kurohige commited on
Commit
c3d78f8
·
1 Parent(s): 906cbdc

TRAINED LunarLander-v2 PPO agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.10 +/- 18.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f451f6bfa60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f451f6bfaf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f451f6bfb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f451f6bfc10>", "_build": "<function ActorCriticPolicy._build at 0x7f451f6bfca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f451f6bfd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f451f6bfdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f451f6bfe50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f451f6bfee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f451f6bff70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f451f6c4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f451f6ba9f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671427476608329801, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZAHD17PI66bvESOYX0uDQSYyg7Du+UMwAAgD8AAIA/zd6/PcPxLrpTHgm6LQtWNXnhkrueDsi0AACAPwAAgD+AmsU9v+6SP4Oj5D4EZ/e+24AgPIiBaD0AAAAAAAAAABqKGj3hlI+6GvnbOisbvjU483S5tjX/uQAAgD8AAIA/5rukPcOhLbqk+Ba8idHUNk7TObuaMz+2AACAPwAAgD/NTYM9+k8GP8RFBTxV4I6+YBjDvLFDyLsAAAAAAAAAAA2SmD0U+J+6E58wOnGVATXAhYw67INLuQAAgD8AAIA/zffZvK4nibptuum3IkPVsoUvDDuoLwg3AACAPwAAgD/zehC+lEHgPtLEIT571JS+qHyXO/Erkz0AAAAAAAAAAL0xiz7Sxko/JkZgPTzPnb4YSkk+kg8yvQAAAAAAAAAAmiB+PfZ8fbp+Dd45ZNfCNGFnQLtJywG5AACAPwAAgD8z85k7UrDSubfrIDkzLEwzSPK6un21PLgAAIA/AACAP2Z4WTxcg1i6XcTINxGxLTJHha+6De7ptgAAgD8AAIA/jcmVPYPh3D5GIeK99rSPvrqzqb3hbCW9AAAAAAAAAACaSWE99mx7utRlMjo8t3o2t1HhOvrjS7kAAIA/AACAP+aebz2uAZe6++ngNwn90DKf1TU6DDoCtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0EmGTmZX0CUhpRSlIwBbJRN6AOMAXSUR0CRhvx6OYICdX2UKGgGaAloD0MIwD+lSpRZYECUhpRSlGgVTegDaBZHQJGMLBP9DQZ1fZQoaAZoCWgPQwhjm1Q0VuFgQJSGlFKUaBVN6ANoFkdAkZBjRplBhXV9lChoBmgJaA9DCGWmtP4WkGhAlIaUUpRoFU3oA2gWR0CRklf6GgzydX2UKGgGaAloD0MITtNnB9w1Y0CUhpRSlGgVTegDaBZHQJGW3zFuNxV1fZQoaAZoCWgPQwgT1VsDWzFlQJSGlFKUaBVN6ANoFkdAkZlmNR3u/nV9lChoBmgJaA9DCF2LFqBtJmRAlIaUUpRoFU3oA2gWR0CRnur7O3UhdX2UKGgGaAloD0MImFDB4YVAYkCUhpRSlGgVTegDaBZHQJGf/wx33Yd1fZQoaAZoCWgPQwiXb31Yb8FfQJSGlFKUaBVN6ANoFkdAkbK2NJe3QXV9lChoBmgJaA9DCP7RN2maImNAlIaUUpRoFU3oA2gWR0CRt3KLbYbsdX2UKGgGaAloD0MIGxGMg0tZZUCUhpRSlGgVTegDaBZHQJG4cYdhiLF1fZQoaAZoCWgPQwiL+49MhzljQJSGlFKUaBVN6ANoFkdAkciiIpH7QHV9lChoBmgJaA9DCC4DzlKyiVxAlIaUUpRoFU3oA2gWR0CRyUvStvGZdX2UKGgGaAloD0MIUn+9woJzYkCUhpRSlGgVTegDaBZHQJHQci4axX51fZQoaAZoCWgPQwgYWp2coZVmQJSGlFKUaBVN6ANoFkdAkdN2mce8w3V9lChoBmgJaA9DCBE10eejyWBAlIaUUpRoFU3oA2gWR0CR4HYyO7xvdX2UKGgGaAloD0MIyAbSxaZmZUCUhpRSlGgVTegDaBZHQJHj2/nGKht1fZQoaAZoCWgPQwggXWxaKZRmQJSGlFKUaBVN6ANoFkdAkedOe4Cp33V9lChoBmgJaA9DCIQtdvssDWJAlIaUUpRoFU3oA2gWR0CR6iJokAxSdX2UKGgGaAloD0MI1/oioS3fW0CUhpRSlGgVTegDaBZHQJHrny3CsOp1fZQoaAZoCWgPQwhpNo/D4AxjQJSGlFKUaBVN6ANoFkdAkfANnkDIR3V9lChoBmgJaA9DCMvZO6OteGRAlIaUUpRoFU3oA2gWR0CR8twvxpcpdX2UKGgGaAloD0MIcsEZ/H2ZYkCUhpRSlGgVTegDaBZHQJH4u8lHBk91fZQoaAZoCWgPQwhX6lkQyvhkQJSGlFKUaBVN6ANoFkdAkfnHjQzDXXV9lChoBmgJaA9DCLH4TWGlCWRAlIaUUpRoFU3oA2gWR0CSCuT0xubadX2UKGgGaAloD0MIi6Td6ONuZUCUhpRSlGgVTegDaBZHQJIOoc0cfeV1fZQoaAZoCWgPQwgX83NDU2RjQJSGlFKUaBVN6ANoFkdAkg9rzf779HV9lChoBmgJaA9DCLgGtkqwumVAlIaUUpRoFU3oA2gWR0CSEVG5tm+TdX2UKGgGaAloD0MI4jsx60UkZkCUhpRSlGgVTegDaBZHQJIR3dAPd2x1fZQoaAZoCWgPQwia6V4n9RVwQJSGlFKUaBVNdQNoFkdAkiHQtvn8sXV9lChoBmgJaA9DCAFO7+J9rmVAlIaUUpRoFU3oA2gWR0CSJgPWhAW0dX2UKGgGaAloD0MIjx1U4jp+ZUCUhpRSlGgVTegDaBZHQJIzubPQfIV1fZQoaAZoCWgPQwhPyqSGtnZjQJSGlFKUaBVN6ANoFkdAkjabe67NCHV9lChoBmgJaA9DCB+duvJZ2mZAlIaUUpRoFU3oA2gWR0CSOYR2r4nGdX2UKGgGaAloD0MIt7WF56WWZUCUhpRSlGgVTegDaBZHQJI75bUwztV1fZQoaAZoCWgPQwj4GoLjsqRlQJSGlFKUaBVN6ANoFkdAkj0LRKHwgHV9lChoBmgJaA9DCJiG4SNijGhAlIaUUpRoFU3oA2gWR0CSQI5v99+gdX2UKGgGaAloD0MIDag3o+YLYUCUhpRSlGgVTegDaBZHQJJC+xlg+hZ1fZQoaAZoCWgPQwjVWS2wR4BjQJSGlFKUaBVN6ANoFkdAkkgxrWRRuXV9lChoBmgJaA9DCKGCwwsi0EZAlIaUUpRoFUvKaBZHQJJI1K3/gix1fZQoaAZoCWgPQwjNA1jk17sxQJSGlFKUaBVL8mgWR0CSSRP07KaHdX2UKGgGaAloD0MIAtTUsjU0ZECUhpRSlGgVTegDaBZHQJJJPvRZ2ZB1fZQoaAZoCWgPQwg4ZW6+kQ9lQJSGlFKUaBVN6ANoFkdAkloeUILPU3V9lChoBmgJaA9DCGg+527X2GRAlIaUUpRoFU3oA2gWR0CSXncyFfzCdX2UKGgGaAloD0MIzgAXZMutYkCUhpRSlGgVTegDaBZHQJJfaVW0Z3t1fZQoaAZoCWgPQwjrHAOyV9hiQJSGlFKUaBVN6ANoFkdAkmG9iMHbAXV9lChoBmgJaA9DCPbsuUzNxmZAlIaUUpRoFU3oA2gWR0CSYnUfxMFmdX2UKGgGaAloD0MIUS6NX/haY0CUhpRSlGgVTegDaBZHQJJzuw5eZ5R1fZQoaAZoCWgPQwg+yogLQBtPQJSGlFKUaBVLu2gWR0CSdwK28Zk1dX2UKGgGaAloD0MIVaNXA5SpZECUhpRSlGgVTegDaBZHQJJ4xDArQPZ1fZQoaAZoCWgPQwjAz7hw4A5xQJSGlFKUaBVNhgJoFkdAknvgy2x6fXV9lChoBmgJaA9DCKZFfZI7aGRAlIaUUpRoFU3oA2gWR0CShjYIjW07dX2UKGgGaAloD0MIT0ATYcMfYkCUhpRSlGgVTegDaBZHQJKJJmUW2w51fZQoaAZoCWgPQwipFhHFZP5jQJSGlFKUaBVN6ANoFkdAkpA/oA4n4XV9lChoBmgJaA9DCEq05PG07GRAlIaUUpRoFU3oA2gWR0CSlukSmIj4dX2UKGgGaAloD0MIfzDw3HtqX0CUhpRSlGgVTegDaBZHQJKcwKiO/+N1fZQoaAZoCWgPQwhl/tE36ctgQJSGlFKUaBVN6ANoFkdAkp1ifDk2gnV9lChoBmgJaA9DCOeO/pdrHmdAlIaUUpRoFU3oA2gWR0CSnZ6SDAaedX2UKGgGaAloD0MIhnKiXYUDZ0CUhpRSlGgVTegDaBZHQJKdyxA0Kqp1fZQoaAZoCWgPQwiOI9bi0yBiQJSGlFKUaBVN6ANoFkdAkrALR0EHMXV9lChoBmgJaA9DCMvapnjclmhAlIaUUpRoFU3oA2gWR0CSsNdAxBVudX2UKGgGaAloD0MI7YFWYMjaaUCUhpRSlGgVTegDaBZHQJKy6Vv/BFd1fZQoaAZoCWgPQwjSx3xAoARjQJSGlFKUaBVN6ANoFkdAkrOC1Z1V53V9lChoBmgJaA9DCMIwYMlVpmNAlIaUUpRoFU3oA2gWR0CStajdpItldX2UKGgGaAloD0MIlKRrJl8maECUhpRSlGgVTegDaBZHQJLF/FfiPyV1fZQoaAZoCWgPQwiuZTIcTytmQJSGlFKUaBVN6ANoFkdAkseXdbgTAXV9lChoBmgJaA9DCKZetwgMGGRAlIaUUpRoFU3oA2gWR0CSyt69TP0JdX2UKGgGaAloD0MISYPb2gItcUCUhpRSlGgVTQcDaBZHQJLPH6CUX551fZQoaAZoCWgPQwjlQuVfy0NmQJSGlFKUaBVN6ANoFkdAktRwElme2HV9lChoBmgJaA9DCOF/K9kx2GRAlIaUUpRoFU3oA2gWR0CS11W+49X+dX2UKGgGaAloD0MI3Zcz25VpZUCUhpRSlGgVTegDaBZHQJLmA1gpjMF1fZQoaAZoCWgPQwir0asBythnQJSGlFKUaBVN6ANoFkdAkuxG8dxQznV9lChoBmgJaA9DCDC9/bloUWJAlIaUUpRoFU3oA2gWR0CS7Oc5bQkYdX2UKGgGaAloD0MI/mMhOgTPZkCUhpRSlGgVTegDaBZHQJLtKWhRIjJ1fZQoaAZoCWgPQwi2aWyvBW9lQJSGlFKUaBVN6ANoFkdAku1TtLL6lHV9lChoBmgJaA9DCI7J4v6jVG9AlIaUUpRoFU28AmgWR0CS8Gh73PAwdX2UKGgGaAloD0MIUoAomHHtcECUhpRSlGgVTQgCaBZHQJLzaX5WRzR1fZQoaAZoCWgPQwjIluXrMjxhQJSGlFKUaBVN6ANoFkdAkv+EKu0TlHV9lChoBmgJaA9DCCcTtwriyWdAlIaUUpRoFU3oA2gWR0CTAF7ZFocrdX2UKGgGaAloD0MIGmt/Z3vgZUCUhpRSlGgVTegDaBZHQJMCin4wh4d1fZQoaAZoCWgPQwi1cFmFzeNkQJSGlFKUaBVN6ANoFkdAkwXp5JK8MHV9lChoBmgJaA9DCPNxbaiYaGJAlIaUUpRoFU3oA2gWR0CTGDx7RfF8dX2UKGgGaAloD0MIPC0/cBXIYUCUhpRSlGgVTegDaBZHQJMZ2vLX+VF1fZQoaAZoCWgPQwiSO2wis1hhQJSGlFKUaBVN6ANoFkdAkx0XIhhYvHV9lChoBmgJaA9DCHam0HmNWlBAlIaUUpRoFUvRaBZHQJMiWKHfuTl1fZQoaAZoCWgPQwhA9nr3R/BgQJSGlFKUaBVN6ANoFkdAkycZ8F6iTXV9lChoBmgJaA9DCL6h8Nk6OmdAlIaUUpRoFU3oA2gWR0CTKhPdEb5udX2UKGgGaAloD0MIU67wLhfQckCUhpRSlGgVTY0CaBZHQJMtYA/9pAV1fZQoaAZoCWgPQwjOwTOhSbNnQJSGlFKUaBVN6ANoFkdAkzfIS6DoQnV9lChoBmgJaA9DCOkoB7OJB2NAlIaUUpRoFU3oA2gWR0CTPeR/ViF1dX2UKGgGaAloD0MI+WpHcY7WZECUhpRSlGgVTegDaBZHQJM+guUUwi91fZQoaAZoCWgPQwgxCoLHN09jQJSGlFKUaBVN6ANoFkdAkz69cW0qpnV9lChoBmgJaA9DCLXf2okSfGNAlIaUUpRoFU3oA2gWR0CTPuVXmvGIdX2UKGgGaAloD0MI4qsdxTkgZUCUhpRSlGgVTegDaBZHQJNB2zY287J1fZQoaAZoCWgPQwg2BMdlXEtyQJSGlFKUaBVN6AJoFkdAk0IqKDTScHV9lChoBmgJaA9DCEurIXGPZmRAlIaUUpRoFU3oA2gWR0CTUh/io86ndX2UKGgGaAloD0MIKqxUUJEscUCUhpRSlGgVTdECaBZHQJNTYAYHgP51fZQoaAZoCWgPQwjHoBNCh/ZmQJSGlFKUaBVN6ANoFkdAk1VxnBciW3V9lChoBmgJaA9DCPj/ccJE4HFAlIaUUpRoFU2QA2gWR0CTV5vS+g14dX2UKGgGaAloD0MIZRpNLsZxYkCUhpRSlGgVTegDaBZHQJNcK+AVfu11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6455cb06ef0d64fa068cbfa0228285f4622d19f223d5335d11604654e91a60c
3
+ size 146703
lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f451f6bfa60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f451f6bfaf0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f451f6bfb80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f451f6bfc10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f451f6bfca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f451f6bfd30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f451f6bfdc0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f451f6bfe50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f451f6bfee0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f451f6bff70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f451f6c4040>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f451f6ba9f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671427476608329801,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZAHD17PI66bvESOYX0uDQSYyg7Du+UMwAAgD8AAIA/zd6/PcPxLrpTHgm6LQtWNXnhkrueDsi0AACAPwAAgD+AmsU9v+6SP4Oj5D4EZ/e+24AgPIiBaD0AAAAAAAAAABqKGj3hlI+6GvnbOisbvjU483S5tjX/uQAAgD8AAIA/5rukPcOhLbqk+Ba8idHUNk7TObuaMz+2AACAPwAAgD/NTYM9+k8GP8RFBTxV4I6+YBjDvLFDyLsAAAAAAAAAAA2SmD0U+J+6E58wOnGVATXAhYw67INLuQAAgD8AAIA/zffZvK4nibptuum3IkPVsoUvDDuoLwg3AACAPwAAgD/zehC+lEHgPtLEIT571JS+qHyXO/Erkz0AAAAAAAAAAL0xiz7Sxko/JkZgPTzPnb4YSkk+kg8yvQAAAAAAAAAAmiB+PfZ8fbp+Dd45ZNfCNGFnQLtJywG5AACAPwAAgD8z85k7UrDSubfrIDkzLEwzSPK6un21PLgAAIA/AACAP2Z4WTxcg1i6XcTINxGxLTJHha+6De7ptgAAgD8AAIA/jcmVPYPh3D5GIeK99rSPvrqzqb3hbCW9AAAAAAAAAACaSWE99mx7utRlMjo8t3o2t1HhOvrjS7kAAIA/AACAP+aebz2uAZe6++ngNwn90DKf1TU6DDoCtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0EmGTmZX0CUhpRSlIwBbJRN6AOMAXSUR0CRhvx6OYICdX2UKGgGaAloD0MIwD+lSpRZYECUhpRSlGgVTegDaBZHQJGMLBP9DQZ1fZQoaAZoCWgPQwhjm1Q0VuFgQJSGlFKUaBVN6ANoFkdAkZBjRplBhXV9lChoBmgJaA9DCGWmtP4WkGhAlIaUUpRoFU3oA2gWR0CRklf6GgzydX2UKGgGaAloD0MITtNnB9w1Y0CUhpRSlGgVTegDaBZHQJGW3zFuNxV1fZQoaAZoCWgPQwgT1VsDWzFlQJSGlFKUaBVN6ANoFkdAkZlmNR3u/nV9lChoBmgJaA9DCF2LFqBtJmRAlIaUUpRoFU3oA2gWR0CRnur7O3UhdX2UKGgGaAloD0MImFDB4YVAYkCUhpRSlGgVTegDaBZHQJGf/wx33Yd1fZQoaAZoCWgPQwiXb31Yb8FfQJSGlFKUaBVN6ANoFkdAkbK2NJe3QXV9lChoBmgJaA9DCP7RN2maImNAlIaUUpRoFU3oA2gWR0CRt3KLbYbsdX2UKGgGaAloD0MIGxGMg0tZZUCUhpRSlGgVTegDaBZHQJG4cYdhiLF1fZQoaAZoCWgPQwiL+49MhzljQJSGlFKUaBVN6ANoFkdAkciiIpH7QHV9lChoBmgJaA9DCC4DzlKyiVxAlIaUUpRoFU3oA2gWR0CRyUvStvGZdX2UKGgGaAloD0MIUn+9woJzYkCUhpRSlGgVTegDaBZHQJHQci4axX51fZQoaAZoCWgPQwgYWp2coZVmQJSGlFKUaBVN6ANoFkdAkdN2mce8w3V9lChoBmgJaA9DCBE10eejyWBAlIaUUpRoFU3oA2gWR0CR4HYyO7xvdX2UKGgGaAloD0MIyAbSxaZmZUCUhpRSlGgVTegDaBZHQJHj2/nGKht1fZQoaAZoCWgPQwggXWxaKZRmQJSGlFKUaBVN6ANoFkdAkedOe4Cp33V9lChoBmgJaA9DCIQtdvssDWJAlIaUUpRoFU3oA2gWR0CR6iJokAxSdX2UKGgGaAloD0MI1/oioS3fW0CUhpRSlGgVTegDaBZHQJHrny3CsOp1fZQoaAZoCWgPQwhpNo/D4AxjQJSGlFKUaBVN6ANoFkdAkfANnkDIR3V9lChoBmgJaA9DCMvZO6OteGRAlIaUUpRoFU3oA2gWR0CR8twvxpcpdX2UKGgGaAloD0MIcsEZ/H2ZYkCUhpRSlGgVTegDaBZHQJH4u8lHBk91fZQoaAZoCWgPQwhX6lkQyvhkQJSGlFKUaBVN6ANoFkdAkfnHjQzDXXV9lChoBmgJaA9DCLH4TWGlCWRAlIaUUpRoFU3oA2gWR0CSCuT0xubadX2UKGgGaAloD0MIi6Td6ONuZUCUhpRSlGgVTegDaBZHQJIOoc0cfeV1fZQoaAZoCWgPQwgX83NDU2RjQJSGlFKUaBVN6ANoFkdAkg9rzf779HV9lChoBmgJaA9DCLgGtkqwumVAlIaUUpRoFU3oA2gWR0CSEVG5tm+TdX2UKGgGaAloD0MI4jsx60UkZkCUhpRSlGgVTegDaBZHQJIR3dAPd2x1fZQoaAZoCWgPQwia6V4n9RVwQJSGlFKUaBVNdQNoFkdAkiHQtvn8sXV9lChoBmgJaA9DCAFO7+J9rmVAlIaUUpRoFU3oA2gWR0CSJgPWhAW0dX2UKGgGaAloD0MIjx1U4jp+ZUCUhpRSlGgVTegDaBZHQJIzubPQfIV1fZQoaAZoCWgPQwhPyqSGtnZjQJSGlFKUaBVN6ANoFkdAkjabe67NCHV9lChoBmgJaA9DCB+duvJZ2mZAlIaUUpRoFU3oA2gWR0CSOYR2r4nGdX2UKGgGaAloD0MIt7WF56WWZUCUhpRSlGgVTegDaBZHQJI75bUwztV1fZQoaAZoCWgPQwj4GoLjsqRlQJSGlFKUaBVN6ANoFkdAkj0LRKHwgHV9lChoBmgJaA9DCJiG4SNijGhAlIaUUpRoFU3oA2gWR0CSQI5v99+gdX2UKGgGaAloD0MIDag3o+YLYUCUhpRSlGgVTegDaBZHQJJC+xlg+hZ1fZQoaAZoCWgPQwjVWS2wR4BjQJSGlFKUaBVN6ANoFkdAkkgxrWRRuXV9lChoBmgJaA9DCKGCwwsi0EZAlIaUUpRoFUvKaBZHQJJI1K3/gix1fZQoaAZoCWgPQwjNA1jk17sxQJSGlFKUaBVL8mgWR0CSSRP07KaHdX2UKGgGaAloD0MIAtTUsjU0ZECUhpRSlGgVTegDaBZHQJJJPvRZ2ZB1fZQoaAZoCWgPQwg4ZW6+kQ9lQJSGlFKUaBVN6ANoFkdAkloeUILPU3V9lChoBmgJaA9DCGg+527X2GRAlIaUUpRoFU3oA2gWR0CSXncyFfzCdX2UKGgGaAloD0MIzgAXZMutYkCUhpRSlGgVTegDaBZHQJJfaVW0Z3t1fZQoaAZoCWgPQwjrHAOyV9hiQJSGlFKUaBVN6ANoFkdAkmG9iMHbAXV9lChoBmgJaA9DCPbsuUzNxmZAlIaUUpRoFU3oA2gWR0CSYnUfxMFmdX2UKGgGaAloD0MIUS6NX/haY0CUhpRSlGgVTegDaBZHQJJzuw5eZ5R1fZQoaAZoCWgPQwg+yogLQBtPQJSGlFKUaBVLu2gWR0CSdwK28Zk1dX2UKGgGaAloD0MIVaNXA5SpZECUhpRSlGgVTegDaBZHQJJ4xDArQPZ1fZQoaAZoCWgPQwjAz7hw4A5xQJSGlFKUaBVNhgJoFkdAknvgy2x6fXV9lChoBmgJaA9DCKZFfZI7aGRAlIaUUpRoFU3oA2gWR0CShjYIjW07dX2UKGgGaAloD0MIT0ATYcMfYkCUhpRSlGgVTegDaBZHQJKJJmUW2w51fZQoaAZoCWgPQwipFhHFZP5jQJSGlFKUaBVN6ANoFkdAkpA/oA4n4XV9lChoBmgJaA9DCEq05PG07GRAlIaUUpRoFU3oA2gWR0CSlukSmIj4dX2UKGgGaAloD0MIfzDw3HtqX0CUhpRSlGgVTegDaBZHQJKcwKiO/+N1fZQoaAZoCWgPQwhl/tE36ctgQJSGlFKUaBVN6ANoFkdAkp1ifDk2gnV9lChoBmgJaA9DCOeO/pdrHmdAlIaUUpRoFU3oA2gWR0CSnZ6SDAaedX2UKGgGaAloD0MIhnKiXYUDZ0CUhpRSlGgVTegDaBZHQJKdyxA0Kqp1fZQoaAZoCWgPQwiOI9bi0yBiQJSGlFKUaBVN6ANoFkdAkrALR0EHMXV9lChoBmgJaA9DCMvapnjclmhAlIaUUpRoFU3oA2gWR0CSsNdAxBVudX2UKGgGaAloD0MI7YFWYMjaaUCUhpRSlGgVTegDaBZHQJKy6Vv/BFd1fZQoaAZoCWgPQwjSx3xAoARjQJSGlFKUaBVN6ANoFkdAkrOC1Z1V53V9lChoBmgJaA9DCMIwYMlVpmNAlIaUUpRoFU3oA2gWR0CStajdpItldX2UKGgGaAloD0MIlKRrJl8maECUhpRSlGgVTegDaBZHQJLF/FfiPyV1fZQoaAZoCWgPQwiuZTIcTytmQJSGlFKUaBVN6ANoFkdAkseXdbgTAXV9lChoBmgJaA9DCKZetwgMGGRAlIaUUpRoFU3oA2gWR0CSyt69TP0JdX2UKGgGaAloD0MISYPb2gItcUCUhpRSlGgVTQcDaBZHQJLPH6CUX551fZQoaAZoCWgPQwjlQuVfy0NmQJSGlFKUaBVN6ANoFkdAktRwElme2HV9lChoBmgJaA9DCOF/K9kx2GRAlIaUUpRoFU3oA2gWR0CS11W+49X+dX2UKGgGaAloD0MI3Zcz25VpZUCUhpRSlGgVTegDaBZHQJLmA1gpjMF1fZQoaAZoCWgPQwir0asBythnQJSGlFKUaBVN6ANoFkdAkuxG8dxQznV9lChoBmgJaA9DCDC9/bloUWJAlIaUUpRoFU3oA2gWR0CS7Oc5bQkYdX2UKGgGaAloD0MI/mMhOgTPZkCUhpRSlGgVTegDaBZHQJLtKWhRIjJ1fZQoaAZoCWgPQwi2aWyvBW9lQJSGlFKUaBVN6ANoFkdAku1TtLL6lHV9lChoBmgJaA9DCI7J4v6jVG9AlIaUUpRoFU28AmgWR0CS8Gh73PAwdX2UKGgGaAloD0MIUoAomHHtcECUhpRSlGgVTQgCaBZHQJLzaX5WRzR1fZQoaAZoCWgPQwjIluXrMjxhQJSGlFKUaBVN6ANoFkdAkv+EKu0TlHV9lChoBmgJaA9DCCcTtwriyWdAlIaUUpRoFU3oA2gWR0CTAF7ZFocrdX2UKGgGaAloD0MIGmt/Z3vgZUCUhpRSlGgVTegDaBZHQJMCin4wh4d1fZQoaAZoCWgPQwi1cFmFzeNkQJSGlFKUaBVN6ANoFkdAkwXp5JK8MHV9lChoBmgJaA9DCPNxbaiYaGJAlIaUUpRoFU3oA2gWR0CTGDx7RfF8dX2UKGgGaAloD0MIPC0/cBXIYUCUhpRSlGgVTegDaBZHQJMZ2vLX+VF1fZQoaAZoCWgPQwiSO2wis1hhQJSGlFKUaBVN6ANoFkdAkx0XIhhYvHV9lChoBmgJaA9DCHam0HmNWlBAlIaUUpRoFUvRaBZHQJMiWKHfuTl1fZQoaAZoCWgPQwhA9nr3R/BgQJSGlFKUaBVN6ANoFkdAkycZ8F6iTXV9lChoBmgJaA9DCL6h8Nk6OmdAlIaUUpRoFU3oA2gWR0CTKhPdEb5udX2UKGgGaAloD0MIU67wLhfQckCUhpRSlGgVTY0CaBZHQJMtYA/9pAV1fZQoaAZoCWgPQwjOwTOhSbNnQJSGlFKUaBVN6ANoFkdAkzfIS6DoQnV9lChoBmgJaA9DCOkoB7OJB2NAlIaUUpRoFU3oA2gWR0CTPeR/ViF1dX2UKGgGaAloD0MI+WpHcY7WZECUhpRSlGgVTegDaBZHQJM+guUUwi91fZQoaAZoCWgPQwgxCoLHN09jQJSGlFKUaBVN6ANoFkdAkz69cW0qpnV9lChoBmgJaA9DCLXf2okSfGNAlIaUUpRoFU3oA2gWR0CTPuVXmvGIdX2UKGgGaAloD0MI4qsdxTkgZUCUhpRSlGgVTegDaBZHQJNB2zY287J1fZQoaAZoCWgPQwg2BMdlXEtyQJSGlFKUaBVN6AJoFkdAk0IqKDTScHV9lChoBmgJaA9DCEurIXGPZmRAlIaUUpRoFU3oA2gWR0CTUh/io86ndX2UKGgGaAloD0MIKqxUUJEscUCUhpRSlGgVTdECaBZHQJNTYAYHgP51fZQoaAZoCWgPQwjHoBNCh/ZmQJSGlFKUaBVN6ANoFkdAk1VxnBciW3V9lChoBmgJaA9DCPj/ccJE4HFAlIaUUpRoFU2QA2gWR0CTV5vS+g14dX2UKGgGaAloD0MIZRpNLsZxYkCUhpRSlGgVTegDaBZHQJNcK+AVfu11ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.99,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c2eca006e9f36d50b98213929a910f15447652166d4cf7a388284569b40b051
3
+ size 87545
lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f85cfeffd8ca32a8d8757d29aeb8ad441c4b7fb59fff81331a161fd1344396
3
+ size 43073
lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (249 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.09576816606258, "std_reward": 18.902498750490555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T05:45:50.258557"}