Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
Inference Endpoints
asahi417 commited on
Commit
32e4188
·
verified ·
1 Parent(s): 955a22d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -45
README.md CHANGED
@@ -24,30 +24,39 @@ model-index:
24
  - task:
25
  type: automatic-speech-recognition
26
  dataset:
27
- name: japanese-asr/ja_asr.common_voice_8_0
28
  type: japanese-asr/ja_asr.common_voice_8_0
29
  metrics:
30
  - name: WER
31
  type: WER
32
- value:
 
 
 
33
  - task:
34
  type: automatic-speech-recognition
35
  dataset:
36
- name: japanese-asr/ja_asr.reazonspeech_test
37
  type: japanese-asr/ja_asr.reazonspeech_test
38
  metrics:
39
  - name: WER
40
  type: WER
41
- value:
 
 
 
42
  - task:
43
  type: automatic-speech-recognition
44
  dataset:
45
- name: japanese-asr/ja_asr.reazonspeech_test
46
- type: japanese-asr/ja_asr.reazonspeech_test
47
  metrics:
48
  - name: WER
49
  type: WER
50
- value:
 
 
 
51
  ---
52
 
53
  # Kotoba-Whisper
@@ -56,54 +65,19 @@ we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-larg
56
  teacher whisper model, and a decoder with two layers initialized from the first and last layer of the whisper model.
57
  As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech),
58
  which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average).
59
-
60
- ### Benchmark
61
- ***kotoba-whisper-v1.0*** achieves better WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set from ReazonSpeech, and
62
- achieves competitive WER on the out-of-domain test set including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
63
- the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice).
64
-
65
- - CER
66
-
67
- | Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
68
- |:--------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
69
- | [***kotoba-tech/kotoba-whisper-v1.0***](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 9.44 | 8.48 | 12.6 |
70
- | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 8.52 | 7.18 | 15.18 |
71
- | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 |
72
- | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 |
73
- | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 |
74
-
75
- ### Latency
76
-
77
- Compared to previous Distil-Whisper models, the distillation procedure for distil-large-v3 has been adapted to give
78
- **superior long-form transcription accuracy** with OpenAI's **sequential long-form algorithm**.
79
-
80
- The result is a distilled model that performs to within 1% WER of large-v3 on long-form audio using both the sequential
81
- and chunked algorithms, and outperforms distil-large-v2 by 4.8% using the sequential algorithm. The model is also faster
82
- than previous Distil-Whisper models: **6.3x faster than large-v3**, and 1.1x faster than distil-large-v2.
83
-
84
- | Model | Params / M | Rel. Latency |
85
- |------------------------------------------------------------------------------|------------|--------------|
86
- | [large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
87
- | **[distil-large-v3](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
88
 
89
 
90
 
91
  ## Table of Contents
92
-
93
- The models are shared via huggingfacae, and the distillation code was adapted from [official distil-whisper training scripts](https://github.com/huggingface/distil-whisper/tree/main/training),
94
- which we release in this repository. As the training dataset, we employ [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech),
95
- one of the largest speech and text paired dataset in Japanese, and we evaluate our ASR models on [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
96
- the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice), as well as a held-out test set from ReazonSpeech.
97
-
98
-
99
  Since the sequential algorithm is the "de-facto" transcription algorithm across the most popular Whisper libraries
100
  (Whisper cpp, Faster-Whisper, OpenAI Whisper), this distilled model is designed to be compatible with these libraries.
101
  You can expect significant performance gains by switching from previous Distil-Whisper checkpoints to distil-large-v3
102
  when using these libraries. For convenience, the weights for the most popular libraries are already converted,
103
  with instructions for getting started below.
104
 
105
-
106
- 1. [Transformers Usage](#transformers-usage)
107
  * [Short-Form Transcription](#short-form-transcription)
108
  * [Sequential Long-Form](#sequential-long-form)
109
  * [Chunked Long-Form](#chunked-long-form)
@@ -115,6 +89,42 @@ with instructions for getting started below.
115
  3. [Model Details](#model-details)
116
 
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  ## Transformers Usage
119
 
120
  distil-large-v3 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
 
24
  - task:
25
  type: automatic-speech-recognition
26
  dataset:
27
+ name: CommonVoice_8.0 (Japanese)
28
  type: japanese-asr/ja_asr.common_voice_8_0
29
  metrics:
30
  - name: WER
31
  type: WER
32
+ value: 59.27
33
+ - name: CER
34
+ type: CER
35
+ value: 9.44
36
  - task:
37
  type: automatic-speech-recognition
38
  dataset:
39
+ name: ReazonSpeech (Test)
40
  type: japanese-asr/ja_asr.reazonspeech_test
41
  metrics:
42
  - name: WER
43
  type: WER
44
+ value: 56.62
45
+ - name: CER
46
+ type: CER
47
+ value: 12.60
48
  - task:
49
  type: automatic-speech-recognition
50
  dataset:
51
+ name: JSUT Basic5000
52
+ type: japanese-asr/ja_asr.jsut_basic5000
53
  metrics:
54
  - name: WER
55
  type: WER
56
+ value: 64.36
57
+ - name: CER
58
+ type: CER
59
+ value: 8.48
60
  ---
61
 
62
  # Kotoba-Whisper
 
65
  teacher whisper model, and a decoder with two layers initialized from the first and last layer of the whisper model.
66
  As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech),
67
  which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average).
68
+ Kotoba-whisper-v1.0 is competitive or even outpeform the largest whisper model in Japanese ASR benchmarks, while being 6.3 times faster than the whisper model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
 
71
 
72
  ## Table of Contents
 
 
 
 
 
 
 
73
  Since the sequential algorithm is the "de-facto" transcription algorithm across the most popular Whisper libraries
74
  (Whisper cpp, Faster-Whisper, OpenAI Whisper), this distilled model is designed to be compatible with these libraries.
75
  You can expect significant performance gains by switching from previous Distil-Whisper checkpoints to distil-large-v3
76
  when using these libraries. For convenience, the weights for the most popular libraries are already converted,
77
  with instructions for getting started below.
78
 
79
+ 1. [Evaluation Results](#evaluation-results)
80
+ 2. [Transformers Usage](#transformers-usage)
81
  * [Short-Form Transcription](#short-form-transcription)
82
  * [Sequential Long-Form](#sequential-long-form)
83
  * [Chunked Long-Form](#chunked-long-form)
 
89
  3. [Model Details](#model-details)
90
 
91
 
92
+ ## Evaluation Results
93
+ ***kotoba-whisper-v1.0*** achieves better CER and WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set from ReazonSpeech, and
94
+ achieves competitive CER and WER on the out-of-domain test set including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
95
+ the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice).
96
+
97
+ ### CER
98
+
99
+ | Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
100
+ |:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
101
+ | [***kotoba-tech/kotoba-whisper-v1.0***](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 9.44 | 8.48 | 12.60 |
102
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 8.52 | 7.18 | 15.18 |
103
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 |
104
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 |
105
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 |
106
+
107
+ ### WER
108
+
109
+ | Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
110
+ |:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
111
+ | [***kotoba-tech/kotoba-whisper-v1.0***](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 59.27 | 64.36 | 56.62 |
112
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 55.41 | 59.34 | 60.23 |
113
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 63.64 | 69.52 | 76.04 |
114
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 74.21 | 82.02 | 82.99 |
115
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 93.78 | 97.72 | 94.85 |
116
+
117
+ ### Latency
118
+ As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3),
119
+ it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
120
+ (**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)).
121
+
122
+ | Model | Params / M | Rel. Latency |
123
+ |------------------------------------------------------------------------------|------------|--------------|
124
+ | **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
125
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
126
+
127
+
128
  ## Transformers Usage
129
 
130
  distil-large-v3 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first