kuanyk commited on
Commit
5bcc8b0
1 Parent(s): 59eaf83

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.59 +/- 0.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3259bc7cfb38fd6fb5b47ba38903c1a733668807bd573526f5a32da28f47d610
3
+ size 107756
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f10c6a18ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f10c6a14a20>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677679608103327942,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/fI3vJfcOb7Vj0i/QX3qPp66Z79uX6Y/56UkPr1Vaz3gUlo/FD8mv25Uwb76tQq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmryUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]]",
60
+ "desired_goal": "[[-0.01122737 -0.18150555 -0.7834447 ]\n [ 0.45798686 -0.9051913 1.2997873 ]\n [ 0.16078912 0.05745481 0.8528271 ]\n [-0.6494 -0.37759727 -0.54183924]]",
61
+ "observation": "[[ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmqjNvWD5Oz0V9+w9coT7O1tVgjyTQrE9c7e8vZh0iTsLpN89hqBevWIrmr1tt9E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.10041924 0.04589212 0.11570565]\n [ 0.0076757 0.01590984 0.08655276]\n [-0.09214678 0.00419481 0.10919961]\n [-0.05435231 -0.07527806 0.10240064]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF/GdmPUi87+UhpRSlIwBbJRLMowBdJRHQKEX/KNAC4l1fZQoaAZoCWgPQwiLNse5TZgDwJSGlFKUaBVLMmgWR0ChF3/n4fwJdX2UKGgGaAloD0MI6KIh41GKAcCUhpRSlGgVSzJoFkdAoRcAte2NN3V9lChoBmgJaA9DCAjnU8cq5fO/lIaUUpRoFUsyaBZHQKEWf2IwdsB1fZQoaAZoCWgPQwjTZpyGqELrv5SGlFKUaBVLMmgWR0ChGUebmU4adX2UKGgGaAloD0MIUgq6vaRx8r+UhpRSlGgVSzJoFkdAoRjKo60Y0nV9lChoBmgJaA9DCEpfCDnv//C/lIaUUpRoFUsyaBZHQKEYS4I8hcJ1fZQoaAZoCWgPQwj0a+un/2z1v5SGlFKUaBVLMmgWR0ChF8otL+PzdX2UKGgGaAloD0MIBK4rZoR38r+UhpRSlGgVSzJoFkdAoRqnOfNA1XV9lChoBmgJaA9DCAPQKF36F+S/lIaUUpRoFUsyaBZHQKEaKifQKKJ1fZQoaAZoCWgPQwhAh/nyAmzrv5SGlFKUaBVLMmgWR0ChGarcKw6idX2UKGgGaAloD0MIpZ9wdmv5AMCUhpRSlGgVSzJoFkdAoRkpcAzYVnV9lChoBmgJaA9DCL3jFB3JZe2/lIaUUpRoFUsyaBZHQKEcI6jFhod1fZQoaAZoCWgPQwhCBvLs8u37v5SGlFKUaBVLMmgWR0ChG6Zs9B8hdX2UKGgGaAloD0MITraBO1Dn/L+UhpRSlGgVSzJoFkdAoRsnhhpg1HV9lChoBmgJaA9DCGKBr+jWa/a/lIaUUpRoFUsyaBZHQKEapoHs1Kp1fZQoaAZoCWgPQwggKLfte9Tlv5SGlFKUaBVLMmgWR0ChHbFZPl+3dX2UKGgGaAloD0MI5pZWQ+Ie6b+UhpRSlGgVSzJoFkdAoR00lolD4XV9lChoBmgJaA9DCHiXi/hOTO6/lIaUUpRoFUsyaBZHQKEctZezD4x1fZQoaAZoCWgPQwj1oKAUrRzxv5SGlFKUaBVLMmgWR0ChHDR7AtWddX2UKGgGaAloD0MIuWx0zk/x47+UhpRSlGgVSzJoFkdAoR9DJGOMl3V9lChoBmgJaA9DCErOiT20T/K/lIaUUpRoFUsyaBZHQKEexklNUOx1fZQoaAZoCWgPQwjOb5hokILqv5SGlFKUaBVLMmgWR0ChHkdECvHMdX2UKGgGaAloD0MI/kemQ6fn7L+UhpRSlGgVSzJoFkdAoR3GGCZnc3V9lChoBmgJaA9DCLqBAu/kU/i/lIaUUpRoFUsyaBZHQKEgRPpIMBp1fZQoaAZoCWgPQwgjaTf6mE/1v5SGlFKUaBVLMmgWR0ChH8dSEUTMdX2UKGgGaAloD0MIHEEqxY5G57+UhpRSlGgVSzJoFkdAoR9Hb/Ot4nV9lChoBmgJaA9DCA99dytL9OO/lIaUUpRoFUsyaBZHQKEexXnyNGV1fZQoaAZoCWgPQwhF8Sprm+Luv5SGlFKUaBVLMmgWR0ChISboSteVdX2UKGgGaAloD0MIVtRgGoZP8b+UhpRSlGgVSzJoFkdAoSCpPoFFD3V9lChoBmgJaA9DCBx9zAcEOvS/lIaUUpRoFUsyaBZHQKEgKWoFV1h1fZQoaAZoCWgPQwjNrRBWYwn6v5SGlFKUaBVLMmgWR0ChH6dbHIZJdX2UKGgGaAloD0MImRJJ9DKK9L+UhpRSlGgVSzJoFkdAoSIRtLteD3V9lChoBmgJaA9DCJ9Yp8r3DP+/lIaUUpRoFUsyaBZHQKEhlA2Q4jt1fZQoaAZoCWgPQwgXgEbp0n/zv5SGlFKUaBVLMmgWR0ChIRQ2ETQFdX2UKGgGaAloD0MId4L917lp7b+UhpRSlGgVSzJoFkdAoSCSgdwNsnV9lChoBmgJaA9DCFuYhXZOM/y/lIaUUpRoFUsyaBZHQKEi7MvAXVN1fZQoaAZoCWgPQwiMhLacS3Hrv5SGlFKUaBVLMmgWR0ChIm8pkPMCdX2UKGgGaAloD0MIOL72zJIA/7+UhpRSlGgVSzJoFkdAoSHvNcGC7XV9lChoBmgJaA9DCHAofLYODum/lIaUUpRoFUsyaBZHQKEhbSro4dZ1fZQoaAZoCWgPQwhqpnud1Jfrv5SGlFKUaBVLMmgWR0ChI82j4593dX2UKGgGaAloD0MIJ1DEIoYd4L+UhpRSlGgVSzJoFkdAoSNP29L6DXV9lChoBmgJaA9DCD4FwHgGDeu/lIaUUpRoFUsyaBZHQKEiz/smfGx1fZQoaAZoCWgPQwjcLjTXaSTwv5SGlFKUaBVLMmgWR0ChIk4AsCkodX2UKGgGaAloD0MIEJNwIY/g6r+UhpRSlGgVSzJoFkdAoSSwwVTJhnV9lChoBmgJaA9DCJYmpaDbi/G/lIaUUpRoFUsyaBZHQKEkMxjawll1fZQoaAZoCWgPQwjP2JdsPNjxv5SGlFKUaBVLMmgWR0ChI7MunMt9dX2UKGgGaAloD0MI/I123PB78r+UhpRSlGgVSzJoFkdAoSMxGpda+3V9lChoBmgJaA9DCGKelbTiG+m/lIaUUpRoFUsyaBZHQKEllDzAeq91fZQoaAZoCWgPQwgsLSP1nsrrv5SGlFKUaBVLMmgWR0ChJRam4y44dX2UKGgGaAloD0MIAoOkT6to57+UhpRSlGgVSzJoFkdAoSSWxlg+hXV9lChoBmgJaA9DCKEPlrGhm++/lIaUUpRoFUsyaBZHQKEkFMFlkH51fZQoaAZoCWgPQwiCqzyBsFPpv5SGlFKUaBVLMmgWR0ChJnKZtvXLdX2UKGgGaAloD0MIo8haQ6k9+r+UhpRSlGgVSzJoFkdAoSX1CAtnPHV9lChoBmgJaA9DCB0FiIIZE/O/lIaUUpRoFUsyaBZHQKEldVPN3W51fZQoaAZoCWgPQwjMmII1zibpv5SGlFKUaBVLMmgWR0ChJPNt65XmdX2UKGgGaAloD0MIa9JtiVzw7L+UhpRSlGgVSzJoFkdAoSdQz7/GVHV9lChoBmgJaA9DCGABTBk4oOe/lIaUUpRoFUsyaBZHQKEm06FuejF1fZQoaAZoCWgPQwhuopbmVgjtv5SGlFKUaBVLMmgWR0ChJlQrc0tRdX2UKGgGaAloD0MII0vmWN5V67+UhpRSlGgVSzJoFkdAoSXSTpxFRnV9lChoBmgJaA9DCKFMo8nFmOO/lIaUUpRoFUsyaBZHQKEoLT72tdR1fZQoaAZoCWgPQwg1YfvJGN/3v5SGlFKUaBVLMmgWR0ChJ6+JP69CdX2UKGgGaAloD0MIzo5U3/lF7r+UhpRSlGgVSzJoFkdAoScvwPRRdnV9lChoBmgJaA9DCHV4COOnsfC/lIaUUpRoFUsyaBZHQKEmrdYW+Gp1fZQoaAZoCWgPQwj85ChAFMzbv5SGlFKUaBVLMmgWR0ChKQxAbADadX2UKGgGaAloD0MIKT3TS4xl47+UhpRSlGgVSzJoFkdAoSiOznied3V9lChoBmgJaA9DCJePpKSHIe2/lIaUUpRoFUsyaBZHQKEoDvjwQUZ1fZQoaAZoCWgPQwhyo8haQynzv5SGlFKUaBVLMmgWR0ChJ4z0QK8ddX2UKGgGaAloD0MI88ZJYd6j9r+UhpRSlGgVSzJoFkdAoSniMBIWg3V9lChoBmgJaA9DCIApAwe09Oa/lIaUUpRoFUsyaBZHQKEpZKYiPhh1fZQoaAZoCWgPQwjql4i3zj/mv5SGlFKUaBVLMmgWR0ChKOTA31jBdX2UKGgGaAloD0MIeCl1yThG+7+UhpRSlGgVSzJoFkdAoShintOVPnV9lChoBmgJaA9DCIi9UMB28Pi/lIaUUpRoFUsyaBZHQKEqxhAGB4F1fZQoaAZoCWgPQwiYUMHhBZHmv5SGlFKUaBVLMmgWR0ChKkhw++uedX2UKGgGaAloD0MI85L/yd/98L+UhpRSlGgVSzJoFkdAoSnImVqveXV9lChoBmgJaA9DCA5N2ekH9eK/lIaUUpRoFUsyaBZHQKEpRp22Xsx1fZQoaAZoCWgPQwgMsI9OXXnmv5SGlFKUaBVLMmgWR0ChK6hqbjLkdX2UKGgGaAloD0MI+cCO/wJB7r+UhpRSlGgVSzJoFkdAoSsqwKSgXnV9lChoBmgJaA9DCLYuNUI/U+e/lIaUUpRoFUsyaBZHQKEqqtozvZ11fZQoaAZoCWgPQwiYaJCCpxDrv5SGlFKUaBVLMmgWR0ChKijTz/ZNdX2UKGgGaAloD0MIL058taM44b+UhpRSlGgVSzJoFkdAoSyJL7Gec3V9lChoBmgJaA9DCDgQkgVM4PK/lIaUUpRoFUsyaBZHQKEsC4wyqMp1fZQoaAZoCWgPQwi5cCAkC5jzv5SGlFKUaBVLMmgWR0ChK4vzWf9QdX2UKGgGaAloD0MI2zAKgsf38b+UhpRSlGgVSzJoFkdAoSsKESM983V9lChoBmgJaA9DCOik942vPe+/lIaUUpRoFUsyaBZHQKEtcW4Vh1F1fZQoaAZoCWgPQwjG+3H75ZPsv5SGlFKUaBVLMmgWR0ChLPP8ZUDMdX2UKGgGaAloD0MIijpzDwnf17+UhpRSlGgVSzJoFkdAoSx0chkiEHV9lChoBmgJaA9DCKtZZ3xf3OK/lIaUUpRoFUsyaBZHQKEr8tKZlWh1fZQoaAZoCWgPQwgc7E0MyYnwv5SGlFKUaBVLMmgWR0ChLlfWlMyrdX2UKGgGaAloD0MIMbQ6OUNx3r+UhpRSlGgVSzJoFkdAoS3aSkj5bnV9lChoBmgJaA9DCCmSrwRSYuq/lIaUUpRoFUsyaBZHQKEtWniNsFd1fZQoaAZoCWgPQwgbYye8BKfxv5SGlFKUaBVLMmgWR0ChLNinYQJ5dX2UKGgGaAloD0MIYmU08nkF9b+UhpRSlGgVSzJoFkdAoS9BavA443V9lChoBmgJaA9DCCBFnbmHhOO/lIaUUpRoFUsyaBZHQKEuw8Yht+F1fZQoaAZoCWgPQwg4ZtmTwObiv5SGlFKUaBVLMmgWR0ChLkPnr6cidX2UKGgGaAloD0MI68iRzsDI5r+UhpRSlGgVSzJoFkdAoS3B+fAbhnV9lChoBmgJaA9DCMoZijve5Om/lIaUUpRoFUsyaBZHQKEwHSXMQmN1fZQoaAZoCWgPQwj5vU1/9qPsv5SGlFKUaBVLMmgWR0ChL5+CCjDbdX2UKGgGaAloD0MIsaNxqN8F4b+UhpRSlGgVSzJoFkdAoS8fl8w6AHV9lChoBmgJaA9DCLRXHw99d92/lIaUUpRoFUsyaBZHQKEunZg5R0l1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec9aeb39e7a5fbd25675fbb9251381f320fe1f171ce49051c4d6295db7977fac
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:688ddb9a1760dd08d0d0188c8cb8ae79a89704cad1089bd57c0c272ba180e887
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f10c6a18ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f10c6a14a20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677679608103327942, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/xlPCPnRPzzyAsB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/fI3vJfcOb7Vj0i/QX3qPp66Z79uX6Y/56UkPr1Vaz3gUlo/FD8mv25Uwb76tQq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmrzGU8I+dE/PPICwHT9OXYi8GZrzuqYdmryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]\n [0.3795454 0.02530644 0.6159744 ]]", "desired_goal": "[[-0.01122737 -0.18150555 -0.7834447 ]\n [ 0.45798686 -0.9051913 1.2997873 ]\n [ 0.16078912 0.05745481 0.8528271 ]\n [-0.6494 -0.37759727 -0.54183924]]", "observation": "[[ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]\n [ 0.3795454 0.02530644 0.6159744 -0.01664605 -0.00185854 -0.01881297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmqjNvWD5Oz0V9+w9coT7O1tVgjyTQrE9c7e8vZh0iTsLpN89hqBevWIrmr1tt9E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10041924 0.04589212 0.11570565]\n [ 0.0076757 0.01590984 0.08655276]\n [-0.09214678 0.00419481 0.10919961]\n [-0.05435231 -0.07527806 0.10240064]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF/GdmPUi87+UhpRSlIwBbJRLMowBdJRHQKEX/KNAC4l1fZQoaAZoCWgPQwiLNse5TZgDwJSGlFKUaBVLMmgWR0ChF3/n4fwJdX2UKGgGaAloD0MI6KIh41GKAcCUhpRSlGgVSzJoFkdAoRcAte2NN3V9lChoBmgJaA9DCAjnU8cq5fO/lIaUUpRoFUsyaBZHQKEWf2IwdsB1fZQoaAZoCWgPQwjTZpyGqELrv5SGlFKUaBVLMmgWR0ChGUebmU4adX2UKGgGaAloD0MIUgq6vaRx8r+UhpRSlGgVSzJoFkdAoRjKo60Y0nV9lChoBmgJaA9DCEpfCDnv//C/lIaUUpRoFUsyaBZHQKEYS4I8hcJ1fZQoaAZoCWgPQwj0a+un/2z1v5SGlFKUaBVLMmgWR0ChF8otL+PzdX2UKGgGaAloD0MIBK4rZoR38r+UhpRSlGgVSzJoFkdAoRqnOfNA1XV9lChoBmgJaA9DCAPQKF36F+S/lIaUUpRoFUsyaBZHQKEaKifQKKJ1fZQoaAZoCWgPQwhAh/nyAmzrv5SGlFKUaBVLMmgWR0ChGarcKw6idX2UKGgGaAloD0MIpZ9wdmv5AMCUhpRSlGgVSzJoFkdAoRkpcAzYVnV9lChoBmgJaA9DCL3jFB3JZe2/lIaUUpRoFUsyaBZHQKEcI6jFhod1fZQoaAZoCWgPQwhCBvLs8u37v5SGlFKUaBVLMmgWR0ChG6Zs9B8hdX2UKGgGaAloD0MITraBO1Dn/L+UhpRSlGgVSzJoFkdAoRsnhhpg1HV9lChoBmgJaA9DCGKBr+jWa/a/lIaUUpRoFUsyaBZHQKEapoHs1Kp1fZQoaAZoCWgPQwggKLfte9Tlv5SGlFKUaBVLMmgWR0ChHbFZPl+3dX2UKGgGaAloD0MI5pZWQ+Ie6b+UhpRSlGgVSzJoFkdAoR00lolD4XV9lChoBmgJaA9DCHiXi/hOTO6/lIaUUpRoFUsyaBZHQKEctZezD4x1fZQoaAZoCWgPQwj1oKAUrRzxv5SGlFKUaBVLMmgWR0ChHDR7AtWddX2UKGgGaAloD0MIuWx0zk/x47+UhpRSlGgVSzJoFkdAoR9DJGOMl3V9lChoBmgJaA9DCErOiT20T/K/lIaUUpRoFUsyaBZHQKEexklNUOx1fZQoaAZoCWgPQwjOb5hokILqv5SGlFKUaBVLMmgWR0ChHkdECvHMdX2UKGgGaAloD0MI/kemQ6fn7L+UhpRSlGgVSzJoFkdAoR3GGCZnc3V9lChoBmgJaA9DCLqBAu/kU/i/lIaUUpRoFUsyaBZHQKEgRPpIMBp1fZQoaAZoCWgPQwgjaTf6mE/1v5SGlFKUaBVLMmgWR0ChH8dSEUTMdX2UKGgGaAloD0MIHEEqxY5G57+UhpRSlGgVSzJoFkdAoR9Hb/Ot4nV9lChoBmgJaA9DCA99dytL9OO/lIaUUpRoFUsyaBZHQKEexXnyNGV1fZQoaAZoCWgPQwhF8Sprm+Luv5SGlFKUaBVLMmgWR0ChISboSteVdX2UKGgGaAloD0MIVtRgGoZP8b+UhpRSlGgVSzJoFkdAoSCpPoFFD3V9lChoBmgJaA9DCBx9zAcEOvS/lIaUUpRoFUsyaBZHQKEgKWoFV1h1fZQoaAZoCWgPQwjNrRBWYwn6v5SGlFKUaBVLMmgWR0ChH6dbHIZJdX2UKGgGaAloD0MImRJJ9DKK9L+UhpRSlGgVSzJoFkdAoSIRtLteD3V9lChoBmgJaA9DCJ9Yp8r3DP+/lIaUUpRoFUsyaBZHQKEhlA2Q4jt1fZQoaAZoCWgPQwgXgEbp0n/zv5SGlFKUaBVLMmgWR0ChIRQ2ETQFdX2UKGgGaAloD0MId4L917lp7b+UhpRSlGgVSzJoFkdAoSCSgdwNsnV9lChoBmgJaA9DCFuYhXZOM/y/lIaUUpRoFUsyaBZHQKEi7MvAXVN1fZQoaAZoCWgPQwiMhLacS3Hrv5SGlFKUaBVLMmgWR0ChIm8pkPMCdX2UKGgGaAloD0MIOL72zJIA/7+UhpRSlGgVSzJoFkdAoSHvNcGC7XV9lChoBmgJaA9DCHAofLYODum/lIaUUpRoFUsyaBZHQKEhbSro4dZ1fZQoaAZoCWgPQwhqpnud1Jfrv5SGlFKUaBVLMmgWR0ChI82j4593dX2UKGgGaAloD0MIJ1DEIoYd4L+UhpRSlGgVSzJoFkdAoSNP29L6DXV9lChoBmgJaA9DCD4FwHgGDeu/lIaUUpRoFUsyaBZHQKEiz/smfGx1fZQoaAZoCWgPQwjcLjTXaSTwv5SGlFKUaBVLMmgWR0ChIk4AsCkodX2UKGgGaAloD0MIEJNwIY/g6r+UhpRSlGgVSzJoFkdAoSSwwVTJhnV9lChoBmgJaA9DCJYmpaDbi/G/lIaUUpRoFUsyaBZHQKEkMxjawll1fZQoaAZoCWgPQwjP2JdsPNjxv5SGlFKUaBVLMmgWR0ChI7MunMt9dX2UKGgGaAloD0MI/I123PB78r+UhpRSlGgVSzJoFkdAoSMxGpda+3V9lChoBmgJaA9DCGKelbTiG+m/lIaUUpRoFUsyaBZHQKEllDzAeq91fZQoaAZoCWgPQwgsLSP1nsrrv5SGlFKUaBVLMmgWR0ChJRam4y44dX2UKGgGaAloD0MIAoOkT6to57+UhpRSlGgVSzJoFkdAoSSWxlg+hXV9lChoBmgJaA9DCKEPlrGhm++/lIaUUpRoFUsyaBZHQKEkFMFlkH51fZQoaAZoCWgPQwiCqzyBsFPpv5SGlFKUaBVLMmgWR0ChJnKZtvXLdX2UKGgGaAloD0MIo8haQ6k9+r+UhpRSlGgVSzJoFkdAoSX1CAtnPHV9lChoBmgJaA9DCB0FiIIZE/O/lIaUUpRoFUsyaBZHQKEldVPN3W51fZQoaAZoCWgPQwjMmII1zibpv5SGlFKUaBVLMmgWR0ChJPNt65XmdX2UKGgGaAloD0MIa9JtiVzw7L+UhpRSlGgVSzJoFkdAoSdQz7/GVHV9lChoBmgJaA9DCGABTBk4oOe/lIaUUpRoFUsyaBZHQKEm06FuejF1fZQoaAZoCWgPQwhuopbmVgjtv5SGlFKUaBVLMmgWR0ChJlQrc0tRdX2UKGgGaAloD0MII0vmWN5V67+UhpRSlGgVSzJoFkdAoSXSTpxFRnV9lChoBmgJaA9DCKFMo8nFmOO/lIaUUpRoFUsyaBZHQKEoLT72tdR1fZQoaAZoCWgPQwg1YfvJGN/3v5SGlFKUaBVLMmgWR0ChJ6+JP69CdX2UKGgGaAloD0MIzo5U3/lF7r+UhpRSlGgVSzJoFkdAoScvwPRRdnV9lChoBmgJaA9DCHV4COOnsfC/lIaUUpRoFUsyaBZHQKEmrdYW+Gp1fZQoaAZoCWgPQwj85ChAFMzbv5SGlFKUaBVLMmgWR0ChKQxAbADadX2UKGgGaAloD0MIKT3TS4xl47+UhpRSlGgVSzJoFkdAoSiOznied3V9lChoBmgJaA9DCJePpKSHIe2/lIaUUpRoFUsyaBZHQKEoDvjwQUZ1fZQoaAZoCWgPQwhyo8haQynzv5SGlFKUaBVLMmgWR0ChJ4z0QK8ddX2UKGgGaAloD0MI88ZJYd6j9r+UhpRSlGgVSzJoFkdAoSniMBIWg3V9lChoBmgJaA9DCIApAwe09Oa/lIaUUpRoFUsyaBZHQKEpZKYiPhh1fZQoaAZoCWgPQwjql4i3zj/mv5SGlFKUaBVLMmgWR0ChKOTA31jBdX2UKGgGaAloD0MIeCl1yThG+7+UhpRSlGgVSzJoFkdAoShintOVPnV9lChoBmgJaA9DCIi9UMB28Pi/lIaUUpRoFUsyaBZHQKEqxhAGB4F1fZQoaAZoCWgPQwiYUMHhBZHmv5SGlFKUaBVLMmgWR0ChKkhw++uedX2UKGgGaAloD0MI85L/yd/98L+UhpRSlGgVSzJoFkdAoSnImVqveXV9lChoBmgJaA9DCA5N2ekH9eK/lIaUUpRoFUsyaBZHQKEpRp22Xsx1fZQoaAZoCWgPQwgMsI9OXXnmv5SGlFKUaBVLMmgWR0ChK6hqbjLkdX2UKGgGaAloD0MI+cCO/wJB7r+UhpRSlGgVSzJoFkdAoSsqwKSgXnV9lChoBmgJaA9DCLYuNUI/U+e/lIaUUpRoFUsyaBZHQKEqqtozvZ11fZQoaAZoCWgPQwiYaJCCpxDrv5SGlFKUaBVLMmgWR0ChKijTz/ZNdX2UKGgGaAloD0MIL058taM44b+UhpRSlGgVSzJoFkdAoSyJL7Gec3V9lChoBmgJaA9DCDgQkgVM4PK/lIaUUpRoFUsyaBZHQKEsC4wyqMp1fZQoaAZoCWgPQwi5cCAkC5jzv5SGlFKUaBVLMmgWR0ChK4vzWf9QdX2UKGgGaAloD0MI2zAKgsf38b+UhpRSlGgVSzJoFkdAoSsKESM983V9lChoBmgJaA9DCOik942vPe+/lIaUUpRoFUsyaBZHQKEtcW4Vh1F1fZQoaAZoCWgPQwjG+3H75ZPsv5SGlFKUaBVLMmgWR0ChLPP8ZUDMdX2UKGgGaAloD0MIijpzDwnf17+UhpRSlGgVSzJoFkdAoSx0chkiEHV9lChoBmgJaA9DCKtZZ3xf3OK/lIaUUpRoFUsyaBZHQKEr8tKZlWh1fZQoaAZoCWgPQwgc7E0MyYnwv5SGlFKUaBVLMmgWR0ChLlfWlMyrdX2UKGgGaAloD0MIMbQ6OUNx3r+UhpRSlGgVSzJoFkdAoS3aSkj5bnV9lChoBmgJaA9DCCmSrwRSYuq/lIaUUpRoFUsyaBZHQKEtWniNsFd1fZQoaAZoCWgPQwgbYye8BKfxv5SGlFKUaBVLMmgWR0ChLNinYQJ5dX2UKGgGaAloD0MIYmU08nkF9b+UhpRSlGgVSzJoFkdAoS9BavA443V9lChoBmgJaA9DCCBFnbmHhOO/lIaUUpRoFUsyaBZHQKEuw8Yht+F1fZQoaAZoCWgPQwg4ZtmTwObiv5SGlFKUaBVLMmgWR0ChLkPnr6cidX2UKGgGaAloD0MI68iRzsDI5r+UhpRSlGgVSzJoFkdAoS3B+fAbhnV9lChoBmgJaA9DCMoZijve5Om/lIaUUpRoFUsyaBZHQKEwHSXMQmN1fZQoaAZoCWgPQwj5vU1/9qPsv5SGlFKUaBVLMmgWR0ChL5+CCjDbdX2UKGgGaAloD0MIsaNxqN8F4b+UhpRSlGgVSzJoFkdAoS8fl8w6AHV9lChoBmgJaA9DCLRXHw99d92/lIaUUpRoFUsyaBZHQKEunZg5R0l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (348 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.5858669575303793, "std_reward": 0.20321744634977174, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T15:13:44.983714"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b114df23d2baefa50a8482ec24ef11de96beed95e0e159e9f01341ef439aa096
3
+ size 3056