File size: 1,535 Bytes
68e5b36
 
 
 
1e77fd2
 
 
 
5e21761
68e5b36
 
1e77fd2
 
 
5e21761
1e77fd2
 
 
 
5e21761
1e77fd2
5e21761
68e5b36
 
 
 
 
 
 
1e77fd2
 
 
 
68e5b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
tags:
- generated_from_trainer
datasets:
- kpriyanshu256/the_verge-linustechtips-two_min
metrics:
- accuracy
base_model: gpt2
model-index:
- name: gpt-ya2-v2
  results:
  - task:
      type: text-generation
      name: Causal Language Modeling
    dataset:
      name: kpriyanshu256/the_verge-linustechtips-two_min
      type: kpriyanshu256/the_verge-linustechtips-two_min
    metrics:
    - type: accuracy
      value: 0.3690952822914751
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt-ya2-v2

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the kpriyanshu256/the_verge-linustechtips-two_min dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1519
- Accuracy: 0.3691

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1