File size: 1,891 Bytes
d97c348
 
 
f8cb237
d97c348
 
 
 
 
1d50f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97c348
 
 
d058e04
 
fff5838
d058e04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3b86c
a7e8ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language: ko
datasets:
- kresnik/zeroth_korean
tags:
- speech
- audio
- automatic-speech-recognition
license: apache-2.0

model-index:
- name: 'Wav2Vec2 XLSR Korean'
  results: 
    - task:
        name: Automatic Speech Recognition
        type: automatic-speech-recognition
      dataset:
        name: Zeroth Korean
        type: kresnik/zeroth_korean
        args: clean
      metrics:
        - name: Test WER
          type: wer
          value: 4.74
        - name: Test CER
          type: cer
          value: 1.78

---


## Evaluation on Zeroth-Korean ASR corpus

[Google colab notebook(Korean)](https://colab.research.google.com/github/indra622/tutorials/blob/master/wav2vec2_korean_tutorial.ipynb)

```
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import soundfile as sf
import torch
from jiwer import wer

processor = Wav2Vec2Processor.from_pretrained("kresnik/wav2vec2-large-xlsr-korean")

model = Wav2Vec2ForCTC.from_pretrained("kresnik/wav2vec2-large-xlsr-korean").to('cuda')

ds = load_dataset("kresnik/zeroth_korean", "clean")

test_ds = ds['test']

def map_to_array(batch):
    speech, _ = sf.read(batch["file"])
    batch["speech"] = speech
    return batch

test_ds = test_ds.map(map_to_array)

def map_to_pred(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
    input_values = inputs.input_values.to("cuda")
    
    with torch.no_grad():
        logits = model(input_values).logits

    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)
    batch["transcription"] = transcription
    return batch

result = test_ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"])

print("WER:", wer(result["text"], result["transcription"]))

```

### Expected WER: 4.74%
### Expected CER: 1.78%