File size: 6,205 Bytes
afe6568
50eafd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe6568
50eafd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93cafd9
50eafd8
52007f1
 
93cafd9
50eafd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb6b59
 
50eafd8
 
acb6b59
 
 
 
 
50eafd8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
language:
- ko  # Example: fr
license: apache-2.0  # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
library_name: transformers  # Optional. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts
tags:
- text2text-generation  # Example: audio
datasets:
- aihub  # Example: common_voice. Use dataset id from https://hf.co/datasets
metrics:
- bleu  # Example: wer. Use metric id from https://hf.co/metrics
- rouge

# Optional. Add this if you want to encode your eval results in a structured way.
model-index:
- name: ko-TextNumbarT
  results:
  - task:
      type: text2text-generation             # Required. Example: automatic-speech-recognition
      name: text2text-generation             # Optional. Example: Speech Recognition
    metrics:
      - type: bleu         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.9529006548919251       # Required. Example: 20.90
        name: eval_bleu         # Optional. Example: Test WER
        verified: true              # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
      - type: rouge1         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.9693520563208838       # Required. Example: 20.90
        name: eval_rouge1         # Optional. Example: Test WER
        verified: true              # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
      - type: rouge2         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.9444220599246154       # Required. Example: 20.90
        name: eval_rouge2       # Optional. Example: Test WER
        verified: true              # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
      - type: rougeL         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.9692485601662657       # Required. Example: 20.90
        name: eval_rougeL        # Optional. Example: Test WER
        verified: true              # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
      - type: rougeLsum         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.9692422603343052       # Required. Example: 20.90
        name: eval_rougeLsum        # Optional. Example: Test WER
        verified: true              # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
---

# ko-TextNumbarT(TNT Model๐Ÿงจ): Try Korean Reading To Number(ํ•œ๊ธ€์„ ์ˆซ์ž๋กœ ๋ฐ”๊พธ๋Š” ๋ชจ๋ธ)

## Table of Contents
- [ko-TextNumbarT(TNT Model๐Ÿงจ): Try Korean Reading To Number(ํ•œ๊ธ€์„ ์ˆซ์ž๋กœ ๋ฐ”๊พธ๋Š” ๋ชจ๋ธ)](#ko-textnumbarttnt-model-try-korean-reading-to-numberํ•œ๊ธ€์„-์ˆซ์ž๋กœ-๋ฐ”๊พธ๋Š”-๋ชจ๋ธ)
  - [Table of Contents](#table-of-contents)
  - [Model Details](#model-details)
  - [Uses](#uses)
  - [Evaluation](#evaluation)
  - [How to Get Started With the Model](#how-to-get-started-with-the-model)


## Model Details
- **Model Description:**
๋ญ”๊ฐ€ ์ฐพ์•„๋ด๋„ ๋ชจ๋ธ์ด๋‚˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋”ฑํžˆ ์—†์–ด์„œ ๋งŒ๋“ค์–ด๋ณธ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. <br />
BartForConditionalGeneration Fine-Tuning Model For Korean To Number <br />
BartForConditionalGeneration์œผ๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ, ํ•œ๊ธ€์„ ์ˆซ์ž๋กœ ๋ณ€ํ™˜ํ•˜๋Š” Task ์ž…๋‹ˆ๋‹ค. <br />

- Dataset use [Korea aihub](https://aihub.or.kr/aihubdata/data/list.do?currMenu=115&topMenu=100&srchDataRealmCode=REALM002&srchDataTy=DATA004) <br />
I can't open my fine-tuning datasets for my private issue <br />
๋ฐ์ดํ„ฐ์…‹์€ Korea aihub์—์„œ ๋ฐ›์•„์„œ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ํŒŒ์ธํŠœ๋‹์— ์‚ฌ์šฉ๋œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์ •์ƒ ๊ณต๊ฐœํ•ด๋“œ๋ฆด ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค. <br />

- Korea aihub data is ONLY permit to Korean!!!!!!! <br />
aihub์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์œผ์‹ค ๋ถ„์€ ํ•œ๊ตญ์ธ์ผ ๊ฒƒ์ด๋ฏ€๋กœ, ํ•œ๊ธ€๋กœ๋งŒ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. <br />
์ •ํ™•ํžˆ๋Š” ์ฒ ์ž์ „์‚ฌ๋ฅผ ์Œ์„ฑ์ „์‚ฌ๋กœ ๋ฒˆ์—ญํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. (ETRI ์ „์‚ฌ๊ธฐ์ค€) <br />

- In case, ten million, some people use 10 million or some people use 10000000, so this model is crucial for training datasets <br />
์ฒœ๋งŒ์„ 1000๋งŒ ํ˜น์€ 10000000์œผ๋กœ ์“ธ ์ˆ˜๋„ ์žˆ๊ธฐ์—, Training Datasets์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๋Š” ์ƒ์ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. <br />

- **์ˆ˜๊ด€ํ˜•์‚ฌ์™€ ์ˆ˜ ์˜์กด๋ช…์‚ฌ์˜ ๋„์–ด์“ฐ๊ธฐ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ํ™•์—ฐํžˆ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (์‰ฐ์‚ด, ์‰ฐ ์‚ด -> ์‰ฐ์‚ด, 50์‚ด)** https://eretz2.tistory.com/34 <br />
์ผ๋‹จ์€ ๊ธฐ์ค€์„ ์žก๊ณ  ์น˜์šฐ์น˜๊ฒŒ ํ•™์Šต์‹œํ‚ค๊ธฐ์—” ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉ๋ ์ง€ ๋ชฐ๋ผ, ํ•™์Šต ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ๋งก๊ธฐ๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค. (์‰ฐ ์‚ด์ด ๋” ๋งŽ์„๊นŒ ์‰ฐ์‚ด์ด ๋” ๋งŽ์„๊นŒ!?)
- **Developed by:**  Yoo SungHyun(https://github.com/YooSungHyun)
- **Language(s):** Korean
- **License:** apache-2.0
- **Parent Model:** See the [kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) for more information about the pre-trained base model.
  
## Uses
Want see more detail follow this URL [KoGPT_num_converter](https://github.com/ddobokki/KoGPT_num_converter) <br /> and see `bart_inference.py` and `bart_train.py`

## Evaluation
Just using `evaluate-metric/bleu` and `evaluate-metric/rouge` in huggingface `evaluate` library <br />
[Training wanDB URL](https://wandb.ai/bart_tadev/BartForConditionalGeneration/runs/1chrc03q?workspace=user-bart_tadev)
## How to Get Started With the Model
```python
from transformers.pipelines import Text2TextGenerationPipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
texts = ["๊ทธ๋Ÿฌ๊ฒŒ ๋ˆ„๊ฐ€ ์—ฌ์„ฏ์‹œ๊นŒ์ง€ ์ˆ ์„ ๋งˆ์‹œ๋ž˜?"]
tokenizer = AutoTokenizer.from_pretrained("lIlBrother/ko-TextNumbarT")
model = AutoModelForSeq2SeqLM.from_pretrained("lIlBrother/ko-TextNumbarT")
seq2seqlm_pipeline = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)
kwargs = {
    "min_length": 0,
    "max_length": 1206,
    "num_beams": 100,
    "do_sample": False,
    "num_beam_groups": 1,
}
pred = seq2seqlm_pipeline(texts, **kwargs)
print(pred)
# ๊ทธ๋Ÿฌ๊ฒŒ ๋ˆ„๊ฐ€ 6์‹œ๊นŒ์ง€ ์ˆ ์„ ๋งˆ์‹œ๋ž˜?
```