File size: 9,351 Bytes
fe5a394
 
24b8371
 
2e8cfde
 
 
24b8371
 
 
 
 
2e8cfde
 
 
803ee4d
0a90c74
cbf6ece
 
 
 
fe5a394
24b8371
 
 
 
a1f70ec
24b8371
80324ce
24b8371
 
 
 
 
 
 
 
 
 
80324ce
 
 
 
 
 
 
 
 
 
 
24b8371
 
 
 
 
 
 
80324ce
24b8371
 
 
80324ce
 
24b8371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8cfde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: apache-2.0
tags:
- generated_from_trainer
- LLM
- FLAN
- NLP
metrics:
- rouge
model-index:
- name: output
  results: []
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
widget:
- text: "Does the clause specify the date upon which the initial term expires?\nIn relation to each Fund, this Agreement shall terminate on the earlier of (a) the expiration of the term of such Fund or (b) the date, if any, on which Oaktree US (or any affiliate it has substituted in its stead in accordance with such Fund's Fund Agreement) is removed as general partner of such Fund or (c) the Sub-Advisor ceasing to be authorised and regulated by the FCA."
  example_title: "Expiration Date (Yes)"
- text: "Does the clause specify the date upon which the initial term expires?\nDistributor hereby grants Zogenix an irrevocable, perpetual, royalty-free, fully paid-up, exclusive license with the right to grant sublicenses to use such Data solely generated and co-owned by Distributor outside of the Territory and a co-exclusive license in the Territory upon expiration or termination of the Agreement."
  example_title: "Expiration Date (No)"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Legal Flan-T5-Base

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an [LegalBench](https://github.com/HazyResearch/legalbench) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1885
- Rouge1: 65.4762
- Rouge2: 0.0
- Rougel: 65.4762
- Rougelsum: 65.4762
- Gen Len: 2.1905

## Model description

We finetune [Flan-T5-Base]((https://huggingface.co/google/flan-t5-base)) LLM on the [LegalBench](https://github.com/HazyResearch/legalbench).

### Prompt
The prompt should be formatted as follows:
{{Question}} {{Clause}}

Question: Does the clause grant one party an “enterprise,” “all you can eat” or unlimited usage license?

Clause: Except as the parties may otherwise agree in writing, Converge, to the extent it has the legal right to do so, hereby grants to Vert an irrevocable, perpetual, world-wide, non-exclusive right and license to use, load, store, transmit, execute, copy, market, distribute, in any medium or distribution technology whatsoever, known or unknown, display, perform and sublicense the Converge-Independent Materials and the Third-Party Materials, in both Source Code and Object Code formats, and to make unlimited instantiations thereof, for any and all purposes.

Prompt: Does the clause grant one party an “enterprise,” “all you can eat” or unlimited usage license? Except as the parties may otherwise agree in writing, Converge, to the extent it has the legal right to do so, hereby grants to Vert an irrevocable, perpetual, world-wide, non-exclusive right and license to use, load, store, transmit, execute, copy, market, distribute, in any medium or distribution technology whatsoever, known or unknown, display, perform and sublicense the Converge-Independent Materials and the Third-Party Materials, in both Source Code and Object Code formats, and to make unlimited instantiations thereof, for any and all purposes.

## Intended uses & limitations

More information needed

## Training and evaluation data

We used [LegalBench](https://github.com/HazyResearch/legalbench) for training and evaluation.

## Training procedure

Tutorial: Finetune [Flan-T5](https://docs.blueprint.baseten.co/finetuning/flan-t5/) with Baseten.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 1.2679        | 1.0   | 42   | 1.3033          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 4.0119  |
| 1.0917        | 2.0   | 84   | 1.1075          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 2.2738  |
| 0.8305        | 3.0   | 126  | 1.0366          | 45.2381 | 0.0    | 45.2381 | 45.2381   | 2.3095  |
| 0.6058        | 4.0   | 168  | 0.9865          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 2.4524  |
| 0.5114        | 5.0   | 210  | 0.9289          | 55.9524 | 0.0    | 55.9524 | 55.9524   | 2.4048  |
| 0.6026        | 6.0   | 252  | 0.9373          | 53.5714 | 0.0    | 53.5714 | 53.5714   | 2.3214  |
| 0.6428        | 7.0   | 294  | 0.8762          | 53.5714 | 0.0    | 53.5714 | 53.5714   | 2.3095  |
| 0.5375        | 8.0   | 336  | 0.8908          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.3333  |
| 0.4296        | 9.0   | 378  | 0.9172          | 50.0    | 0.0    | 50.0    | 50.0      | 2.3452  |
| 0.4644        | 10.0  | 420  | 0.8882          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.3452  |
| 0.42          | 11.0  | 462  | 0.8917          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.2619  |
| 0.3727        | 12.0  | 504  | 0.8710          | 55.9524 | 0.0    | 55.9524 | 55.9524   | 2.3571  |
| 0.4061        | 13.0  | 546  | 0.8817          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.2857  |
| 0.3221        | 14.0  | 588  | 0.9284          | 57.1429 | 0.0    | 57.1429 | 57.1429   | 2.2857  |
| 0.3676        | 15.0  | 630  | 0.9313          | 57.1429 | 0.0    | 57.1429 | 57.1429   | 2.0476  |
| 0.264         | 16.0  | 672  | 0.9315          | 59.5238 | 0.0    | 59.5238 | 59.5238   | 2.0595  |
| 0.2933        | 17.0  | 714  | 0.9265          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1310  |
| 0.2446        | 18.0  | 756  | 0.9254          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0714  |
| 0.2356        | 19.0  | 798  | 0.9390          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.0714  |
| 0.3102        | 20.0  | 840  | 0.9837          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.1071  |
| 0.1539        | 21.0  | 882  | 0.9727          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0952  |
| 0.1674        | 22.0  | 924  | 1.0114          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0952  |
| 0.1831        | 23.0  | 966  | 0.9869          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0595  |
| 0.201         | 24.0  | 1008 | 0.9904          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0595  |
| 0.1602        | 25.0  | 1050 | 0.9883          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0595  |
| 0.158         | 26.0  | 1092 | 1.0057          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.1071  |
| 0.1468        | 27.0  | 1134 | 0.9998          | 67.8571 | 0.0    | 67.8571 | 67.8571   | 2.1429  |
| 0.109         | 28.0  | 1176 | 1.0052          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3333  |
| 0.1397        | 29.0  | 1218 | 1.0137          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3333  |
| 0.1204        | 30.0  | 1260 | 1.0482          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.1577        | 31.0  | 1302 | 1.0787          | 66.6667 | 0.0    | 66.6667 | 66.6667   | 2.3452  |
| 0.1112        | 32.0  | 1344 | 1.0513          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0932        | 33.0  | 1386 | 1.0786          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0989        | 34.0  | 1428 | 1.1378          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0858        | 35.0  | 1470 | 1.1055          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1056        | 36.0  | 1512 | 1.1297          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3571  |
| 0.14          | 37.0  | 1554 | 1.1604          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.0592        | 38.0  | 1596 | 1.1213          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1121        | 39.0  | 1638 | 1.1489          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1917        | 40.0  | 1680 | 1.1544          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.1178        | 41.0  | 1722 | 1.1561          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.0761        | 42.0  | 1764 | 1.2013          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.1905  |
| 0.0911        | 43.0  | 1806 | 1.2075          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1548  |
| 0.1081        | 44.0  | 1848 | 1.2134          | 66.6667 | 0.0    | 66.6667 | 66.6667   | 2.1548  |
| 0.089         | 45.0  | 1890 | 1.1861          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0828        | 46.0  | 1932 | 1.1988          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |
| 0.0818        | 47.0  | 1974 | 1.1886          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0899        | 48.0  | 2016 | 1.1988          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0923        | 49.0  | 2058 | 1.1968          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |
| 0.0859        | 50.0  | 2100 | 1.1885          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2