kyuwon416 commited on
Commit
61a8d3e
1 Parent(s): d75de30

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6749c64bf3ba00136cd53d8655eeaa39792dc43b44be5740a37783105a865442
3
+ size 123167
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c700c73ee60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c700c737280>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694397574861616269,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcQ6LP5/KKz8p5uk9fh97P9Y7+7+Z7Ok9mNSDP5gnjz8p5uk9pN2IP+k5mz9E8Ok9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU6RBv+3QEz+YFIu/TcKQv2djKL+DkkS9NKuuvRZOmL6YFIu/oTiVvY75B7991vg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAB32z6/ahlrPwTOlb+YXZY/3uMiv7bvZj91ko4/cQ6LP5/KKz8p5uk91gEPu3VILjy5pVe8yWMvPH6WwLueWWw9gnkqPMJBd7y9IRQ7clZJv4UdCT8p9p2/jWGPv4eUoz/hyte8MGmRP34fez/WO/u/mezpPV2Yv0CIBsu6PnyUQPI0pj+F737At0pqPSMQHT7zyUe9x32CP278a79tpFo+nrNWv1qwsb/m5GQ/4QlHvn6WYD+Y1IM/mCePPynm6T3TAQ+7dUguPI2ZXLzfYy88ZpbAu55ZbD2CeSo8wkF3vG4gFDtMZ5S+Hl0eP88MVr8v7sC/5/2RPwdrsb/FimG+pN2IP+k5mz9E8Ok9uBYhu22cKzyquVW889A5PNfdyLvYlGs9soQ/PHkjVrwRfhM7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.0863782 0.6710605 0.11420853]\n [ 0.9809493 -1.9627635 0.11422081]\n [ 1.0299253 1.1183958 0.11420853]\n [ 1.0692639 1.2127048 0.1142278 ]]",
34
+ "desired_goal": "[[-0.75641364 0.5774067 -1.086566 ]\n [-1.1309296 -0.65776676 -0.04799129]\n [-0.08528748 -0.29747075 -1.086566 ]\n [-0.07286192 -0.53115165 0.12150285]]",
35
+ "observation": "[[-7.45536268e-01 9.18356538e-01 -1.17034960e+00 1.17473125e+00\n -6.36289477e-01 9.02095199e-01 1.11384451e+00 1.08637822e+00\n 6.71060503e-01 1.14208527e-01 -2.18211627e-03 1.06373923e-02\n -1.31620700e-02 1.07049430e-02 -5.87731507e-03 5.77026531e-02\n 1.04049463e-02 -1.50913615e-02 2.26031174e-03]\n [-7.86475301e-01 5.35606682e-01 -1.23407471e+00 -1.12016451e+00\n 1.27797019e+00 -2.63418574e-02 1.13602257e+00 9.80949283e-01\n -1.96276355e+00 1.14220805e-01 5.98734903e+00 -1.54896174e-03\n 4.64016628e+00 1.29849076e+00 -3.98336911e+00 5.72001599e-02\n 1.53381869e-01 -4.87765782e-02 1.01946342e+00]\n [-9.21820521e-01 2.13517860e-01 -8.38678241e-01 -1.38819432e+00\n 8.94117713e-01 -1.94373623e-01 8.77296329e-01 1.02992535e+00\n 1.11839581e+00 1.14208527e-01 -2.18211557e-03 1.06373923e-02\n -1.34643437e-02 1.07049635e-02 -5.87730389e-03 5.77026531e-02\n 1.04049463e-02 -1.50913615e-02 2.26023374e-03]\n [-2.89850593e-01 6.18608356e-01 -8.36132944e-01 -1.50726879e+00\n 1.14056098e+00 -1.38607872e+00 -2.20255926e-01 1.06926394e+00\n 1.21270478e+00 1.14227802e-01 -2.45801918e-03 1.04743065e-02\n -1.30447540e-02 1.13413213e-02 -6.12996100e-03 5.75149953e-02\n 1.16893519e-02 -1.30699808e-02 2.25055614e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw8LqPe2g8L0K16M8h0gAvoM1YrsK16M89lVTPf4T170K16M8SOzXvPGCCL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJFecO48XDT4K16M8zgaxPPmWa7tzvg09VbwRPtA3nb2CXfE9hx4APWBnyj1b/7I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAw8LqPe2g8L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIdIAL6DNWK7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD2VVM9/hPXvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAASOzXvPGCCL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.11462929 -0.11749444 0.02 ]\n [-0.12527667 -0.00345168 0.02 ]\n [ 0.05159565 -0.1050186 0.02 ]\n [-0.02635778 -0.133312 0.02 ]]",
45
+ "desired_goal": "[[ 0.00477113 0.13778518 0.02 ]\n [ 0.02160969 -0.00359481 0.03460545]\n [ 0.14231999 -0.07676661 0.11785413]\n [ 0.03127911 0.09882998 0.08740111]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1462929e-01\n -1.1749444e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2527667e-01\n -3.4516759e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.1595651e-02\n -1.0501860e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.6357785e-02\n -1.3331200e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cm8n9M0xdqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8zb8WKuTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8m+aa1CxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8vVxS5y3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm84MYuTRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9DkhaC+UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8281XNkfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8/HqVyFPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9H4JE6T4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9TEPMB6sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9HESVW0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9PUiILw4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9X8/t6X0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9jWJBPbgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9WzsQd0adX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm9XO+yquKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9fU3GXHBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9oFmOEM9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9zuRcNYsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9n52yLQ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9vu0CzTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm94kyk9EDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+Dx82JizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm93wOvt+kdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm94DOC5EudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9/fcWTHKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+IJ9AooedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+TXenAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+HpUgjhUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+PLJ8v25dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+X+IVM24dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+jL/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+XUL+glGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+e3ljmSydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+nusLfDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+zRI8QqadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+nnmA9V4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+vKRlpXZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+3y1E3KkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/DOWrwOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+4A5R0lrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+/1eKKpDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/IpnQID6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/Ts90RvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/H/ixVyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/Pl6Rhc8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/YmvOhTPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/k49X9zfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/ZCx3V0+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/glCb+cZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/pWnCO3ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/00edTYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/qmHHmzTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/zXKji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/+GO2iL3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAMuxjawmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAEDkdV/+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAMzhHbypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAXy5RTCMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAmh5gPVedX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnAnBz3h4udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAdqKHfuUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAmXCKrJbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAw/xlQMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA/+fRNRFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA22S2Yv4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA/iml67edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBKL74zrNdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnBKr/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBZoSDh99dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBPCPIXCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBWgzHjp+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBfVNQCSzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBqq8tf5UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBev/R3NcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBmbJ4jbBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBvW1c+qzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB6vva11GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBuw2uPmxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB2M+V1OkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB/BgE2YOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCKONHYpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB+QUpNKzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCFrcbiqAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCOf29L6DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCaINutOmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCOYvexfOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCWC8FpwkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCe9YW+GodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCqMwL3K0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCeQBgeA/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnClujynUEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCukdmxt6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC52U8mrsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCuFUhmoSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC1lQVKwqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnC14ukDZEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC+gjhUBGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnDJ2NedCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC9ymIj4YdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:489889effe134fd76d5f3ca02cc7320fba6ba9f5b2ce98fa2847b0a4955228c8
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d83992145f85147d55bc3fa17948e8791209e4ff8cd395f1054a27714886c9
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c700c73ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c700c737280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694397574861616269, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcQ6LP5/KKz8p5uk9fh97P9Y7+7+Z7Ok9mNSDP5gnjz8p5uk9pN2IP+k5mz9E8Ok9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU6RBv+3QEz+YFIu/TcKQv2djKL+DkkS9NKuuvRZOmL6YFIu/oTiVvY75B7991vg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAB32z6/ahlrPwTOlb+YXZY/3uMiv7bvZj91ko4/cQ6LP5/KKz8p5uk91gEPu3VILjy5pVe8yWMvPH6WwLueWWw9gnkqPMJBd7y9IRQ7clZJv4UdCT8p9p2/jWGPv4eUoz/hyte8MGmRP34fez/WO/u/mezpPV2Yv0CIBsu6PnyUQPI0pj+F737At0pqPSMQHT7zyUe9x32CP278a79tpFo+nrNWv1qwsb/m5GQ/4QlHvn6WYD+Y1IM/mCePPynm6T3TAQ+7dUguPI2ZXLzfYy88ZpbAu55ZbD2CeSo8wkF3vG4gFDtMZ5S+Hl0eP88MVr8v7sC/5/2RPwdrsb/FimG+pN2IP+k5mz9E8Ok9uBYhu22cKzyquVW889A5PNfdyLvYlGs9soQ/PHkjVrwRfhM7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.0863782 0.6710605 0.11420853]\n [ 0.9809493 -1.9627635 0.11422081]\n [ 1.0299253 1.1183958 0.11420853]\n [ 1.0692639 1.2127048 0.1142278 ]]", "desired_goal": "[[-0.75641364 0.5774067 -1.086566 ]\n [-1.1309296 -0.65776676 -0.04799129]\n [-0.08528748 -0.29747075 -1.086566 ]\n [-0.07286192 -0.53115165 0.12150285]]", "observation": "[[-7.45536268e-01 9.18356538e-01 -1.17034960e+00 1.17473125e+00\n -6.36289477e-01 9.02095199e-01 1.11384451e+00 1.08637822e+00\n 6.71060503e-01 1.14208527e-01 -2.18211627e-03 1.06373923e-02\n -1.31620700e-02 1.07049430e-02 -5.87731507e-03 5.77026531e-02\n 1.04049463e-02 -1.50913615e-02 2.26031174e-03]\n [-7.86475301e-01 5.35606682e-01 -1.23407471e+00 -1.12016451e+00\n 1.27797019e+00 -2.63418574e-02 1.13602257e+00 9.80949283e-01\n -1.96276355e+00 1.14220805e-01 5.98734903e+00 -1.54896174e-03\n 4.64016628e+00 1.29849076e+00 -3.98336911e+00 5.72001599e-02\n 1.53381869e-01 -4.87765782e-02 1.01946342e+00]\n [-9.21820521e-01 2.13517860e-01 -8.38678241e-01 -1.38819432e+00\n 8.94117713e-01 -1.94373623e-01 8.77296329e-01 1.02992535e+00\n 1.11839581e+00 1.14208527e-01 -2.18211557e-03 1.06373923e-02\n -1.34643437e-02 1.07049635e-02 -5.87730389e-03 5.77026531e-02\n 1.04049463e-02 -1.50913615e-02 2.26023374e-03]\n [-2.89850593e-01 6.18608356e-01 -8.36132944e-01 -1.50726879e+00\n 1.14056098e+00 -1.38607872e+00 -2.20255926e-01 1.06926394e+00\n 1.21270478e+00 1.14227802e-01 -2.45801918e-03 1.04743065e-02\n -1.30447540e-02 1.13413213e-02 -6.12996100e-03 5.75149953e-02\n 1.16893519e-02 -1.30699808e-02 2.25055614e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw8LqPe2g8L0K16M8h0gAvoM1YrsK16M89lVTPf4T170K16M8SOzXvPGCCL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJFecO48XDT4K16M8zgaxPPmWa7tzvg09VbwRPtA3nb2CXfE9hx4APWBnyj1b/7I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAw8LqPe2g8L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIdIAL6DNWK7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD2VVM9/hPXvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAASOzXvPGCCL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11462929 -0.11749444 0.02 ]\n [-0.12527667 -0.00345168 0.02 ]\n [ 0.05159565 -0.1050186 0.02 ]\n [-0.02635778 -0.133312 0.02 ]]", "desired_goal": "[[ 0.00477113 0.13778518 0.02 ]\n [ 0.02160969 -0.00359481 0.03460545]\n [ 0.14231999 -0.07676661 0.11785413]\n [ 0.03127911 0.09882998 0.08740111]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1462929e-01\n -1.1749444e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2527667e-01\n -3.4516759e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.1595651e-02\n -1.0501860e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.6357785e-02\n -1.3331200e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cm8n9M0xdqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8zb8WKuTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8m+aa1CxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8vVxS5y3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm84MYuTRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9DkhaC+UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8281XNkfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm8/HqVyFPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9H4JE6T4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9TEPMB6sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9HESVW0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9PUiILw4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9X8/t6X0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9jWJBPbgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9WzsQd0adX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm9XO+yquKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9fU3GXHBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9oFmOEM9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9zuRcNYsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9n52yLQ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9vu0CzTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm94kyk9EDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+Dx82JizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm93wOvt+kdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm94DOC5EudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm9/fcWTHKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+IJ9AooedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+TXenAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+HpUgjhUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+PLJ8v25dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+X+IVM24dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+jL/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+XUL+glGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+e3ljmSydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+nusLfDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+zRI8QqadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+nnmA9V4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+vKRlpXZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+3y1E3KkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/DOWrwOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+4A5R0lrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm+/1eKKpDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/IpnQID6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/Ts90RvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/H/ixVyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/Pl6Rhc8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/YmvOhTPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/k49X9zfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/ZCx3V0+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/glCb+cZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/pWnCO3ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/00edTYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/qmHHmzTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/zXKji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm/+GO2iL3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAMuxjawmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAEDkdV/+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAMzhHbypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAXy5RTCMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAmh5gPVedX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnAnBz3h4udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAdqKHfuUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAmXCKrJbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnAw/xlQMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA/+fRNRFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA22S2Yv4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnA/iml67edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBKL74zrNdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnBKr/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBZoSDh99dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBPCPIXCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBWgzHjp+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBfVNQCSzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBqq8tf5UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBev/R3NcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBmbJ4jbBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBvW1c+qzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB6vva11GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnBuw2uPmxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB2M+V1OkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB/BgE2YOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCKONHYpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnB+QUpNKzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCFrcbiqAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCOf29L6DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCaINutOmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCOYvexfOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCWC8FpwkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCe9YW+GodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCqMwL3K0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCeQBgeA/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnClujynUEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCukdmxt6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC52U8mrsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnCuFUhmoSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC1lQVKwqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnC14ukDZEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC+gjhUBGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnDJ2NedCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnC9ymIj4YdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (980 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-11T02:50:48.817222"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b40bdd2b3a7497482c644bb52b733962d77089034ff3dc547d9a7c86d77a5421
3
+ size 3013