File size: 1,593 Bytes
1264bba
 
 
 
65c065f
4ce2301
 
 
 
1264bba
4ce2301
 
 
 
 
 
 
1264bba
 
 
 
 
 
 
 
 
 
 
4ce2301
 
 
 
1264bba
 
4ce2301
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

class EndpointHandler:
    def __init__(self, path="krisoei/timgpt"):
        if not path:
            raise ValueError("A valid model path or name must be provided.")
        
        # Load tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = AutoModelForCausalLM.from_pretrained(
            path, 
            torch_dtype=torch.float16, 
            device_map="auto"
        )
        
        # Set up text-generation pipeline
        self.pipe = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
            max_new_tokens=512,
            do_sample=True,
            temperature=0.7,
            top_p=0.95,
        )

    def __call__(self, data):
        # Validate input data
        if not isinstance(data, dict):
            return {"error": "Input must be a JSON object."}
        
        prompt = data.get("inputs", "")
        if not prompt:
            return {"error": "No input provided."}
        
        try:
            # Generate response
            outputs = self.pipe(prompt)
            if outputs:
                response = outputs[0]['generated_text']
                # Remove the original prompt from the response
                response = response[len(prompt):].strip()
                return {"generated_text": response}
            else:
                return {"error": "No output generated."}
        except Exception as e:
            return {"error": str(e)}