File size: 1,891 Bytes
d97c348 f8cb237 d97c348 1d50f59 d97c348 d058e04 fff5838 d058e04 ce3b86c a7e8ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language: ko
datasets:
- kresnik/zeroth_korean
tags:
- speech
- audio
- automatic-speech-recognition
license: apache-2.0
model-index:
- name: 'Wav2Vec2 XLSR Korean'
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zeroth Korean
type: kresnik/zeroth_korean
args: clean
metrics:
- name: Test WER
type: wer
value: 4.74
- name: Test CER
type: cer
value: 1.78
---
## Evaluation on Zeroth-Korean ASR corpus
[Google colab notebook(Korean)](https://colab.research.google.com/github/indra622/tutorials/blob/master/wav2vec2_korean_tutorial.ipynb)
```
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import soundfile as sf
import torch
from jiwer import wer
processor = Wav2Vec2Processor.from_pretrained("kresnik/wav2vec2-large-xlsr-korean")
model = Wav2Vec2ForCTC.from_pretrained("kresnik/wav2vec2-large-xlsr-korean").to('cuda')
ds = load_dataset("kresnik/zeroth_korean", "clean")
test_ds = ds['test']
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
test_ds = test_ds.map(map_to_array)
def map_to_pred(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = test_ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
```
### Expected WER: 4.74%
### Expected CER: 1.78% |