File size: 1,950 Bytes
fa0b293 0358880 fa0b293 0358880 626ab10 0358880 626ab10 0358880 626ab10 0358880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- ko
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
**The license is `cc-by-nc-sa-4.0`.**
# **🐳KOR-Orca-Platypus-13B🐳**
![img](./Korean-OpenOrca.png)
## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Repo Link**
Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca)
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
**Training Dataset**
I use [kyujinpy/KOR-OpenOrca-Platypus-v3(private! wait!)](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3).
I use A100 GPU 40GB and COLAB, when trianing.
# **Model Benchmark**
## KO-LLM leaderboard
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard).
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| [KOR-Orca-Platypus-13B🐳] | 46.59 | 42.06 | 53.95 | 42.28 | 43.55 | 51.12 |
| KOR-Orca-Platypus-13B🐳-v2 | 49.48 | 44.03 | 54.43 | 42.23 | 41.64 | 65.05 |
> Compare with Top 4 SOTA models. (update: 10/09)
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/KOR-Orca-Platypus-13B-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
--- |