgZVfShJy11fZQoaAZoCWgPQwhsW5TZILMLwJSGlFKUaBVLMmgWR0CYGRqxkd3jdX2UKGgGaAloD0MICcA/pUrUDsCUhpRSlGgVSzJoFkdAmBrUcwQDm3V9lChoBmgJaA9DCBH+RdCYiRXAlIaUUpRoFUsyaBZHQJgaltcfNiZ1fZQoaAZoCWgPQwipZ0Eo7wMTwJSGlFKUaBVLMmgWR0CYGln5i3G5dX2UKGgGaAloD0MIttsuNNe5EcCUhpRSlGgVSzJoFkdAmBoep4rz5HV9lChoBmgJaA9DCI7MI38w8A/AlIaUUpRoFUsyaBZHQJgcBcSoOx11fZQoaAZoCWgPQwijkjoBTVQTwJSGlFKUaBVLMmgWR0CYG8gte2NOdX2UKGgGaAloD0MIEJIFTOC2GMCUhpRSlGgVSzJoFkdAmBuLT2FnI3V9lChoBmgJaA9DCC0j9Z7KaRfAlIaUUpRoFUsyaBZHQJgbUAXEZR91fZQoaAZoCWgPQwjEP2zp0TQewJSGlFKUaBVLMmgWR0CYHQ7l7tzCdX2UKGgGaAloD0MI5IOezaofH8CUhpRSlGgVSzJoFkdAmBzRbbDdg3V9lChoBmgJaA9DCOFE9GvrdxHAlIaUUpRoFUsyaBZHQJgclJcxCY11fZQoaAZoCWgPQwhYrrfNVEgWwJSGlFKUaBVLMmgWR0CYHFlN1yNodX2UKGgGaAloD0MITRB1H4CkFcCUhpRSlGgVSzJoFkdAmB4aWw/xD3V9lChoBmgJaA9DCDiDv1/MRhfAlIaUUpRoFUsyaBZHQJgd3QyAQQN1fZQoaAZoCWgPQwi+EkiJXZshwJSGlFKUaBVLMmgWR0CYHaAp8WsSdX2UKGgGaAloD0MIo5V7gVkhE8CUhpRSlGgVSzJoFkdAmB1lAqur63V9lChoBmgJaA9DCHdLcsCuJh/AlIaUUpRoFUsyaBZHQJgfMWk8A7x1fZQoaAZoCWgPQwga4IJsWS4VwJSGlFKUaBVLMmgWR0CYHvPYFqzrdX2UKGgGaAloD0MIDK8kea5/F8CUhpRSlGgVSzJoFkdAmB63DBMzuXV9lChoBmgJaA9DCPaX3ZOHpRHAlIaUUpRoFUsyaBZHQJgee9eyAx11fZQoaAZoCWgPQwi7l/vkKLATwJSGlFKUaBVLMmgWR0CYIG+8XenAdX2UKGgGaAloD0MI4KKTpdb7DcCUhpRSlGgVSzJoFkdAmCAyfHxSYXV9lChoBmgJaA9DCKDFUiRfaRHAlIaUUpRoFUsyaBZHQJgf9Z+x4Y91fZQoaAZoCWgPQwgbuW5KeR0gwJSGlFKUaBVLMmgWR0CYH7pd8iOedX2UKGgGaAloD0MIGhpPBHEeEcCUhpRSlGgVSzJoFkdAmCF6uOjqOnV9lChoBmgJaA9DCEVJSKRtvBbAlIaUUpRoFUsyaBZHQJghPUkOZst1fZQoaAZoCWgPQwgoK4arA9AUwJSGlFKUaBVLMmgWR0CYIQC79Q40dX2UKGgGaAloD0MI8Z9uoMD7EsCUhpRSlGgVSzJoFkdAmCDFh1DBuXV9lChoBmgJaA9DCERMiSR66RrAlIaUUpRoFUsyaBZHQJgiquwHJLd1fZQoaAZoCWgPQwjQKF36l3QfwJSGlFKUaBVLMmgWR0CYIm2m51/2dX2UKGgGaAloD0MIBg/TvrmvF8CUhpRSlGgVSzJoFkdAmCIwzYVZcXV9lChoBmgJaA9DCKKb/YFy+xHAlIaUUpRoFUsyaBZHQJgh9X7tRel1fZQoaAZoCWgPQwioOXmRCfgUwJSGlFKUaBVLMmgWR0CYI7AggX/HdX2UKGgGaAloD0MIdLUV+8veFsCUhpRSlGgVSzJoFkdAmCNyj1wo9nV9lChoBmgJaA9DCKTBbW3hKRXAlIaUUpRoFUsyaBZHQJgjNeRgZ0l1fZQoaAZoCWgPQwj11yssuHcowJSGlFKUaBVLMmgWR0CYIvq814xDdX2UKGgGaAloD0MIRn79EBvsFcCUhpRSlGgVSzJoFkdAmCS5Nj9XLnV9lChoBmgJaA9DCP7UeOkmQRfAlIaUUpRoFUsyaBZHQJgke6OHWSV1fZQoaAZoCWgPQwhGYRdFDxwWwJSGlFKUaBVLMmgWR0CYJD7eEZivdX2UKGgGaAloD0MImGvRArT9E8CUhpRSlGgVSzJoFkdAmCQDkU9IPXV9lChoBmgJaA9DCPvL7snDYhXAlIaUUpRoFUsyaBZHQJglzZoPCl91fZQoaAZoCWgPQwjPMSB7vbsSwJSGlFKUaBVLMmgWR0CYJZALiMo+dX2UKGgGaAloD0MIvt2SHLBLEcCUhpRSlGgVSzJoFkdAmCVTQRf4RHV9lChoBmgJaA9DCFDicyfYLxHAlIaUUpRoFUsyaBZHQJglF/J/5L11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9f598c2710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f598bb6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684062644401435043, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL2xhYmljcXVldHRlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL2xhYmljcXVldHRlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAQgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/QgXTPk/0fjptIQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAlVwJv3aepz+8S4U+ILWJPxqKij8jsBG/iLA6PwUmpz+NP6M/etmlvqgPyL6tXNC/1gGBv3JoBD8r08K/xXRlv5JwDD8KzZA/1jQHPuKAmb83J7g+wy+4vyTbhL6nrLQ/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAABCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjtCBdM+T/R+Om0hDz+H+re8+y23u8cOHjuUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]\n [0.4121495 0.00097257 0.5591038 ]]", "desired_goal": "[[-0.53656894 1.3095233 0.26034343]\n [ 1.07584 1.0823395 -0.5690939 ]\n [ 0.72925615 1.3058478 1.2753769 ]\n [-0.32392484 -0.39074445 -1.6278282 ]\n [-1.0078685 0.5172187 -1.5220693 ]\n [-0.896313 0.5485927 1.1312573 ]\n [ 0.13203749 -1.1992457 0.3596742 ]\n [-1.4389576 -0.2594844 1.4115189 ]]", "observation": "[[ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]\n [ 0.4121495 0.00097257 0.5591038 -0.02245833 -0.0055902 0.00241177]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAg63oPTnqh72R8y8+G5+bPcldvr27IYw+6NU6PUVpSb2dtzo+Hpr5PQxYOb2AflA+FTbovdPnAT56yDo9U04ZvrPfvj3Hy6s9or6wvY7xuL1M04s+LXYRvWLZRb1emE89lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1136122 -0.06636471 0.17182757]\n [ 0.07598706 -0.09295232 0.27369484]\n [ 0.04561415 -0.04917266 0.18234105]\n [ 0.12187599 -0.04524998 0.20360756]\n [-0.1133844 0.1268609 0.04560135]\n [-0.14971285 0.09320011 0.08388477]\n [-0.0863011 -0.09030448 0.27309644]\n [-0.03551309 -0.04830302 0.05068242]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3uS36GQpAMCUhpRSlIwBbJRLMowBdJRHQJNvmYc/+sJ1fZQoaAZoCWgPQwiuDoC4q1f2v5SGlFKUaBVLMmgWR0CTb1mkWRA9dX2UKGgGaAloD0MI5Pc2/dnvAMCUhpRSlGgVSzJoFkdAk28c9nscAHV9lChoBmgJaA9DCNZ0PdF1YfG/lIaUUpRoFUsyaBZHQJNu3s3Q2Mt1fZQoaAZoCWgPQwhuFFlrKLXvv5SGlFKUaBVLMmgWR0CTczc7hegMdX2UKGgGaAloD0MIk4/dBUrK+L+UhpRSlGgVSzJoFkdAk3LwP/aQFXV9lChoBmgJaA9DCL0ZNV8ln++/lIaUUpRoFUsyaBZHQJNysBGQSzx1fZQoaAZoCWgPQwgmxccnZOf4v5SGlFKUaBVLMmgWR0CTcm53kgfVdX2UKGgGaAloD0MIUn5S7dPx67+UhpRSlGgVSzJoFkdAk3IreANG3HV9lChoBmgJaA9DCIiE7/0NGvK/lIaUUpRoFUsyaBZHQJNx63mV7hN1fZQoaAZoCWgPQwj6Jk2Donnwv5SGlFKUaBVLMmgWR0CTca557gKndX2UKGgGaAloD0MIUil2NA61+r+UhpRSlGgVSzJoFkdAk3FwMMI/q3V9lChoBmgJaA9DCKZ+3lSkwvy/lIaUUpRoFUsyaBZHQJN1ab+cYqJ1fZQoaAZoCWgPQwg7Vik908v8v5SGlFKUaBVLMmgWR0CTdSLIPsiTdX2UKGgGaAloD0MIZvSj4ZR5+7+UhpRSlGgVSzJoFkdAk3TidWhh6XV9lChoBmgJaA9DCO4E+69z0/m/lIaUUpRoFUsyaBZHQJN0oQPI4l11fZQoaAZoCWgPQwgr24e85ar1v5SGlFKUaBVLMmgWR0CTdF4FA3UAdX2UKGgGaAloD0MIyHxAoDMp8r+UhpRSlGgVSzJoFkdAk3QeFQEZBXV9lChoBmgJaA9DCGqEfqZed/W/lIaUUpRoFUsyaBZHQJNz4V9F4LV1fZQoaAZoCWgPQwga+ie4WNH8v5SGlFKUaBVLMmgWR0CTc6M0gr6MdX2UKGgGaAloD0MIw7rx7siY+r+UhpRSlGgVSzJoFkdAk3erFS88LnV9lChoBmgJaA9DCMwpATEJ1/y/lIaUUpRoFUsyaBZHQJN3ZEiMYMx1fZQoaAZoCWgPQwgeb/JbdBIBwJSGlFKUaBVLMmgWR0CTdyQf6oETdX2UKGgGaAloD0MIkrOwpx3+7L+UhpRSlGgVSzJoFkdAk3bij59E1HV9lChoBmgJaA9DCO3YCMTr+vS/lIaUUpRoFUsyaBZHQJN2n433pOh1fZQoaAZoCWgPQwhCl3DoLV74v5SGlFKUaBVLMmgWR0CTdl/L1VYIdX2UKGgGaAloD0MIVTIAVHEj+7+UhpRSlGgVSzJoFkdAk3YjRlYlp3V9lChoBmgJaA9DCCb9vRQetPi/lIaUUpRoFUsyaBZHQJN15UADJU51fZQoaAZoCWgPQwg2lNqLaBsAwJSGlFKUaBVLMmgWR0CTehlvZRKpdX2UKGgGaAloD0MIzcmLTMBPAMCUhpRSlGgVSzJoFkdAk3nSkfs/p3V9lChoBmgJaA9DCBaiQ+BI4PW/lIaUUpRoFUsyaBZHQJN5kkyDZlF1fZQoaAZoCWgPQwiIghlTsIb/v5SGlFKUaBVLMmgWR0CTeVDDjzZpdX2UKGgGaAloD0MI8Z9uoMC7/L+UhpRSlGgVSzJoFkdAk3kN8eCCjHV9lChoBmgJaA9DCGGL3T6rjALAlIaUUpRoFUsyaBZHQJN4zkxREWt1fZQoaAZoCWgPQwiAuKtXkVH9v5SGlFKUaBVLMmgWR0CTeJF6Rhc8dX2UKGgGaAloD0MIcsKE0ays/b+UhpRSlGgVSzJoFkdAk3hTa4+bE3V9lChoBmgJaA9DCIo+H2XERfG/lIaUUpRoFUsyaBZHQJN8QiNbTtt1fZQoaAZoCWgPQwjuPVxy3Onxv5SGlFKUaBVLMmgWR0CTe/tOmBOIdX2UKGgGaAloD0MIiBOYTuv2+r+UhpRSlGgVSzJoFkdAk3u7KvFFUnV9lChoBmgJaA9DCOLLRBFS9/e/lIaUUpRoFUsyaBZHQJN7ebZvkzZ1fZQoaAZoCWgPQwgzUBn/PqPyv5SGlFKUaBVLMmgWR0CTezahYeT3dX2UKGgGaAloD0MIZLK4/8gUBcCUhpRSlGgVSzJoFkdAk3r2tlqagHV9lChoBmgJaA9DCD6veOqRxv6/lIaUUpRoFUsyaBZHQJN6ufkFOfx1fZQoaAZoCWgPQwj4a7JGPcT7v5SGlFKUaBVLMmgWR0CTenvnr6cidX2UKGgGaAloD0MIHekMjLys6L+UhpRSlGgVSzJoFkdAk351PrOZ9nV9lChoBmgJaA9DCETdByC1Sf2/lIaUUpRoFUsyaBZHQJN+LkMkQf91fZQoaAZoCWgPQwjK+WLvxZfov5SGlFKUaBVLMmgWR0CTfe384xUOdX2UKGgGaAloD0MIlWWIY13c7b+UhpRSlGgVSzJoFkdAk32sajvd/XV9lChoBmgJaA9DCClauReYFfK/lIaUUpRoFUsyaBZHQJN9aU9pyp91fZQoaAZoCWgPQwghVn+EYUD+v5SGlFKUaBVLMmgWR0CTfSlkYoAodX2UKGgGaAloD0MIt5xLcVVZ9b+UhpRSlGgVSzJoFkdAk3zsneBQN3V9lChoBmgJaA9DCEvqBDQRNu+/lIaUUpRoFUsyaBZHQJN8rljmSyN1fZQoaAZoCWgPQwiiKqbSTzj5v5SGlFKUaBVLMmgWR0CTgPAAQxvfdX2UKGgGaAloD0MIYviImBLJ7r+UhpRSlGgVSzJoFkdAk4CpDRc/uHV9lChoBmgJaA9DCNiarbzk/+m/lIaUUpRoFUsyaBZHQJOAaOmzjWF1fZQoaAZoCWgPQwi/C1uzlZf2v5SGlFKUaBVLMmgWR0CTgCdIoVmBdX2UKGgGaAloD0MItBzoobYN7L+UhpRSlGgVSzJoFkdAk3/kUfxMFnV9lChoBmgJaA9DCNulDYelAeu/lIaUUpRoFUsyaBZHQJN/pHDrJKd1fZQoaAZoCWgPQwjcvdwnRwHwv5SGlFKUaBVLMmgWR0CTf2eRPoFFdX2UKGgGaAloD0MIi1BsBU3L+7+UhpRSlGgVSzJoFkdAk38pT6zmfXV9lChoBmgJaA9DCOcYkL3evfO/lIaUUpRoFUsyaBZHQJODH6InBtV1fZQoaAZoCWgPQwh33PC76Vbxv5SGlFKUaBVLMmgWR0CTgtixFAmidX2UKGgGaAloD0MIwkzbv7JS+b+UhpRSlGgVSzJoFkdAk4KYgieNDXV9lChoBmgJaA9DCDNTWn9LgO6/lIaUUpRoFUsyaBZHQJOCVv1lGw11fZQoaAZoCWgPQwjggmxZvq7xv5SGlFKUaBVLMmgWR0CTghQAMlTndX2UKGgGaAloD0MIXOhKBKqfAMCUhpRSlGgVSzJoFkdAk4HUJng5znV9lChoBmgJaA9DCKqZtRSQ9vm/lIaUUpRoFUsyaBZHQJOBl16mfoR1fZQoaAZoCWgPQwhCzZAqihfwv5SGlFKUaBVLMmgWR0CTgVlSjxkNdX2UKGgGaAloD0MIibK3lPMlAMCUhpRSlGgVSzJoFkdAk4VjOHFglXV9lChoBmgJaA9DCGgG8YEdf++/lIaUUpRoFUsyaBZHQJOFHHGS6lN1fZQoaAZoCWgPQwiIvVDAdvD9v5SGlFKUaBVLMmgWR0CThNxd6cAjdX2UKGgGaAloD0MIRBX+DG/W7b+UhpRSlGgVSzJoFkdAk4SazZ6D5HV9lChoBmgJaA9DCCeIug9A6u2/lIaUUpRoFUsyaBZHQJOEV+4LCvZ1fZQoaAZoCWgPQwhBSBYwgdvyv5SGlFKUaBVLMmgWR0CThBgKWszVdX2UKGgGaAloD0MIPgeWI2Rg9b+UhpRSlGgVSzJoFkdAk4PbQb+98XV9lChoBmgJaA9DCBwLCoMyje+/lIaUUpRoFUsyaBZHQJODnS0BwMp1fZQoaAZoCWgPQwjKwWwCDMvzv5SGlFKUaBVLMmgWR0CTh4mpEQXidX2UKGgGaAloD0MIkrJF0m40+b+UhpRSlGgVSzJoFkdAk4dCu6mO2nV9lChoBmgJaA9DCB9KtOTxtOy/lIaUUpRoFUsyaBZHQJOHAoc7yQR1fZQoaAZoCWgPQwg5Y5gTtMntv5SGlFKUaBVLMmgWR0CThsELH+6zdX2UKGgGaAloD0MImWclrfiG9b+UhpRSlGgVSzJoFkdAk4Z9/jKgZnV9lChoBmgJaA9DCML8FTJXBu+/lIaUUpRoFUsyaBZHQJOGPkFOful1fZQoaAZoCWgPQwivBigNNWoBwJSGlFKUaBVLMmgWR0CThgGr0aqCdX2UKGgGaAloD0MIEHaKVYNw8L+UhpRSlGgVSzJoFkdAk4XDnmq5snV9lChoBmgJaA9DCFQ2rKksCvy/lIaUUpRoFUsyaBZHQJOJs2YOUdJ1fZQoaAZoCWgPQwhenPhqR/Htv5SGlFKUaBVLMmgWR0CTiWxzq8lHdX2UKGgGaAloD0MIJQaBlUOrAMCUhpRSlGgVSzJoFkdAk4ksT37DVHV9lChoBmgJaA9DCCkEcokjj++/lIaUUpRoFUsyaBZHQJOI6sMiKSB1fZQoaAZoCWgPQwidLSC0Hr7pv5SGlFKUaBVLMmgWR0CTiKegL7XQdX2UKGgGaAloD0MIDMufbwu2AMCUhpRSlGgVSzJoFkdAk4hnvMKTjnV9lChoBmgJaA9DCFjnGJC93vG/lIaUUpRoFUsyaBZHQJOIKucMEzR1fZQoaAZoCWgPQwiDF30FaUb7v5SGlFKUaBVLMmgWR0CTh+zl90A+dX2UKGgGaAloD0MIngjiPJwA8b+UhpRSlGgVSzJoFkdAk4vkV32VV3V9lChoBmgJaA9DCP65aMh4FAPAlIaUUpRoFUsyaBZHQJOLnV3EAHV1fZQoaAZoCWgPQwjnFyXoL/Tvv5SGlFKUaBVLMmgWR0CTi103wTdtdX2UKGgGaAloD0MIBjBl4ICW67+UhpRSlGgVSzJoFkdAk4sbhBJI2HV9lChoBmgJaA9DCD+Ne/Mbpv+/lIaUUpRoFUsyaBZHQJOK2GgzxgB1fZQoaAZoCWgPQwiPUglP6LX5v5SGlFKUaBVLMmgWR0CTipiKBNEgdX2UKGgGaAloD0MIH2lwW1t4/b+UhpRSlGgVSzJoFkdAk4pbw4KhMHV9lChoBmgJaA9DCBDs+C8QxPK/lIaUUpRoFUsyaBZHQJOKHdcjZ+R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 8, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3621452609077096, "std_reward": 0.3649161479798851, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-14T13:32:42.460326"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:946f88165ac5bacb642818f0359ce2b9ab346e66fbf7fc3df88863e678f282f5
|
3 |
size 2387
|