Initial commit, slm friends
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1447.38 +/- 304.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49dd36df0068ba849c7bdaf380a8663d0db2b128a76ab610f1b655a99d090825
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f4d86c160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f4d86c1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f4d86c280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f4d86c310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5f4d86c3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5f4d86c430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f4d86c4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f4d86c550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5f4d86c5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f4d86c670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f4d86c700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f4d86c790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5f4d862ab0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 3000000,
|
63 |
+
"_total_timesteps": 3000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674218536420511905,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOn1nj5N+Eo/86yLvr8BBr2UtdW+wAY1vSCeeL7ltQg/imyrvfYSmj8CLTE/eUaGPuXMfT5mFQi/aquivjZURL8sJFk/R2G0P0DuN7/xqFE/w0oePwLUPUDsghK/k6KJvwO+WL9GbiU/HZ6fPi6F0r9DtRg/wewqP/9tKb3mbUY/xduyP33mlj8OaDA/kJbwvgbThj9pmgVA59PvPxkNXb9qwTS/erwMQM+8vr/76Ai/obQlP9RyCkDo4yg/pqiEvsmYij+ybfk9MFVrP68Krz0Dvli/Rm4lP2NKTcAuhdK/YKkeP10oOz9EjRu+oO/Jvs2qsb6VKiK8moylvDzhEEACZWK+Dq8rv+7T3D1xXdQ+KWy7vyIZPDqdTYi/4De8v/fAm7+EvZw/i9tMwParTT7Fm8c/E5BbvGzhiL+S2ua/Jy+XP6sTxr8dnp8+LoXSv7rvHb94AyQ/MQkRO8jO4zzWKnq/tFmavcwALr9Aleg+GTCcPmwRuj70OzW++dcqPi4YxD0Z2xnAxAAOP0e7Pr5b9JI+amYiviCttb77FA0/tXPAP+XmCEA38vW+Hwf2vycvlz9GbiU/HZ6fPi6F0r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC13P8yAACAPwAAAAAAAAAAAAAAAAAAAAAAAACATSLUPQAAAACAV+W/AAAAAJacFLsAAAAAW6zcPwAAAADqnwM9AAAAANmiAEAAAAAAaJ2ZvQAAAAC/c/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv4KtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDZg+b0AAAAAD0bwvwAAAABhRDA8AAAAAKMzAEAAAAAAf+QHvgAAAACvEQFAAAAAAEyArT0AAAAAVt/5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPp1oTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBceMy9AAAAADSC+78AAAAAMeo/PQAAAADYBuw/AAAAAHhnUb0AAAAA/R/+PwAAAADC5ee9AAAAAB/S5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wRk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUMa2PQAAAACBwfO/AAAAAG5qsD0AAAAAnjHxPwAAAAABVoI9AAAAAAT53z8AAAAAocwVvQAAAACDEf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJz+lOWSlnCMAWyUTegDjAF0lEdAsxz8LE1l5HV9lChoBkdAngqE5+6RQ2gHTegDaAhHQLMd8LeANG51fZQoaAZHQJ3bd9v0h/1oB03oA2gIR0CzHnGhysCDdX2UKGgGR0CfJHlaKUFCaAdN6ANoCEdAsx7Qvh60IHV9lChoBkdAnNSJZW7vomgHTegDaAhHQLMjPtcfNiZ1fZQoaAZHQJ1FHaXa8HxoB03oA2gIR0CzJDcvAXVLdX2UKGgGR0Cd4MD9OymiaAdN6ANoCEdAsySxbhWHUXV9lChoBkdAnbO5Wq94/2gHTegDaAhHQLMlFA9FF2F1fZQoaAZHQJ1K68xsVL1oB03oA2gIR0CzKZ8TFl06dX2UKGgGR0CcspWTHKfWaAdN6ANoCEdAsyqZ0tAcDXV9lChoBkdAnRgIHLRrrWgHTegDaAhHQLMrGGsFMZh1fZQoaAZHQJzkSzPa+N9oB03oA2gIR0CzK3t43WFwdX2UKGgGR0CdCmtlI3BIaAdN6ANoCEdAsy/vRWtEHHV9lChoBkdAnMSnfMwDeWgHTegDaAhHQLMw6LeANG51fZQoaAZHQJxcSF/QSjBoB03oA2gIR0CzMWup4rz5dX2UKGgGR0CdPOA2hqTKaAdN6ANoCEdAszHY3qAz6HV9lChoBkdAnYAMxfv4NGgHTegDaAhHQLM2cEdeY2N1fZQoaAZHQJuDKXY150NoB03oA2gIR0CzN2pE2HcldX2UKGgGR0Ca9hlwtJ4CaAdN6ANoCEdAszfrXd0q6XV9lChoBkdAmC6Ke05U+GgHTegDaAhHQLM4UOkLx7R1fZQoaAZHQJbgU3T/hl1oB03oA2gIR0CzPNb+98JEdX2UKGgGR0Ca+Epm29csaAdN6ANoCEdAsz3Tuy/sV3V9lChoBkdAmyKRLoOhCmgHTegDaAhHQLM+T8XenAJ1fZQoaAZHQJnIMSBbwBpoB03oA2gIR0CzPrWj0tiAdX2UKGgGR0CdlfmknCwbaAdN6ANoCEdAs0M8TviLl3V9lChoBkdAnSuHo5ggHWgHTegDaAhHQLNEL7w8W9F1fZQoaAZHQJ5gPI3irDJoB03oA2gIR0CzRK3z6JqJdX2UKGgGR0CejBEkSmIkaAdN6ANoCEdAs0UUx9G7SXV9lChoBkdAneXgudwvQGgHTegDaAhHQLNJju2JBPd1fZQoaAZHQJwfvArQPZtoB03oA2gIR0CzSoayrxRVdX2UKGgGR0CdqNOxB3RpaAdN6ANoCEdAs0sA+cH4XXV9lChoBkdAnPbO+/QBxWgHTegDaAhHQLNLZBNmDlJ1fZQoaAZHQJ2cuhRIjGFoB03oA2gIR0CzT+HiFTNudX2UKGgGR0CgMHtA1NxmaAdN6ANoCEdAs1DdwgkkbHV9lChoBkdAnsn76Hj6vmgHTegDaAhHQLNRW/3nIQx1fZQoaAZHQKBUo3DvVmVoB03oA2gIR0CzUbxhMJyAdX2UKGgGR0ChamJu2qkuaAdN6ANoCEdAs1ZC9ugpSnV9lChoBkdAn/gmexwAEWgHTegDaAhHQLNXN3fyf+V1fZQoaAZHQJ0YCdJ8OTdoB03oA2gIR0CzV7d7v5P/dX2UKGgGR0CgljCvPkaNaAdN6ANoCEdAs1gc88s+V3V9lChoBkdAn9FlId2gWmgHTegDaAhHQLNclVsUIs11fZQoaAZHQKAHebXHzYpoB03oA2gIR0CzXY2ACnxbdX2UKGgGR0CgL60e2d/baAdN6ANoCEdAs14H5uZTh3V9lChoBkdAnsSRJul41WgHTegDaAhHQLNeb1+y7f51fZQoaAZHQJykdeiSJTFoB03oA2gIR0CzYuc6eXiSdX2UKGgGR0Cd0k4Uvf0maAdN6ANoCEdAs2PftsvZiHV9lChoBkdAoGzoIUrTY2gHTegDaAhHQLNkWbSqlxh1fZQoaAZHQJzHwx9G7SRoB03oA2gIR0CzZL4xUNrkdX2UKGgGR0Cfw8tgrpaBaAdN6ANoCEdAs2lQLLIPsnV9lChoBkdAnTQigGr0a2gHTegDaAhHQLNqRhvR7Z51fZQoaAZHQJsOR9a2WptoB03oA2gIR0Czar9vXK8tdX2UKGgGR0CbEa+PikwfaAdN6ANoCEdAs2sgxoIv8XV9lChoBkdAnHhVCPZIx2gHTegDaAhHQLNvxKbayrx1fZQoaAZHQJ5jrLaEi+toB03oA2gIR0CzcLjf779AdX2UKGgGR0CfNk0fHPu5aAdN6ANoCEdAs3E5zp5eJHV9lChoBkdAm1GEqc3ERGgHTegDaAhHQLNxnBsQ/X51fZQoaAZHQKBmEh1Tzd1oB03oA2gIR0CzdinObAk+dX2UKGgGR0CgBwKv/zasaAdN6ANoCEdAs3ckhB7eEnV9lChoBkdAnqVGNWEK3WgHTegDaAhHQLN3ojkuHvd1fZQoaAZHQJ2EB93KSxJoB03oA2gIR0CzeAOYIBzWdX2UKGgGR0Cfa44+KTB7aAdN6ANoCEdAs3yWWjXWfHV9lChoBkdAoJ5L9qDbrWgHTegDaAhHQLN9kV5rxiJ1fZQoaAZHQKAPdjS5RTFoB03oA2gIR0Czfgvhl18tdX2UKGgGR0Cfbt9YOlO5aAdN6ANoCEdAs35vCGetjnV9lChoBkdAmgC2dy1eB2gHTegDaAhHQLOC62St/4J1fZQoaAZHQJ8iOjesPrhoB03oA2gIR0Czg+ToZAIIdX2UKGgGR0CdXxMA3kxRaAdN6ANoCEdAs4Rh0Lc9GXV9lChoBkdAnpPnLmp2lmgHTegDaAhHQLOEwm78Nx51fZQoaAZHQJ2E4nqmj0toB03oA2gIR0CziT9l2/zrdX2UKGgGR0CcseoRZlnRaAdN6ANoCEdAs4o/bWVeKXV9lChoBkdAmzKeUhV2imgHTegDaAhHQLOKvYcNpdt1fZQoaAZHQJx5arvLHMloB03oA2gIR0Czix/4AS39dX2UKGgGR0Cd/PdSVGCqaAdN6ANoCEdAs5BhbzK9wnV9lChoBkdAm9s+k+HJtGgHTegDaAhHQLOR7O5rgwZ1fZQoaAZHQJxRy3x4IKNoB03oA2gIR0CzkrUjgQ6IdX2UKGgGR0CeTfNNJvpAaAdN6ANoCEdAs5NU3Mpw0nV9lChoBkdAnpnOGwiaAmgHTegDaAhHQLOX69CeEqV1fZQoaAZHQJzEJcbBGhFoB03oA2gIR0CzmOW+j/ModX2UKGgGR0CdYdsasIVuaAdN6ANoCEdAs5lm/RE4N3V9lChoBkdAnf2LpmmLtWgHTegDaAhHQLOZz/Pw/gR1fZQoaAZHQJxPgmqo60ZoB03oA2gIR0CznlWvjfeldX2UKGgGR0CfaWoAGSpzaAdN6ANoCEdAs59QJD3M6nV9lChoBkdAna5HUx20RmgHTegDaAhHQLOfzAwwj+t1fZQoaAZHQJopb1rZampoB03oA2gIR0CzoDAPiDNAdX2UKGgGR0CeBqj/uLJkaAdN6ANoCEdAs6ShyDIzWXV9lChoBkdAnN8fT1CgLGgHTegDaAhHQLOlmMgEEDB1fZQoaAZHQJgCc3zcynFoB03oA2gIR0CzphX0Cih4dX2UKGgGR0Cb0Fu76Hj7aAdN6ANoCEdAs6Z6R0U473V9lChoBkdAmgUvrGBFu2gHTegDaAhHQLOq/hQFcIJ1fZQoaAZHQJsu9yp71I1oB03oA2gIR0CzrAOlXRw7dX2UKGgGR0CbTyKl54W2aAdN6ANoCEdAs6yD/0dzXHV9lChoBkdAl7ceqzZ6EGgHTegDaAhHQLOs48Ti84B1fZQoaAZHQJqWNmukk8loB03oA2gIR0CzsVgUUO/ddX2UKGgGR0Cau7sbedkKaAdN6ANoCEdAs7JZOHnEEXV9lChoBkdAmYF1EqlP8GgHTegDaAhHQLOy1uAI6bR1fZQoaAZHQJthSOtGNJhoB03oA2gIR0Czsz2I9C/odX2UKGgGR0CX+p2fkFOgaAdN6ANoCEdAs7e7Z5AyEnV9lChoBkdAmyfE/0NBnmgHTegDaAhHQLO4swZOzpp1fZQoaAZHQJp5xxFRYRxoB03oA2gIR0CzuS5j2BatdX2UKGgGR0CZ0mJ0W/JvaAdN6ANoCEdAs7mUb6xgRnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 93750,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bb65289d4fe3c9944a0228866d67b17495996198fa0c1a991f38056fa6de466
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:255227ad5860640fa26354ca6f96a5e9bd38831c9e055f54398674e36df00d47
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f4d86c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f4d86c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f4d86c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f4d86c310>", "_build": "<function ActorCriticPolicy._build at 0x7f5f4d86c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f4d86c430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f4d86c4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f4d86c550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f4d86c5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f4d86c670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f4d86c700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f4d86c790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f4d862ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674218536420511905, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOn1nj5N+Eo/86yLvr8BBr2UtdW+wAY1vSCeeL7ltQg/imyrvfYSmj8CLTE/eUaGPuXMfT5mFQi/aquivjZURL8sJFk/R2G0P0DuN7/xqFE/w0oePwLUPUDsghK/k6KJvwO+WL9GbiU/HZ6fPi6F0r9DtRg/wewqP/9tKb3mbUY/xduyP33mlj8OaDA/kJbwvgbThj9pmgVA59PvPxkNXb9qwTS/erwMQM+8vr/76Ai/obQlP9RyCkDo4yg/pqiEvsmYij+ybfk9MFVrP68Krz0Dvli/Rm4lP2NKTcAuhdK/YKkeP10oOz9EjRu+oO/Jvs2qsb6VKiK8moylvDzhEEACZWK+Dq8rv+7T3D1xXdQ+KWy7vyIZPDqdTYi/4De8v/fAm7+EvZw/i9tMwParTT7Fm8c/E5BbvGzhiL+S2ua/Jy+XP6sTxr8dnp8+LoXSv7rvHb94AyQ/MQkRO8jO4zzWKnq/tFmavcwALr9Aleg+GTCcPmwRuj70OzW++dcqPi4YxD0Z2xnAxAAOP0e7Pr5b9JI+amYiviCttb77FA0/tXPAP+XmCEA38vW+Hwf2vycvlz9GbiU/HZ6fPi6F0r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC13P8yAACAPwAAAAAAAAAAAAAAAAAAAAAAAACATSLUPQAAAACAV+W/AAAAAJacFLsAAAAAW6zcPwAAAADqnwM9AAAAANmiAEAAAAAAaJ2ZvQAAAAC/c/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv4KtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDZg+b0AAAAAD0bwvwAAAABhRDA8AAAAAKMzAEAAAAAAf+QHvgAAAACvEQFAAAAAAEyArT0AAAAAVt/5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPp1oTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBceMy9AAAAADSC+78AAAAAMeo/PQAAAADYBuw/AAAAAHhnUb0AAAAA/R/+PwAAAADC5ee9AAAAAB/S5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wRk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUMa2PQAAAACBwfO/AAAAAG5qsD0AAAAAnjHxPwAAAAABVoI9AAAAAAT53z8AAAAAocwVvQAAAACDEf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJz+lOWSlnCMAWyUTegDjAF0lEdAsxz8LE1l5HV9lChoBkdAngqE5+6RQ2gHTegDaAhHQLMd8LeANG51fZQoaAZHQJ3bd9v0h/1oB03oA2gIR0CzHnGhysCDdX2UKGgGR0CfJHlaKUFCaAdN6ANoCEdAsx7Qvh60IHV9lChoBkdAnNSJZW7vomgHTegDaAhHQLMjPtcfNiZ1fZQoaAZHQJ1FHaXa8HxoB03oA2gIR0CzJDcvAXVLdX2UKGgGR0Cd4MD9OymiaAdN6ANoCEdAsySxbhWHUXV9lChoBkdAnbO5Wq94/2gHTegDaAhHQLMlFA9FF2F1fZQoaAZHQJ1K68xsVL1oB03oA2gIR0CzKZ8TFl06dX2UKGgGR0CcspWTHKfWaAdN6ANoCEdAsyqZ0tAcDXV9lChoBkdAnRgIHLRrrWgHTegDaAhHQLMrGGsFMZh1fZQoaAZHQJzkSzPa+N9oB03oA2gIR0CzK3t43WFwdX2UKGgGR0CdCmtlI3BIaAdN6ANoCEdAsy/vRWtEHHV9lChoBkdAnMSnfMwDeWgHTegDaAhHQLMw6LeANG51fZQoaAZHQJxcSF/QSjBoB03oA2gIR0CzMWup4rz5dX2UKGgGR0CdPOA2hqTKaAdN6ANoCEdAszHY3qAz6HV9lChoBkdAnYAMxfv4NGgHTegDaAhHQLM2cEdeY2N1fZQoaAZHQJuDKXY150NoB03oA2gIR0CzN2pE2HcldX2UKGgGR0Ca9hlwtJ4CaAdN6ANoCEdAszfrXd0q6XV9lChoBkdAmC6Ke05U+GgHTegDaAhHQLM4UOkLx7R1fZQoaAZHQJbgU3T/hl1oB03oA2gIR0CzPNb+98JEdX2UKGgGR0Ca+Epm29csaAdN6ANoCEdAsz3Tuy/sV3V9lChoBkdAmyKRLoOhCmgHTegDaAhHQLM+T8XenAJ1fZQoaAZHQJnIMSBbwBpoB03oA2gIR0CzPrWj0tiAdX2UKGgGR0CdlfmknCwbaAdN6ANoCEdAs0M8TviLl3V9lChoBkdAnSuHo5ggHWgHTegDaAhHQLNEL7w8W9F1fZQoaAZHQJ5gPI3irDJoB03oA2gIR0CzRK3z6JqJdX2UKGgGR0CejBEkSmIkaAdN6ANoCEdAs0UUx9G7SXV9lChoBkdAneXgudwvQGgHTegDaAhHQLNJju2JBPd1fZQoaAZHQJwfvArQPZtoB03oA2gIR0CzSoayrxRVdX2UKGgGR0CdqNOxB3RpaAdN6ANoCEdAs0sA+cH4XXV9lChoBkdAnPbO+/QBxWgHTegDaAhHQLNLZBNmDlJ1fZQoaAZHQJ2cuhRIjGFoB03oA2gIR0CzT+HiFTNudX2UKGgGR0CgMHtA1NxmaAdN6ANoCEdAs1DdwgkkbHV9lChoBkdAnsn76Hj6vmgHTegDaAhHQLNRW/3nIQx1fZQoaAZHQKBUo3DvVmVoB03oA2gIR0CzUbxhMJyAdX2UKGgGR0ChamJu2qkuaAdN6ANoCEdAs1ZC9ugpSnV9lChoBkdAn/gmexwAEWgHTegDaAhHQLNXN3fyf+V1fZQoaAZHQJ0YCdJ8OTdoB03oA2gIR0CzV7d7v5P/dX2UKGgGR0CgljCvPkaNaAdN6ANoCEdAs1gc88s+V3V9lChoBkdAn9FlId2gWmgHTegDaAhHQLNclVsUIs11fZQoaAZHQKAHebXHzYpoB03oA2gIR0CzXY2ACnxbdX2UKGgGR0CgL60e2d/baAdN6ANoCEdAs14H5uZTh3V9lChoBkdAnsSRJul41WgHTegDaAhHQLNeb1+y7f51fZQoaAZHQJykdeiSJTFoB03oA2gIR0CzYuc6eXiSdX2UKGgGR0Cd0k4Uvf0maAdN6ANoCEdAs2PftsvZiHV9lChoBkdAoGzoIUrTY2gHTegDaAhHQLNkWbSqlxh1fZQoaAZHQJzHwx9G7SRoB03oA2gIR0CzZL4xUNrkdX2UKGgGR0Cfw8tgrpaBaAdN6ANoCEdAs2lQLLIPsnV9lChoBkdAnTQigGr0a2gHTegDaAhHQLNqRhvR7Z51fZQoaAZHQJsOR9a2WptoB03oA2gIR0Czar9vXK8tdX2UKGgGR0CbEa+PikwfaAdN6ANoCEdAs2sgxoIv8XV9lChoBkdAnHhVCPZIx2gHTegDaAhHQLNvxKbayrx1fZQoaAZHQJ5jrLaEi+toB03oA2gIR0CzcLjf779AdX2UKGgGR0CfNk0fHPu5aAdN6ANoCEdAs3E5zp5eJHV9lChoBkdAm1GEqc3ERGgHTegDaAhHQLNxnBsQ/X51fZQoaAZHQKBmEh1Tzd1oB03oA2gIR0CzdinObAk+dX2UKGgGR0CgBwKv/zasaAdN6ANoCEdAs3ckhB7eEnV9lChoBkdAnqVGNWEK3WgHTegDaAhHQLN3ojkuHvd1fZQoaAZHQJ2EB93KSxJoB03oA2gIR0CzeAOYIBzWdX2UKGgGR0Cfa44+KTB7aAdN6ANoCEdAs3yWWjXWfHV9lChoBkdAoJ5L9qDbrWgHTegDaAhHQLN9kV5rxiJ1fZQoaAZHQKAPdjS5RTFoB03oA2gIR0Czfgvhl18tdX2UKGgGR0Cfbt9YOlO5aAdN6ANoCEdAs35vCGetjnV9lChoBkdAmgC2dy1eB2gHTegDaAhHQLOC62St/4J1fZQoaAZHQJ8iOjesPrhoB03oA2gIR0Czg+ToZAIIdX2UKGgGR0CdXxMA3kxRaAdN6ANoCEdAs4Rh0Lc9GXV9lChoBkdAnpPnLmp2lmgHTegDaAhHQLOEwm78Nx51fZQoaAZHQJ2E4nqmj0toB03oA2gIR0CziT9l2/zrdX2UKGgGR0CcseoRZlnRaAdN6ANoCEdAs4o/bWVeKXV9lChoBkdAmzKeUhV2imgHTegDaAhHQLOKvYcNpdt1fZQoaAZHQJx5arvLHMloB03oA2gIR0Czix/4AS39dX2UKGgGR0Cd/PdSVGCqaAdN6ANoCEdAs5BhbzK9wnV9lChoBkdAm9s+k+HJtGgHTegDaAhHQLOR7O5rgwZ1fZQoaAZHQJxRy3x4IKNoB03oA2gIR0CzkrUjgQ6IdX2UKGgGR0CeTfNNJvpAaAdN6ANoCEdAs5NU3Mpw0nV9lChoBkdAnpnOGwiaAmgHTegDaAhHQLOX69CeEqV1fZQoaAZHQJzEJcbBGhFoB03oA2gIR0CzmOW+j/ModX2UKGgGR0CdYdsasIVuaAdN6ANoCEdAs5lm/RE4N3V9lChoBkdAnf2LpmmLtWgHTegDaAhHQLOZz/Pw/gR1fZQoaAZHQJxPgmqo60ZoB03oA2gIR0CznlWvjfeldX2UKGgGR0CfaWoAGSpzaAdN6ANoCEdAs59QJD3M6nV9lChoBkdAna5HUx20RmgHTegDaAhHQLOfzAwwj+t1fZQoaAZHQJopb1rZampoB03oA2gIR0CzoDAPiDNAdX2UKGgGR0CeBqj/uLJkaAdN6ANoCEdAs6ShyDIzWXV9lChoBkdAnN8fT1CgLGgHTegDaAhHQLOlmMgEEDB1fZQoaAZHQJgCc3zcynFoB03oA2gIR0CzphX0Cih4dX2UKGgGR0Cb0Fu76Hj7aAdN6ANoCEdAs6Z6R0U473V9lChoBkdAmgUvrGBFu2gHTegDaAhHQLOq/hQFcIJ1fZQoaAZHQJsu9yp71I1oB03oA2gIR0CzrAOlXRw7dX2UKGgGR0CbTyKl54W2aAdN6ANoCEdAs6yD/0dzXHV9lChoBkdAl7ceqzZ6EGgHTegDaAhHQLOs48Ti84B1fZQoaAZHQJqWNmukk8loB03oA2gIR0CzsVgUUO/ddX2UKGgGR0Cau7sbedkKaAdN6ANoCEdAs7JZOHnEEXV9lChoBkdAmYF1EqlP8GgHTegDaAhHQLOy1uAI6bR1fZQoaAZHQJthSOtGNJhoB03oA2gIR0Czsz2I9C/odX2UKGgGR0CX+p2fkFOgaAdN6ANoCEdAs7e7Z5AyEnV9lChoBkdAmyfE/0NBnmgHTegDaAhHQLO4swZOzpp1fZQoaAZHQJp5xxFRYRxoB03oA2gIR0CzuS5j2BatdX2UKGgGR0CZ0mJ0W/JvaAdN6ANoCEdAs7mUb6xgRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b35013ca5afa5cd61b90b8270c430a7b049d30726355e5e6b1337d10ea0225e
|
3 |
+
size 1232043
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1447.3761132762302, "std_reward": 304.161701074167, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T14:07:55.194129"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd799b1041fe1f420da186d5ae7cda26dc4417138ea2db8b99862dd8c662218f
|
3 |
+
size 2136
|