update model card README.md
Browse files
README.md
CHANGED
@@ -1,36 +1,75 @@
|
|
1 |
-
|
2 |
---
|
3 |
-
license: apache-2.0
|
4 |
-
library_name: span-marker
|
5 |
tags:
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
pip install span_marker
|
23 |
-
```
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
```python
|
28 |
-
from span_marker import SpanMarkerModel
|
29 |
|
30 |
-
|
31 |
-
model = SpanMarkerModel.from_pretrained("span_marker_model_name")
|
32 |
-
# Run inference
|
33 |
-
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
-
```
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- few-nerd
|
6 |
+
model-index:
|
7 |
+
- name: span-marker-robert-base
|
8 |
+
results: []
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# span-marker-robert-base
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the few-nerd dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0214
|
19 |
+
- Overall Precision: 0.7642
|
20 |
+
- Overall Recall: 0.7947
|
21 |
+
- Overall F1: 0.7791
|
22 |
+
- Overall Accuracy: 0.9397
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
|
36 |
+
## Training procedure
|
37 |
|
38 |
+
### Training hyperparameters
|
39 |
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 4
|
43 |
+
- eval_batch_size: 4
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 8
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 1
|
51 |
|
52 |
+
### Training results
|
|
|
|
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 0.0214 | 0.08 | 100 | 0.0219 | 0.7641 | 0.7679 | 0.7660 | 0.9330 |
|
57 |
+
| 0.0199 | 0.16 | 200 | 0.0243 | 0.7442 | 0.7679 | 0.7559 | 0.9348 |
|
58 |
+
| 0.0179 | 0.24 | 300 | 0.0212 | 0.7730 | 0.7580 | 0.7654 | 0.9361 |
|
59 |
+
| 0.0188 | 0.33 | 400 | 0.0225 | 0.7616 | 0.7710 | 0.7662 | 0.9343 |
|
60 |
+
| 0.0149 | 0.41 | 500 | 0.0240 | 0.7537 | 0.7783 | 0.7658 | 0.9375 |
|
61 |
+
| 0.015 | 0.49 | 600 | 0.0230 | 0.7540 | 0.7829 | 0.7682 | 0.9362 |
|
62 |
+
| 0.0137 | 0.57 | 700 | 0.0232 | 0.7746 | 0.7538 | 0.7640 | 0.9319 |
|
63 |
+
| 0.0123 | 0.65 | 800 | 0.0218 | 0.7651 | 0.7879 | 0.7763 | 0.9393 |
|
64 |
+
| 0.0103 | 0.73 | 900 | 0.0223 | 0.7688 | 0.7964 | 0.7824 | 0.9397 |
|
65 |
+
| 0.0108 | 0.82 | 1000 | 0.0209 | 0.7763 | 0.7816 | 0.7789 | 0.9397 |
|
66 |
+
| 0.0116 | 0.9 | 1100 | 0.0213 | 0.7743 | 0.7879 | 0.7811 | 0.9398 |
|
67 |
+
| 0.0119 | 0.98 | 1200 | 0.0214 | 0.7653 | 0.7947 | 0.7797 | 0.9400 |
|
68 |
|
|
|
|
|
69 |
|
70 |
+
### Framework versions
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
- Transformers 4.30.2
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.13.1
|
75 |
+
- Tokenizers 0.13.3
|