a2c-PandaReachDense-v3 / config.json
kupru's picture
Initial commit
8684b8d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788716924c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78871691a940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695838548481719176, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANFlNPtVJuzudG84+4ldpP6gEvL6bqnc+NFlNPtVJuzudG84+TMQrPzasHsCAX9m/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAP3l5Pj0HqT8Ycga+KhFuP+PEgb8CiUM+SNWfP0ezgr+qpdu9izqePMCr0r+FUCG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA0WU0+1Um7O50bzj7rL+A+FKJBu7V5vT7iV2k/qAS8vpuqdz66asA/DEvOv6vMkb80WU0+1Um7O50bzj7rL+A+FKJBu7V5vT5MxCs/NqwewIBf2b+eBJg/KsEVP5ekXj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2005356 0.00571559 0.40255442]\n [ 0.91149724 -0.36722302 0.24186175]\n [ 0.2005356 0.00571559 0.40255442]\n [ 0.670964 -2.479261 -1.6982269 ]]", "desired_goal": "[[ 0.24362658 1.3205334 -0.13129461]\n [ 0.9299494 -1.013821 0.19095233]\n [ 1.2486963 -1.0210961 -0.10724957]\n [ 0.01931502 -1.6458664 -0.6301349 ]]", "observation": "[[ 0.2005356 0.00571559 0.40255442 0.43786559 -0.00295461 0.37006918]\n [ 0.91149724 -0.36722302 0.24186175 1.503257 -1.6116652 -1.1390585 ]\n [ 0.2005356 0.00571559 0.40255442 0.43786559 -0.00295461 0.37006918]\n [ 0.670964 -2.479261 -1.6982269 1.1876409 0.5849787 0.86969894]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEg3jPDsGBj1kmRs+rT9NvUEtJD17uNo9hHLSvS6gVTz6PVM9lhPLPd4Qw73j23U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02771619 0.03272079 0.15195233]\n [-0.05010955 0.04008222 0.10679718]\n [-0.10275748 0.01303868 0.05157278]\n [ 0.09915845 -0.09524702 0.06002415]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8Jd2Pkq+amMAWyUSwOMAXSUR0Cn4OGz8gp0dX2UKGgGR7/X0/nnuAqeaAdLBGgIR0Cn4LBLf1pTdX2UKGgGR7/UvpyIYWLxaAdLA2gIR0Cn4Rpn6EamdX2UKGgGR7/SImgJ1JUYaAdLA2gIR0Cn4U4EfT1DdX2UKGgGR7/L3MY/FBIGaAdLA2gIR0Cn4O87yQPqdX2UKGgGR7/TmPo3aSLZaAdLA2gIR0Cn4L3gtOEedX2UKGgGR7+1fShJyyUtaAdLAmgIR0Cn4Vnr6ciGdX2UKGgGR7/P7j1f3N9qaAdLA2gIR0Cn4Sryc0+DdX2UKGgGR7/JEtuk1uR+aAdLA2gIR0Cn4P/dqL0jdX2UKGgGR7/QTn7pFCswaAdLA2gIR0Cn4Wi48U22dX2UKGgGR7/RN34bjtG/aAdLA2gIR0Cn4ToX0oSddX2UKGgGR7/IYgJTl1bJaAdLA2gIR0Cn4Q8mKIi1dX2UKGgGR7/ARW912aDxaAdLAmgIR0Cn4XXP7el9dX2UKGgGR7/JsmfGuLaVaAdLA2gIR0Cn4UyFoL5RdX2UKGgGR7+v1tfoicG1aAdLAmgIR0Cn4Ry1uzhQdX2UKGgGR7/ikYXO4XoDaAdLCGgIR0Cn4OvhAGB4dX2UKGgGR7/JHe7+T/yYaAdLA2gIR0Cn4VxuKoAGdX2UKGgGR7/PjbSJCSieaAdLA2gIR0Cn4SzPKMefdX2UKGgGR7/a2nbZezD5aAdLBGgIR0Cn4QJQk5ZKdX2UKGgGR7/b287IT4+KaAdLBmgIR0Cn4ZeSB9ThdX2UKGgGR7/V6XjU/fO2aAdLA2gIR0Cn4W1jRUm2dX2UKGgGR7/TTQVsUIszaAdLA2gIR0Cn4T2c8TzvdX2UKGgGR7/G7kGRmseXaAdLAmgIR0Cn4QxKQJXydX2UKGgGR7+4MMI/qxC6aAdLAmgIR0Cn4aGxMWXUdX2UKGgGR7+9jkMkQf6oaAdLAmgIR0Cn4RUhePaMdX2UKGgGR7++by6MBIWhaAdLAmgIR0Cn4azxG2CvdX2UKGgGR7/M3dbgTAWSaAdLA2gIR0Cn4X4yO7xvdX2UKGgGR7/WuJk5IYm+aAdLA2gIR0Cn4U6ESM99dX2UKGgGR7+6oP07KaG6aAdLAmgIR0Cn4SGh/RVqdX2UKGgGR7+58VpKzzEraAdLAmgIR0Cn4YeF10T2dX2UKGgGR7/R6FuejEehaAdLA2gIR0Cn4btkFwDOdX2UKGgGR7/GSidrftQbaAdLA2gIR0Cn4VxrSE13dX2UKGgGR7/S89wFTvRaaAdLA2gIR0Cn4S/WtlqbdX2UKGgGR7/PisGPgeijaAdLA2gIR0Cn4ZiaiKzidX2UKGgGR7+xT/ACW/rTaAdLAmgIR0Cn4WjpC8e0dX2UKGgGR7/FRvWH1vl2aAdLA2gIR0Cn4c0EPlMidX2UKGgGR7+/ZRKpT/ACaAdLAmgIR0Cn4TzPjXFtdX2UKGgGR7/SN1QqI7/5aAdLA2gIR0Cn4adgF5fMdX2UKGgGR7/Ru7YkE9t/aAdLA2gIR0Cn4dsyrPt2dX2UKGgGR7/Y8KXv6TGHaAdLBGgIR0Cn4VOqNp/PdX2UKGgGR7/Mur6tT1kEaAdLA2gIR0Cn4bnlnyuqdX2UKGgGR7/i4NI9TxXoaAdLBmgIR0Cn4YpNKyv+dX2UKGgGR7+lLFn7HhjwaAdLAWgIR0Cn4VkfDDTCdX2UKGgGR7/OqWkadc0MaAdLA2gIR0Cn4e5gogFHdX2UKGgGR7/EsiB5HEuQaAdLAmgIR0Cn4ZPQF9rodX2UKGgGR7/MoDxLCemOaAdLA2gIR0Cn4ciqp97XdX2UKGgGR7/DyvLX+VC5aAdLA2gIR0Cn4gArxy4ndX2UKGgGR7/AZeiSJTESaAdLAmgIR0Cn4aGthd+odX2UKGgGR7/clP8AJb+taAdLBGgIR0Cn4XENFz+4dX2UKGgGR7+5m16Vt4zKaAdLAmgIR0Cn4dkiliz+dX2UKGgGR7+22TgVGkN4aAdLAmgIR0Cn4X9AX2ugdX2UKGgGR7/XxM36yjYaaAdLBGgIR0Cn4hjKHO8kdX2UKGgGR7/QztTkyULVaAdLA2gIR0Cn4endXT3JdX2UKGgGR7/aXoC+10DEaAdLBGgIR0Cn4bo42jwhdX2UKGgGR7/Ru7pV0cOtaAdLBGgIR0Cn4ZTqKP4mdX2UKGgGR7/FaPCEYfnwaAdLA2gIR0Cn4io8yN4rdX2UKGgGR7/MA1ejVQQ+aAdLA2gIR0Cn4ft2cJ+ldX2UKGgGR7+7BVMmF8G+aAdLAmgIR0Cn4gUMPSUkdX2UKGgGR7/QONYKYzBRaAdLA2gIR0Cn4jtxlxwRdX2UKGgGR7/ZhSLqD9OzaAdLBGgIR0Cn4asAeaKDdX2UKGgGR7/Md7OVxCIDaAdLA2gIR0Cn4hW4d6sydX2UKGgGR7/hhvrGBFuvaAdLCGgIR0Cn4eXwCr93dX2UKGgGR7/GU1Q66reZaAdLAmgIR0Cn4bST6i0wdX2UKGgGR7/K+OfdyksSaAdLA2gIR0Cn4kois4kvdX2UKGgGR7+2rp7kXDWLaAdLAmgIR0Cn4b8XvYvndX2UKGgGR7/R3Ux20Re1aAdLA2gIR0Cn4igg5imVdX2UKGgGR7/QGEf1YhdMaAdLA2gIR0Cn4fiSJTESdX2UKGgGR7/U2dd3Sro4aAdLBGgIR0Cn4mEoF3Y+dX2UKGgGR7/AU0vXbuc+aAdLAmgIR0Cn4gJljEvTdX2UKGgGR7+opazNUwSKaAdLAWgIR0Cn4mZNGmUGdX2UKGgGR7/Jo371qWTpaAdLA2gIR0Cn4jeMhougdX2UKGgGR7/UweeWfK6naAdLBGgIR0Cn4dYz7/GVdX2UKGgGR7/CX6ZYxL00aAdLAmgIR0Cn4nJK8L8adX2UKGgGR7/MOnVG0/noaAdLA2gIR0Cn4hOdPLxJdX2UKGgGR7+y/Efkmx+saAdLAmgIR0Cn4nti6QNkdX2UKGgGR7/YyPdVNpM6aAdLBGgIR0Cn4kx3eN1hdX2UKGgGR7/Z9S/CZWq+aAdLBGgIR0Cn4euy3Td+dX2UKGgGR7/RHyVfNRm9aAdLA2gIR0Cn4iIvSMLndX2UKGgGR7+c6NlyzXz2aAdLAWgIR0Cn4iasp5NXdX2UKGgGR7/KymhufmLcaAdLA2gIR0Cn4l2tEG7jdX2UKGgGR7/SWMCLdepoaAdLA2gIR0Cn4fxa5f+kdX2UKGgGR7/c+4LCvX9SaAdLBGgIR0Cn4pF6zE75dX2UKGgGR7+6DPGACnxbaAdLAmgIR0Cn4ppMg2ZRdX2UKGgGR7/Xo+wC8vmHaAdLBGgIR0Cn4jwBxPwedX2UKGgGR7/I3wTdtVJdaAdLA2gIR0Cn4gsURFqjdX2UKGgGR7/a9PUKArhBaAdLBGgIR0Cn4nMcIZ62dX2UKGgGR7+/Tw2ETQE7aAdLAmgIR0Cn4hjQiRnwdX2UKGgGR7/Kx7iQ1aW5aAdLA2gIR0Cn4q4lIEr5dX2UKGgGR7/OnCO3lS0jaAdLA2gIR0Cn4k8wg1WKdX2UKGgGR7+ol0HQhOgyaAdLAWgIR0Cn4h3LeQ+2dX2UKGgGR7/UlnRLK3d9aAdLA2gIR0Cn4oPSlWOqdX2UKGgGR7+81/DtPYWdaAdLAmgIR0Cn4riFbmlqdX2UKGgGR7/DApKBd2PlaAdLAmgIR0Cn4lmwRoRJdX2UKGgGR7/NL+xW1c+raAdLA2gIR0Cn4i1IRRMwdX2UKGgGR7+8PbwjMV1waAdLAmgIR0Cn4sVzp5eJdX2UKGgGR7/LPykKu0TlaAdLA2gIR0Cn4pZ4W1twdX2UKGgGR7/bE0BOpKjBaAdLBGgIR0Cn4m71qWTpdX2UKGgGR7/Nfa6BiCrcaAdLA2gIR0Cn4qNd7fHhdX2UKGgGR7/Y7yhBZ6ldaAdLBGgIR0Cn4tcEmpl0dX2UKGgGR7+x7+kxh2GJaAdLAmgIR0Cn4ngCwKSgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}