Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f184926b46750def1f1dc8adb3a2624947b3d24e20cae8d871468d1a377e3d7
|
3 |
+
size 123168
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788716924c10>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78871691a940>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1695842875101398608,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjZf4PlRRnD8Fvd09xFu+vjvDl78yvt09r/TlPliqjT0Fvd09fCADv03Dhb4Fvd09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkWgP741FL4FtYq/GBAUvjSIrT9jzgS/gUBIP3+GfD8FtYq/nGaPv5CUCb8UsE0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADVhka+vG6Kv1e6ib+H1Zs9+oz4P62ghL+16zu/jZf4PlRRnD8Fvd09KT1FPNNAlDzrEuu8WbqHPRBeSb0D8F89ycfKPAQwDDuP5UU54P+HPg+n+L7h/iM/zXxgP9AR9z4pBQC+ajZEv8Rbvr47w5e/Mr7dPTU3Rzya5ZM8c9fzvD+7hj1Rm0i9kRxfPSNgujwYs2E6RdhXuPWiJz6Wv9S+be4PPvkOTz/86qM9kTq2v9U1Q7+v9OU+WKqNPQW93T3/PEU8t0CUPA528rxeuoc9/F1JvQPwXz3Jx8o8CDAMO1AlRjni70a+K0iVP22wmb8FFNU++J+oP/YUlz5t7Du/fCADv03Dhb4Fvd09puRGPO8TkzyRLAO93cyGPTAsS70D8F89ycfKPAcwDDvcH+m5lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[ 0.48553124 1.2212319 0.10827068]\n [-0.37179387 -1.1856455 0.10827293]\n [ 0.4491324 0.06917256 0.10827068]\n [-0.5122144 -0.26125565 0.10827068]]",
|
34 |
+
"desired_goal": "[[ 1.2521207 -0.14473626 -1.0836493 ]\n [-0.14459264 1.3557191 -0.5187742 ]\n [ 0.78223425 0.98642725 -1.0836493 ]\n [-1.1203189 -0.53742313 0.803468 ]]",
|
35 |
+
"observation": "[[-1.93873718e-01 -1.08150434e+00 -1.07599914e+00 7.60908648e-02\n 1.94180226e+00 -1.03615344e+00 -7.34065354e-01 4.85531241e-01\n 1.22123194e+00 1.08270682e-01 1.20385075e-02 1.80973168e-02\n -2.86955442e-02 6.62733987e-02 -4.91619706e-02 5.46722524e-02\n 2.47534681e-02 2.13909242e-03 1.88729013e-04]\n [ 2.65624046e-01 -4.85649556e-01 6.40607893e-01 8.76904309e-01\n 4.82557774e-01 -1.25019684e-01 -7.66455293e-01 -3.71793866e-01\n -1.18564546e+00 1.08272925e-01 1.21591585e-02 1.80538185e-02\n -2.97658201e-02 6.57868311e-02 -4.89762463e-02 5.44706024e-02\n 2.27509197e-02 8.60975590e-04 -5.14614112e-05]\n [ 1.63707569e-01 -4.15524185e-01 1.40557960e-01 8.08822215e-01\n 8.00380409e-02 -1.42366230e+00 -7.62540162e-01 4.49132413e-01\n 6.91725612e-02 1.08270682e-01 1.20384684e-02 1.80972647e-02\n -2.95973085e-02 6.62734360e-02 -4.91618961e-02 5.46722524e-02\n 2.47534681e-02 2.13909335e-03 1.88966515e-04]\n [-1.94274455e-01 1.16626489e+00 -1.20069659e+00 4.16168362e-01\n 1.31738186e+00 2.95081794e-01 -7.34076321e-01 -5.12214422e-01\n -2.61255652e-01 1.08270682e-01 1.21394750e-02 1.79538410e-02\n -3.20249237e-02 6.58204332e-02 -4.96026874e-02 5.46722524e-02\n 2.47534681e-02 2.13909312e-03 -4.44649602e-04]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUVu2vZwXpL0K16M8X9uGPf78Hr0K16M8URiZvJ0WyToK16M8WDQiPHse070K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDetvQ1BDb4K16M8tKvmvZcnX70K16M8NA4Ovqf5Fr4K16M88ZLBPYPTdj2cN8c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUVu2vZwXpL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAF/bhj3+/B69CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABRGJm8nRbJOgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAWDQiPHse070K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[-0.08904136 -0.08012316 0.02 ]\n [ 0.0658481 -0.03881549 0.02 ]\n [-0.01868835 0.00153418 0.02 ]\n [ 0.00990018 -0.10308548 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.08457908 -0.13794346 0.02 ]\n [-0.11263219 -0.05448112 0.02 ]\n [-0.13872606 -0.14743672 0.02 ]\n [ 0.09451855 0.06026031 0.02431851]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.9041360e-02\n -8.0123156e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.5848105e-02\n -3.8815491e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.8688353e-02\n 1.5341822e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.9001750e-03\n -1.0308548e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cq/pMPJ7swdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/rjrJKaodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrACTBAOawdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAJFMRHwxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAHM0pEx7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAJ3ocJdCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAgQCCBf8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAnMXrMTwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAlumR/3GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAoIJqqOtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBAWwV0tAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBHjSw4bTdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBIMr/bTMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBGKOT7l8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBI7TtsvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBcKOLiuMdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBcrDye7MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBflP8AJcdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBf7MgU1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBckFW4mUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBcuoP07KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBwLlvIfbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBynnlnyvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBvM3qAz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBvHYHxBmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCCZA6dUbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCFQhW5pbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCCIzN2TxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCB/JFLFodX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrCCbdBSk1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCVrcsUZfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCZIRRMvidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCV2lMyrQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCV+I2wV1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoxwZOzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCrrA57w8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoUCJXQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoPduYQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7hufmLcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC+Y/mknDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7D9GZuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7K7ROUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDOQSBbwCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDRJKBd2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDN9OqNp/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDN3enAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDhGs3hn8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrDhhJiAlOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDj4/3WWhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDgg/9pAVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDgslLOAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD0SnLq2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD4elKsdUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD2ObRWtEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD6F0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEPC0F8ohdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrER4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEOh3A2ycdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEO7ah6BzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEPSgPEsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEiegDifhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrElT7uUlidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEh8A7xNJdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEiZcTrVwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEijdYW+HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE111Oj7AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE4eDnNgSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE1XQUpNLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE1tayKNydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFI5XU6PsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFLaJZW7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFIxmbsnidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFJ30PH1fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFd/YraufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFguPFNtZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFeL/82rGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFeSAQQMAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxrBj4HpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF0JhfBvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxJ35eqrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxWJBPbgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGE9O6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGHaHbh3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGEe23KB/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGEh0Qsf8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGZugHu7ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGgybhFVldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGeuM+/xldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGiQw0wajdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG5078vVWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHBmjj7yhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG/mm1pj+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHC57HAARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHafkNnXedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHhD7qIJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHfO2iL2pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHibZWaMKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH6eenQ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIBYhEBsAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH/RQSBbwdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eca8baecfdea3498b21d5ff5f2017a05c41d1449c92e94a22c7c7e1c0a41d26b
|
3 |
+
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e28ff08b3b0c5202dceb66b8e70f83ff479c8714230f3ab1ac6f8676a47f8d3
|
3 |
+
size 52926
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788716924c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78871691a940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695842875101398608, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjZf4PlRRnD8Fvd09xFu+vjvDl78yvt09r/TlPliqjT0Fvd09fCADv03Dhb4Fvd09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkWgP741FL4FtYq/GBAUvjSIrT9jzgS/gUBIP3+GfD8FtYq/nGaPv5CUCb8UsE0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADVhka+vG6Kv1e6ib+H1Zs9+oz4P62ghL+16zu/jZf4PlRRnD8Fvd09KT1FPNNAlDzrEuu8WbqHPRBeSb0D8F89ycfKPAQwDDuP5UU54P+HPg+n+L7h/iM/zXxgP9AR9z4pBQC+ajZEv8Rbvr47w5e/Mr7dPTU3Rzya5ZM8c9fzvD+7hj1Rm0i9kRxfPSNgujwYs2E6RdhXuPWiJz6Wv9S+be4PPvkOTz/86qM9kTq2v9U1Q7+v9OU+WKqNPQW93T3/PEU8t0CUPA528rxeuoc9/F1JvQPwXz3Jx8o8CDAMO1AlRjni70a+K0iVP22wmb8FFNU++J+oP/YUlz5t7Du/fCADv03Dhb4Fvd09puRGPO8TkzyRLAO93cyGPTAsS70D8F89ycfKPAcwDDvcH+m5lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.48553124 1.2212319 0.10827068]\n [-0.37179387 -1.1856455 0.10827293]\n [ 0.4491324 0.06917256 0.10827068]\n [-0.5122144 -0.26125565 0.10827068]]", "desired_goal": "[[ 1.2521207 -0.14473626 -1.0836493 ]\n [-0.14459264 1.3557191 -0.5187742 ]\n [ 0.78223425 0.98642725 -1.0836493 ]\n [-1.1203189 -0.53742313 0.803468 ]]", "observation": "[[-1.93873718e-01 -1.08150434e+00 -1.07599914e+00 7.60908648e-02\n 1.94180226e+00 -1.03615344e+00 -7.34065354e-01 4.85531241e-01\n 1.22123194e+00 1.08270682e-01 1.20385075e-02 1.80973168e-02\n -2.86955442e-02 6.62733987e-02 -4.91619706e-02 5.46722524e-02\n 2.47534681e-02 2.13909242e-03 1.88729013e-04]\n [ 2.65624046e-01 -4.85649556e-01 6.40607893e-01 8.76904309e-01\n 4.82557774e-01 -1.25019684e-01 -7.66455293e-01 -3.71793866e-01\n -1.18564546e+00 1.08272925e-01 1.21591585e-02 1.80538185e-02\n -2.97658201e-02 6.57868311e-02 -4.89762463e-02 5.44706024e-02\n 2.27509197e-02 8.60975590e-04 -5.14614112e-05]\n [ 1.63707569e-01 -4.15524185e-01 1.40557960e-01 8.08822215e-01\n 8.00380409e-02 -1.42366230e+00 -7.62540162e-01 4.49132413e-01\n 6.91725612e-02 1.08270682e-01 1.20384684e-02 1.80972647e-02\n -2.95973085e-02 6.62734360e-02 -4.91618961e-02 5.46722524e-02\n 2.47534681e-02 2.13909335e-03 1.88966515e-04]\n [-1.94274455e-01 1.16626489e+00 -1.20069659e+00 4.16168362e-01\n 1.31738186e+00 2.95081794e-01 -7.34076321e-01 -5.12214422e-01\n -2.61255652e-01 1.08270682e-01 1.21394750e-02 1.79538410e-02\n -3.20249237e-02 6.58204332e-02 -4.96026874e-02 5.46722524e-02\n 2.47534681e-02 2.13909312e-03 -4.44649602e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUVu2vZwXpL0K16M8X9uGPf78Hr0K16M8URiZvJ0WyToK16M8WDQiPHse070K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDetvQ1BDb4K16M8tKvmvZcnX70K16M8NA4Ovqf5Fr4K16M88ZLBPYPTdj2cN8c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUVu2vZwXpL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAF/bhj3+/B69CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABRGJm8nRbJOgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAWDQiPHse070K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.08904136 -0.08012316 0.02 ]\n [ 0.0658481 -0.03881549 0.02 ]\n [-0.01868835 0.00153418 0.02 ]\n [ 0.00990018 -0.10308548 0.02 ]]", "desired_goal": "[[-0.08457908 -0.13794346 0.02 ]\n [-0.11263219 -0.05448112 0.02 ]\n [-0.13872606 -0.14743672 0.02 ]\n [ 0.09451855 0.06026031 0.02431851]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.9041360e-02\n -8.0123156e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.5848105e-02\n -3.8815491e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.8688353e-02\n 1.5341822e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.9001750e-03\n -1.0308548e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cq/pMPJ7swdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/rjrJKaodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrACTBAOawdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAJFMRHwxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAHM0pEx7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAJ3ocJdCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAgQCCBf8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAnMXrMTwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAlumR/3GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAoIJqqOtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBAWwV0tAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBHjSw4bTdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBIMr/bTMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBGKOT7l8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBI7TtsvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBcKOLiuMdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBcrDye7MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBflP8AJcdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrBf7MgU1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBckFW4mUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBcuoP07KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBwLlvIfbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBynnlnyvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBvM3qAz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrBvHYHxBmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCCZA6dUbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCFQhW5pbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCCIzN2TxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCB/JFLFodX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrCCbdBSk1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCVrcsUZfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCZIRRMvidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCV2lMyrQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCV+I2wV1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoxwZOzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCrrA57w8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoUCJXQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrCoPduYQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7hufmLcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC+Y/mknDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7D9GZuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrC7K7ROUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDOQSBbwCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDRJKBd2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDN9OqNp/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDN3enAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDhGs3hn8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrDhhJiAlOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDj4/3WWhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDgg/9pAVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDgslLOAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD0SnLq2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD4elKsdUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD2ObRWtEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD6F0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEPC0F8ohdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrER4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEOh3A2ycdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEO7ah6BzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEPSgPEsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEiegDifhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrElT7uUlidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEh8A7xNJdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEiZcTrVwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEijdYW+HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE111Oj7AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE4eDnNgSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE1XQUpNLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE1tayKNydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFI5XU6PsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFLaJZW7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFIxmbsnidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFJ30PH1fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFd/YraufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFguPFNtZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFeL/82rGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFeSAQQMAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxrBj4HpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF0JhfBvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxJ35eqrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFxWJBPbgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGE9O6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGHaHbh3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGEe23KB/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGEh0Qsf8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGZugHu7ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGgybhFVldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGeuM+/xldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGiQw0wajdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG5078vVWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHBmjj7yhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG/mm1pj+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHC57HAARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHafkNnXedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHhD7qIJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHfO2iL2pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHibZWaMKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH6eenQ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIBYhEBsAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH/RQSBbwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (968 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-27T20:25:51.176900"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b95e316971b2e36350bedb54c341acdbe3968992dcd48bd434d708dfdba8100f
|
3 |
+
size 3013
|