|
import importlib
|
|
|
|
__attributes = {
|
|
'SparseStructureEncoder': 'sparse_structure_vae',
|
|
'SparseStructureDecoder': 'sparse_structure_vae',
|
|
'SparseStructureFlowModel': 'sparse_structure_flow',
|
|
'SLatEncoder': 'structured_latent_vae',
|
|
'SLatGaussianDecoder': 'structured_latent_vae',
|
|
'SLatRadianceFieldDecoder': 'structured_latent_vae',
|
|
'SLatMeshDecoder': 'structured_latent_vae',
|
|
'SLatFlowModel': 'structured_latent_flow',
|
|
}
|
|
|
|
__submodules = []
|
|
|
|
__all__ = list(__attributes.keys()) + __submodules
|
|
|
|
def __getattr__(name):
|
|
if name not in globals():
|
|
if name in __attributes:
|
|
module_name = __attributes[name]
|
|
module = importlib.import_module(f".{module_name}", __name__)
|
|
globals()[name] = getattr(module, name)
|
|
elif name in __submodules:
|
|
module = importlib.import_module(f".{name}", __name__)
|
|
globals()[name] = module
|
|
else:
|
|
raise AttributeError(f"module {__name__} has no attribute {name}")
|
|
return globals()[name]
|
|
|
|
|
|
def from_pretrained(path: str, **kwargs):
|
|
"""
|
|
Load a model from a pretrained checkpoint.
|
|
|
|
Args:
|
|
path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
|
|
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
|
|
**kwargs: Additional arguments for the model constructor.
|
|
"""
|
|
import os
|
|
import json
|
|
from safetensors.torch import load_file
|
|
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
|
|
|
if is_local:
|
|
config_file = f"{path}.json"
|
|
model_file = f"{path}.safetensors"
|
|
else:
|
|
from huggingface_hub import hf_hub_download
|
|
path_parts = path.split('/')
|
|
repo_id = f'{path_parts[0]}/{path_parts[1]}'
|
|
model_name = '/'.join(path_parts[2:])
|
|
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
|
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
|
|
|
with open(config_file, 'r') as f:
|
|
config = json.load(f)
|
|
model = __getattr__(config['name'])(**config['args'], **kwargs)
|
|
model.load_state_dict(load_file(model_file))
|
|
|
|
return model
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
|
from .sparse_structure_flow import SparseStructureFlowModel
|
|
from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
|
|
from .structured_latent_flow import SLatFlowModel
|
|
|