Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/__config__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/_distributor_init.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/_globals.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/_pytesttester.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/conftest.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/ctypeslib.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/dtypes.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/exceptions.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/matlib.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/__pycache__/version.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__init__.py +4 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__init__.pyi +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_internal.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_multiarray_umath.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/multiarray.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/__pycache__/umath.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/_core/_dtype.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/_core/_dtype_ctypes.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/_core/_internal.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/_core/_multiarray_umath.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/_core/multiarray.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/_core/umath.py +6 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc +3 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc +3 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc +3 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/intel.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/mips.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/none.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/pathf95.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/sun.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/API_CHANGES.txt +135 -0
- .venv/lib/python3.11/site-packages/numpy/ma/LICENSE +24 -0
- .venv/lib/python3.11/site-packages/numpy/ma/README.rst +236 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__init__.py +54 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__init__.pyi +234 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/extras.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/mrecords.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/setup.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/testutils.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/core.py +0 -0
- .venv/lib/python3.11/site-packages/numpy/ma/core.pyi +471 -0
- .venv/lib/python3.11/site-packages/numpy/ma/extras.py +2133 -0
.gitattributes
CHANGED
@@ -382,3 +382,6 @@ tuning-competition-baseline/.venv/lib/python3.11/site-packages/nvidia/cudnn/lib/
|
|
382 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_ufunc.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
383 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_nditer.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
384 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_numeric.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
382 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_ufunc.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
383 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_nditer.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
384 |
.venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_numeric.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
385 |
+
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
386 |
+
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
387 |
+
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/__config__.cpython-311.pyc
ADDED
Binary file (5.79 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (16.9 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/_distributor_init.cpython-311.pyc
ADDED
Binary file (690 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/_globals.cpython-311.pyc
ADDED
Binary file (4.16 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/_pytesttester.cpython-311.pyc
ADDED
Binary file (7.55 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/conftest.cpython-311.pyc
ADDED
Binary file (6.19 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/ctypeslib.cpython-311.pyc
ADDED
Binary file (21.5 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/dtypes.cpython-311.pyc
ADDED
Binary file (2.62 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/exceptions.cpython-311.pyc
ADDED
Binary file (8.61 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/matlib.cpython-311.pyc
ADDED
Binary file (12.1 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/__pycache__/version.cpython-311.pyc
ADDED
Binary file (460 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This private module only contains stubs for interoperability with
|
3 |
+
NumPy 2.0 pickled arrays. It may not be used by the end user.
|
4 |
+
"""
|
.venv/lib/python3.11/site-packages/numpy/_core/__init__.pyi
ADDED
File without changes
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (335 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype.cpython-311.pyc
ADDED
Binary file (429 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-311.pyc
ADDED
Binary file (444 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_internal.cpython-311.pyc
ADDED
Binary file (436 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_multiarray_umath.cpython-311.pyc
ADDED
Binary file (454 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/multiarray.cpython-311.pyc
ADDED
Binary file (438 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/umath.cpython-311.pyc
ADDED
Binary file (425 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/_core/_dtype.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import _dtype
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in _dtype.__dir__():
|
6 |
+
_globals[item] = getattr(_dtype, item)
|
.venv/lib/python3.11/site-packages/numpy/_core/_dtype_ctypes.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import _dtype_ctypes
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in _dtype_ctypes.__dir__():
|
6 |
+
_globals[item] = getattr(_dtype_ctypes, item)
|
.venv/lib/python3.11/site-packages/numpy/_core/_internal.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import _internal
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in _internal.__dir__():
|
6 |
+
_globals[item] = getattr(_internal, item)
|
.venv/lib/python3.11/site-packages/numpy/_core/_multiarray_umath.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import _multiarray_umath
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in _multiarray_umath.__dir__():
|
6 |
+
_globals[item] = getattr(_multiarray_umath, item)
|
.venv/lib/python3.11/site-packages/numpy/_core/multiarray.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import multiarray
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in multiarray.__dir__():
|
6 |
+
_globals[item] = getattr(multiarray, item)
|
.venv/lib/python3.11/site-packages/numpy/_core/umath.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core import umath
|
2 |
+
|
3 |
+
_globals = globals()
|
4 |
+
|
5 |
+
for item in umath.__dir__():
|
6 |
+
_globals[item] = getattr(umath, item)
|
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f028da28ccdb1a5a6e60c4f0a116f52a11e5d7135c99e75298848c3d5bdbdd1
|
3 |
+
size 120311
|
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a8a1c343739460f44df3f6fa2b7ebbf39191903196c937c6c82a5f412da965f
|
3 |
+
size 118777
|
.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42cdd14962a62a36c736f614fa765b62a87a5c4a148b35e9e0b93ea397a2fd92
|
3 |
+
size 158862
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (48 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/intel.cpython-311.pyc
ADDED
Binary file (8.81 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/mips.cpython-311.pyc
ADDED
Binary file (3.15 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/none.cpython-311.pyc
ADDED
Binary file (1.34 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/pathf95.cpython-311.pyc
ADDED
Binary file (1.8 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/sun.cpython-311.pyc
ADDED
Binary file (2.81 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/API_CHANGES.txt
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. -*- rest -*-
|
2 |
+
|
3 |
+
==================================================
|
4 |
+
API changes in the new masked array implementation
|
5 |
+
==================================================
|
6 |
+
|
7 |
+
Masked arrays are subclasses of ndarray
|
8 |
+
---------------------------------------
|
9 |
+
|
10 |
+
Contrary to the original implementation, masked arrays are now regular
|
11 |
+
ndarrays::
|
12 |
+
|
13 |
+
>>> x = masked_array([1,2,3],mask=[0,0,1])
|
14 |
+
>>> print isinstance(x, numpy.ndarray)
|
15 |
+
True
|
16 |
+
|
17 |
+
|
18 |
+
``_data`` returns a view of the masked array
|
19 |
+
--------------------------------------------
|
20 |
+
|
21 |
+
Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the
|
22 |
+
``_data`` part will return a regular ndarray or any of its subclass, depending
|
23 |
+
on the initial data::
|
24 |
+
|
25 |
+
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
26 |
+
>>> print x._data
|
27 |
+
[[1 2]
|
28 |
+
[3 4]]
|
29 |
+
>>> print type(x._data)
|
30 |
+
<class 'numpy.matrixlib.defmatrix.matrix'>
|
31 |
+
|
32 |
+
|
33 |
+
In practice, ``_data`` is implemented as a property, not as an attribute.
|
34 |
+
Therefore, you cannot access it directly, and some simple tests such as the
|
35 |
+
following one will fail::
|
36 |
+
|
37 |
+
>>>x._data is x._data
|
38 |
+
False
|
39 |
+
|
40 |
+
|
41 |
+
``filled(x)`` can return a subclass of ndarray
|
42 |
+
----------------------------------------------
|
43 |
+
The function ``filled(a)`` returns an array of the same type as ``a._data``::
|
44 |
+
|
45 |
+
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
46 |
+
>>> y = filled(x)
|
47 |
+
>>> print type(y)
|
48 |
+
<class 'numpy.matrixlib.defmatrix.matrix'>
|
49 |
+
>>> print y
|
50 |
+
matrix([[ 1, 2],
|
51 |
+
[ 3, 999999]])
|
52 |
+
|
53 |
+
|
54 |
+
``put``, ``putmask`` behave like their ndarray counterparts
|
55 |
+
-----------------------------------------------------------
|
56 |
+
|
57 |
+
Previously, ``putmask`` was used like this::
|
58 |
+
|
59 |
+
mask = [False,True,True]
|
60 |
+
x = array([1,4,7],mask=mask)
|
61 |
+
putmask(x,mask,[3])
|
62 |
+
|
63 |
+
which translated to::
|
64 |
+
|
65 |
+
x[~mask] = [3]
|
66 |
+
|
67 |
+
(Note that a ``True``-value in a mask suppresses a value.)
|
68 |
+
|
69 |
+
In other words, the mask had the same length as ``x``, whereas
|
70 |
+
``values`` had ``sum(~mask)`` elements.
|
71 |
+
|
72 |
+
Now, the behaviour is similar to that of ``ndarray.putmask``, where
|
73 |
+
the mask and the values are both the same length as ``x``, i.e.
|
74 |
+
|
75 |
+
::
|
76 |
+
|
77 |
+
putmask(x,mask,[3,0,0])
|
78 |
+
|
79 |
+
|
80 |
+
``fill_value`` is a property
|
81 |
+
----------------------------
|
82 |
+
|
83 |
+
``fill_value`` is no longer a method, but a property::
|
84 |
+
|
85 |
+
>>> print x.fill_value
|
86 |
+
999999
|
87 |
+
|
88 |
+
``cumsum`` and ``cumprod`` ignore missing values
|
89 |
+
------------------------------------------------
|
90 |
+
|
91 |
+
Missing values are assumed to be the identity element, i.e. 0 for
|
92 |
+
``cumsum`` and 1 for ``cumprod``::
|
93 |
+
|
94 |
+
>>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False])
|
95 |
+
>>> print x
|
96 |
+
[1 -- 3 4]
|
97 |
+
>>> print x.cumsum()
|
98 |
+
[1 -- 4 8]
|
99 |
+
>> print x.cumprod()
|
100 |
+
[1 -- 3 12]
|
101 |
+
|
102 |
+
``bool(x)`` raises a ValueError
|
103 |
+
-------------------------------
|
104 |
+
|
105 |
+
Masked arrays now behave like regular ``ndarrays``, in that they cannot be
|
106 |
+
converted to booleans:
|
107 |
+
|
108 |
+
::
|
109 |
+
|
110 |
+
>>> x = N.ma.array([1,2,3])
|
111 |
+
>>> bool(x)
|
112 |
+
Traceback (most recent call last):
|
113 |
+
File "<stdin>", line 1, in <module>
|
114 |
+
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
|
115 |
+
|
116 |
+
|
117 |
+
==================================
|
118 |
+
New features (non exhaustive list)
|
119 |
+
==================================
|
120 |
+
|
121 |
+
``mr_``
|
122 |
+
-------
|
123 |
+
|
124 |
+
``mr_`` mimics the behavior of ``r_`` for masked arrays::
|
125 |
+
|
126 |
+
>>> np.ma.mr_[3,4,5]
|
127 |
+
masked_array(data = [3 4 5],
|
128 |
+
mask = False,
|
129 |
+
fill_value=999999)
|
130 |
+
|
131 |
+
|
132 |
+
``anom``
|
133 |
+
--------
|
134 |
+
|
135 |
+
The ``anom`` method returns the deviations from the average (anomalies).
|
.venv/lib/python3.11/site-packages/numpy/ma/LICENSE
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* Copyright (c) 2006, University of Georgia and Pierre G.F. Gerard-Marchant
|
2 |
+
* All rights reserved.
|
3 |
+
* Redistribution and use in source and binary forms, with or without
|
4 |
+
* modification, are permitted provided that the following conditions are met:
|
5 |
+
*
|
6 |
+
* * Redistributions of source code must retain the above copyright
|
7 |
+
* notice, this list of conditions and the following disclaimer.
|
8 |
+
* * Redistributions in binary form must reproduce the above copyright
|
9 |
+
* notice, this list of conditions and the following disclaimer in the
|
10 |
+
* documentation and/or other materials provided with the distribution.
|
11 |
+
* * Neither the name of the University of Georgia nor the
|
12 |
+
* names of its contributors may be used to endorse or promote products
|
13 |
+
* derived from this software without specific prior written permission.
|
14 |
+
*
|
15 |
+
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
|
16 |
+
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
17 |
+
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
18 |
+
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
19 |
+
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
20 |
+
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
21 |
+
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
22 |
+
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
23 |
+
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
24 |
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
.venv/lib/python3.11/site-packages/numpy/ma/README.rst
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
==================================
|
2 |
+
A Guide to Masked Arrays in NumPy
|
3 |
+
==================================
|
4 |
+
|
5 |
+
.. Contents::
|
6 |
+
|
7 |
+
See http://www.scipy.org/scipy/numpy/wiki/MaskedArray (dead link)
|
8 |
+
for updates of this document.
|
9 |
+
|
10 |
+
|
11 |
+
History
|
12 |
+
-------
|
13 |
+
|
14 |
+
As a regular user of MaskedArray, I (Pierre G.F. Gerard-Marchant) became
|
15 |
+
increasingly frustrated with the subclassing of masked arrays (even if
|
16 |
+
I can only blame my inexperience). I needed to develop a class of arrays
|
17 |
+
that could store some additional information along with numerical values,
|
18 |
+
while keeping the possibility for missing data (picture storing a series
|
19 |
+
of dates along with measurements, what would later become the `TimeSeries
|
20 |
+
Scikit <http://projects.scipy.org/scipy/scikits/wiki/TimeSeries>`__
|
21 |
+
(dead link).
|
22 |
+
|
23 |
+
I started to implement such a class, but then quickly realized that
|
24 |
+
any additional information disappeared when processing these subarrays
|
25 |
+
(for example, adding a constant value to a subarray would erase its
|
26 |
+
dates). I ended up writing the equivalent of *numpy.core.ma* for my
|
27 |
+
particular class, ufuncs included. Everything went fine until I needed to
|
28 |
+
subclass my new class, when more problems showed up: some attributes of
|
29 |
+
the new subclass were lost during processing. I identified the culprit as
|
30 |
+
MaskedArray, which returns masked ndarrays when I expected masked
|
31 |
+
arrays of my class. I was preparing myself to rewrite *numpy.core.ma*
|
32 |
+
when I forced myself to learn how to subclass ndarrays. As I became more
|
33 |
+
familiar with the *__new__* and *__array_finalize__* methods,
|
34 |
+
I started to wonder why masked arrays were objects, and not ndarrays,
|
35 |
+
and whether it wouldn't be more convenient for subclassing if they did
|
36 |
+
behave like regular ndarrays.
|
37 |
+
|
38 |
+
The new *maskedarray* is what I eventually come up with. The
|
39 |
+
main differences with the initial *numpy.core.ma* package are
|
40 |
+
that MaskedArray is now a subclass of *ndarray* and that the
|
41 |
+
*_data* section can now be any subclass of *ndarray*. Apart from a
|
42 |
+
couple of issues listed below, the behavior of the new MaskedArray
|
43 |
+
class reproduces the old one. Initially the *maskedarray*
|
44 |
+
implementation was marginally slower than *numpy.ma* in some areas,
|
45 |
+
but work is underway to speed it up; the expectation is that it can be
|
46 |
+
made substantially faster than the present *numpy.ma*.
|
47 |
+
|
48 |
+
|
49 |
+
Note that if the subclass has some special methods and
|
50 |
+
attributes, they are not propagated to the masked version:
|
51 |
+
this would require a modification of the *__getattribute__*
|
52 |
+
method (first trying *ndarray.__getattribute__*, then trying
|
53 |
+
*self._data.__getattribute__* if an exception is raised in the first
|
54 |
+
place), which really slows things down.
|
55 |
+
|
56 |
+
Main differences
|
57 |
+
----------------
|
58 |
+
|
59 |
+
* The *_data* part of the masked array can be any subclass of ndarray (but not recarray, cf below).
|
60 |
+
* *fill_value* is now a property, not a function.
|
61 |
+
* in the majority of cases, the mask is forced to *nomask* when no value is actually masked. A notable exception is when a masked array (with no masked values) has just been unpickled.
|
62 |
+
* I got rid of the *share_mask* flag, I never understood its purpose.
|
63 |
+
* *put*, *putmask* and *take* now mimic the ndarray methods, to avoid unpleasant surprises. Moreover, *put* and *putmask* both update the mask when needed. * if *a* is a masked array, *bool(a)* raises a *ValueError*, as it does with ndarrays.
|
64 |
+
* in the same way, the comparison of two masked arrays is a masked array, not a boolean
|
65 |
+
* *filled(a)* returns an array of the same subclass as *a._data*, and no test is performed on whether it is contiguous or not.
|
66 |
+
* the mask is always printed, even if it's *nomask*, which makes things easy (for me at least) to remember that a masked array is used.
|
67 |
+
* *cumsum* works as if the *_data* array was filled with 0. The mask is preserved, but not updated.
|
68 |
+
* *cumprod* works as if the *_data* array was filled with 1. The mask is preserved, but not updated.
|
69 |
+
|
70 |
+
New features
|
71 |
+
------------
|
72 |
+
|
73 |
+
This list is non-exhaustive...
|
74 |
+
|
75 |
+
* the *mr_* function mimics *r_* for masked arrays.
|
76 |
+
* the *anom* method returns the anomalies (deviations from the average)
|
77 |
+
|
78 |
+
Using the new package with numpy.core.ma
|
79 |
+
----------------------------------------
|
80 |
+
|
81 |
+
I tried to make sure that the new package can understand old masked
|
82 |
+
arrays. Unfortunately, there's no upward compatibility.
|
83 |
+
|
84 |
+
For example:
|
85 |
+
|
86 |
+
>>> import numpy.core.ma as old_ma
|
87 |
+
>>> import maskedarray as new_ma
|
88 |
+
>>> x = old_ma.array([1,2,3,4,5], mask=[0,0,1,0,0])
|
89 |
+
>>> x
|
90 |
+
array(data =
|
91 |
+
[ 1 2 999999 4 5],
|
92 |
+
mask =
|
93 |
+
[False False True False False],
|
94 |
+
fill_value=999999)
|
95 |
+
>>> y = new_ma.array([1,2,3,4,5], mask=[0,0,1,0,0])
|
96 |
+
>>> y
|
97 |
+
array(data = [1 2 -- 4 5],
|
98 |
+
mask = [False False True False False],
|
99 |
+
fill_value=999999)
|
100 |
+
>>> x==y
|
101 |
+
array(data =
|
102 |
+
[True True True True True],
|
103 |
+
mask =
|
104 |
+
[False False True False False],
|
105 |
+
fill_value=?)
|
106 |
+
>>> old_ma.getmask(x) == new_ma.getmask(x)
|
107 |
+
array([True, True, True, True, True])
|
108 |
+
>>> old_ma.getmask(y) == new_ma.getmask(y)
|
109 |
+
array([True, True, False, True, True])
|
110 |
+
>>> old_ma.getmask(y)
|
111 |
+
False
|
112 |
+
|
113 |
+
|
114 |
+
Using maskedarray with matplotlib
|
115 |
+
---------------------------------
|
116 |
+
|
117 |
+
Starting with matplotlib 0.91.2, the masked array importing will work with
|
118 |
+
the maskedarray branch) as well as with earlier versions.
|
119 |
+
|
120 |
+
By default matplotlib still uses numpy.ma, but there is an rcParams setting
|
121 |
+
that you can use to select maskedarray instead. In the matplotlibrc file
|
122 |
+
you will find::
|
123 |
+
|
124 |
+
#maskedarray : False # True to use external maskedarray module
|
125 |
+
# instead of numpy.ma; this is a temporary #
|
126 |
+
setting for testing maskedarray.
|
127 |
+
|
128 |
+
|
129 |
+
Uncomment and set to True to select maskedarray everywhere.
|
130 |
+
Alternatively, you can test a script with maskedarray by using a
|
131 |
+
command-line option, e.g.::
|
132 |
+
|
133 |
+
python simple_plot.py --maskedarray
|
134 |
+
|
135 |
+
|
136 |
+
Masked records
|
137 |
+
--------------
|
138 |
+
|
139 |
+
Like *numpy.core.ma*, the *ndarray*-based implementation
|
140 |
+
of MaskedArray is limited when working with records: you can
|
141 |
+
mask any record of the array, but not a field in a record. If you
|
142 |
+
need this feature, you may want to give the *mrecords* package
|
143 |
+
a try (available in the *maskedarray* directory in the scipy
|
144 |
+
sandbox). This module defines a new class, *MaskedRecord*. An
|
145 |
+
instance of this class accepts a *recarray* as data, and uses two
|
146 |
+
masks: the *fieldmask* has as many entries as records in the array,
|
147 |
+
each entry with the same fields as a record, but of boolean types:
|
148 |
+
they indicate whether the field is masked or not; a record entry
|
149 |
+
is flagged as masked in the *mask* array if all the fields are
|
150 |
+
masked. A few examples in the file should give you an idea of what
|
151 |
+
can be done. Note that *mrecords* is still experimental...
|
152 |
+
|
153 |
+
Optimizing maskedarray
|
154 |
+
----------------------
|
155 |
+
|
156 |
+
Should masked arrays be filled before processing or not?
|
157 |
+
--------------------------------------------------------
|
158 |
+
|
159 |
+
In the current implementation, most operations on masked arrays involve
|
160 |
+
the following steps:
|
161 |
+
|
162 |
+
* the input arrays are filled
|
163 |
+
* the operation is performed on the filled arrays
|
164 |
+
* the mask is set for the results, from the combination of the input masks and the mask corresponding to the domain of the operation.
|
165 |
+
|
166 |
+
For example, consider the division of two masked arrays::
|
167 |
+
|
168 |
+
import numpy
|
169 |
+
import maskedarray as ma
|
170 |
+
x = ma.array([1,2,3,4],mask=[1,0,0,0], dtype=numpy.float_)
|
171 |
+
y = ma.array([-1,0,1,2], mask=[0,0,0,1], dtype=numpy.float_)
|
172 |
+
|
173 |
+
The division of x by y is then computed as::
|
174 |
+
|
175 |
+
d1 = x.filled(0) # d1 = array([0., 2., 3., 4.])
|
176 |
+
d2 = y.filled(1) # array([-1., 0., 1., 1.])
|
177 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
178 |
+
array([True,False,False,True])
|
179 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
180 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-0. inf, 3., 4.])
|
181 |
+
result._mask = logical_or(m, dm)
|
182 |
+
|
183 |
+
Note that a division by zero takes place. To avoid it, we can consider
|
184 |
+
to fill the input arrays, taking the domain mask into account, so that::
|
185 |
+
|
186 |
+
d1 = x._data.copy() # d1 = array([1., 2., 3., 4.])
|
187 |
+
d2 = y._data.copy() # array([-1., 0., 1., 2.])
|
188 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
189 |
+
numpy.putmask(d2, dm, 1) # d2 = array([-1., 1., 1., 2.])
|
190 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
191 |
+
array([True,False,False,True])
|
192 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-1. 0., 3., 2.])
|
193 |
+
result._mask = logical_or(m, dm)
|
194 |
+
|
195 |
+
Note that the *.copy()* is required to avoid updating the inputs with
|
196 |
+
*putmask*. The *.filled()* method also involves a *.copy()*.
|
197 |
+
|
198 |
+
A third possibility consists in avoid filling the arrays::
|
199 |
+
|
200 |
+
d1 = x._data # d1 = array([1., 2., 3., 4.])
|
201 |
+
d2 = y._data # array([-1., 0., 1., 2.])
|
202 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
203 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
204 |
+
array([True,False,False,True])
|
205 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-1. inf, 3., 2.])
|
206 |
+
result._mask = logical_or(m, dm)
|
207 |
+
|
208 |
+
Note that here again the division by zero takes place.
|
209 |
+
|
210 |
+
A quick benchmark gives the following results:
|
211 |
+
|
212 |
+
* *numpy.ma.divide* : 2.69 ms per loop
|
213 |
+
* classical division : 2.21 ms per loop
|
214 |
+
* division w/ prefilling : 2.34 ms per loop
|
215 |
+
* division w/o filling : 1.55 ms per loop
|
216 |
+
|
217 |
+
So, is it worth filling the arrays beforehand ? Yes, if we are interested
|
218 |
+
in avoiding floating-point exceptions that may fill the result with infs
|
219 |
+
and nans. No, if we are only interested into speed...
|
220 |
+
|
221 |
+
|
222 |
+
Thanks
|
223 |
+
------
|
224 |
+
|
225 |
+
I'd like to thank Paul Dubois, Travis Oliphant and Sasha for the
|
226 |
+
original masked array package: without you, I would never have started
|
227 |
+
that (it might be argued that I shouldn't have anyway, but that's
|
228 |
+
another story...). I also wish to extend these thanks to Reggie Dugard
|
229 |
+
and Eric Firing for their suggestions and numerous improvements.
|
230 |
+
|
231 |
+
|
232 |
+
Revision notes
|
233 |
+
--------------
|
234 |
+
|
235 |
+
* 08/25/2007 : Creation of this page
|
236 |
+
* 01/23/2007 : The package has been moved to the SciPy sandbox, and is regularly updated: please check out your SVN version!
|
.venv/lib/python3.11/site-packages/numpy/ma/__init__.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=============
|
3 |
+
Masked Arrays
|
4 |
+
=============
|
5 |
+
|
6 |
+
Arrays sometimes contain invalid or missing data. When doing operations
|
7 |
+
on such arrays, we wish to suppress invalid values, which is the purpose masked
|
8 |
+
arrays fulfill (an example of typical use is given below).
|
9 |
+
|
10 |
+
For example, examine the following array:
|
11 |
+
|
12 |
+
>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
|
13 |
+
|
14 |
+
When we try to calculate the mean of the data, the result is undetermined:
|
15 |
+
|
16 |
+
>>> np.mean(x)
|
17 |
+
nan
|
18 |
+
|
19 |
+
The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
|
20 |
+
any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter
|
21 |
+
masked arrays:
|
22 |
+
|
23 |
+
>>> m = np.ma.masked_array(x, np.isnan(x))
|
24 |
+
>>> m
|
25 |
+
masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
|
26 |
+
mask = [False False False True False False False True],
|
27 |
+
fill_value=1e+20)
|
28 |
+
|
29 |
+
Here, we construct a masked array that suppress all ``NaN`` values. We
|
30 |
+
may now proceed to calculate the mean of the other values:
|
31 |
+
|
32 |
+
>>> np.mean(m)
|
33 |
+
2.6666666666666665
|
34 |
+
|
35 |
+
.. [1] Not-a-Number, a floating point value that is the result of an
|
36 |
+
invalid operation.
|
37 |
+
|
38 |
+
.. moduleauthor:: Pierre Gerard-Marchant
|
39 |
+
.. moduleauthor:: Jarrod Millman
|
40 |
+
|
41 |
+
"""
|
42 |
+
from . import core
|
43 |
+
from .core import *
|
44 |
+
|
45 |
+
from . import extras
|
46 |
+
from .extras import *
|
47 |
+
|
48 |
+
__all__ = ['core', 'extras']
|
49 |
+
__all__ += core.__all__
|
50 |
+
__all__ += extras.__all__
|
51 |
+
|
52 |
+
from numpy._pytesttester import PytestTester
|
53 |
+
test = PytestTester(__name__)
|
54 |
+
del PytestTester
|
.venv/lib/python3.11/site-packages/numpy/ma/__init__.pyi
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from numpy.ma import extras as extras
|
4 |
+
|
5 |
+
from numpy.ma.core import (
|
6 |
+
MAError as MAError,
|
7 |
+
MaskError as MaskError,
|
8 |
+
MaskType as MaskType,
|
9 |
+
MaskedArray as MaskedArray,
|
10 |
+
abs as abs,
|
11 |
+
absolute as absolute,
|
12 |
+
add as add,
|
13 |
+
all as all,
|
14 |
+
allclose as allclose,
|
15 |
+
allequal as allequal,
|
16 |
+
alltrue as alltrue,
|
17 |
+
amax as amax,
|
18 |
+
amin as amin,
|
19 |
+
angle as angle,
|
20 |
+
anom as anom,
|
21 |
+
anomalies as anomalies,
|
22 |
+
any as any,
|
23 |
+
append as append,
|
24 |
+
arange as arange,
|
25 |
+
arccos as arccos,
|
26 |
+
arccosh as arccosh,
|
27 |
+
arcsin as arcsin,
|
28 |
+
arcsinh as arcsinh,
|
29 |
+
arctan as arctan,
|
30 |
+
arctan2 as arctan2,
|
31 |
+
arctanh as arctanh,
|
32 |
+
argmax as argmax,
|
33 |
+
argmin as argmin,
|
34 |
+
argsort as argsort,
|
35 |
+
around as around,
|
36 |
+
array as array,
|
37 |
+
asanyarray as asanyarray,
|
38 |
+
asarray as asarray,
|
39 |
+
bitwise_and as bitwise_and,
|
40 |
+
bitwise_or as bitwise_or,
|
41 |
+
bitwise_xor as bitwise_xor,
|
42 |
+
bool_ as bool_,
|
43 |
+
ceil as ceil,
|
44 |
+
choose as choose,
|
45 |
+
clip as clip,
|
46 |
+
common_fill_value as common_fill_value,
|
47 |
+
compress as compress,
|
48 |
+
compressed as compressed,
|
49 |
+
concatenate as concatenate,
|
50 |
+
conjugate as conjugate,
|
51 |
+
convolve as convolve,
|
52 |
+
copy as copy,
|
53 |
+
correlate as correlate,
|
54 |
+
cos as cos,
|
55 |
+
cosh as cosh,
|
56 |
+
count as count,
|
57 |
+
cumprod as cumprod,
|
58 |
+
cumsum as cumsum,
|
59 |
+
default_fill_value as default_fill_value,
|
60 |
+
diag as diag,
|
61 |
+
diagonal as diagonal,
|
62 |
+
diff as diff,
|
63 |
+
divide as divide,
|
64 |
+
empty as empty,
|
65 |
+
empty_like as empty_like,
|
66 |
+
equal as equal,
|
67 |
+
exp as exp,
|
68 |
+
expand_dims as expand_dims,
|
69 |
+
fabs as fabs,
|
70 |
+
filled as filled,
|
71 |
+
fix_invalid as fix_invalid,
|
72 |
+
flatten_mask as flatten_mask,
|
73 |
+
flatten_structured_array as flatten_structured_array,
|
74 |
+
floor as floor,
|
75 |
+
floor_divide as floor_divide,
|
76 |
+
fmod as fmod,
|
77 |
+
frombuffer as frombuffer,
|
78 |
+
fromflex as fromflex,
|
79 |
+
fromfunction as fromfunction,
|
80 |
+
getdata as getdata,
|
81 |
+
getmask as getmask,
|
82 |
+
getmaskarray as getmaskarray,
|
83 |
+
greater as greater,
|
84 |
+
greater_equal as greater_equal,
|
85 |
+
harden_mask as harden_mask,
|
86 |
+
hypot as hypot,
|
87 |
+
identity as identity,
|
88 |
+
ids as ids,
|
89 |
+
indices as indices,
|
90 |
+
inner as inner,
|
91 |
+
innerproduct as innerproduct,
|
92 |
+
isMA as isMA,
|
93 |
+
isMaskedArray as isMaskedArray,
|
94 |
+
is_mask as is_mask,
|
95 |
+
is_masked as is_masked,
|
96 |
+
isarray as isarray,
|
97 |
+
left_shift as left_shift,
|
98 |
+
less as less,
|
99 |
+
less_equal as less_equal,
|
100 |
+
log as log,
|
101 |
+
log10 as log10,
|
102 |
+
log2 as log2,
|
103 |
+
logical_and as logical_and,
|
104 |
+
logical_not as logical_not,
|
105 |
+
logical_or as logical_or,
|
106 |
+
logical_xor as logical_xor,
|
107 |
+
make_mask as make_mask,
|
108 |
+
make_mask_descr as make_mask_descr,
|
109 |
+
make_mask_none as make_mask_none,
|
110 |
+
mask_or as mask_or,
|
111 |
+
masked as masked,
|
112 |
+
masked_array as masked_array,
|
113 |
+
masked_equal as masked_equal,
|
114 |
+
masked_greater as masked_greater,
|
115 |
+
masked_greater_equal as masked_greater_equal,
|
116 |
+
masked_inside as masked_inside,
|
117 |
+
masked_invalid as masked_invalid,
|
118 |
+
masked_less as masked_less,
|
119 |
+
masked_less_equal as masked_less_equal,
|
120 |
+
masked_not_equal as masked_not_equal,
|
121 |
+
masked_object as masked_object,
|
122 |
+
masked_outside as masked_outside,
|
123 |
+
masked_print_option as masked_print_option,
|
124 |
+
masked_singleton as masked_singleton,
|
125 |
+
masked_values as masked_values,
|
126 |
+
masked_where as masked_where,
|
127 |
+
max as max,
|
128 |
+
maximum as maximum,
|
129 |
+
maximum_fill_value as maximum_fill_value,
|
130 |
+
mean as mean,
|
131 |
+
min as min,
|
132 |
+
minimum as minimum,
|
133 |
+
minimum_fill_value as minimum_fill_value,
|
134 |
+
mod as mod,
|
135 |
+
multiply as multiply,
|
136 |
+
mvoid as mvoid,
|
137 |
+
ndim as ndim,
|
138 |
+
negative as negative,
|
139 |
+
nomask as nomask,
|
140 |
+
nonzero as nonzero,
|
141 |
+
not_equal as not_equal,
|
142 |
+
ones as ones,
|
143 |
+
outer as outer,
|
144 |
+
outerproduct as outerproduct,
|
145 |
+
power as power,
|
146 |
+
prod as prod,
|
147 |
+
product as product,
|
148 |
+
ptp as ptp,
|
149 |
+
put as put,
|
150 |
+
putmask as putmask,
|
151 |
+
ravel as ravel,
|
152 |
+
remainder as remainder,
|
153 |
+
repeat as repeat,
|
154 |
+
reshape as reshape,
|
155 |
+
resize as resize,
|
156 |
+
right_shift as right_shift,
|
157 |
+
round as round,
|
158 |
+
set_fill_value as set_fill_value,
|
159 |
+
shape as shape,
|
160 |
+
sin as sin,
|
161 |
+
sinh as sinh,
|
162 |
+
size as size,
|
163 |
+
soften_mask as soften_mask,
|
164 |
+
sometrue as sometrue,
|
165 |
+
sort as sort,
|
166 |
+
sqrt as sqrt,
|
167 |
+
squeeze as squeeze,
|
168 |
+
std as std,
|
169 |
+
subtract as subtract,
|
170 |
+
sum as sum,
|
171 |
+
swapaxes as swapaxes,
|
172 |
+
take as take,
|
173 |
+
tan as tan,
|
174 |
+
tanh as tanh,
|
175 |
+
trace as trace,
|
176 |
+
transpose as transpose,
|
177 |
+
true_divide as true_divide,
|
178 |
+
var as var,
|
179 |
+
where as where,
|
180 |
+
zeros as zeros,
|
181 |
+
)
|
182 |
+
|
183 |
+
from numpy.ma.extras import (
|
184 |
+
apply_along_axis as apply_along_axis,
|
185 |
+
apply_over_axes as apply_over_axes,
|
186 |
+
atleast_1d as atleast_1d,
|
187 |
+
atleast_2d as atleast_2d,
|
188 |
+
atleast_3d as atleast_3d,
|
189 |
+
average as average,
|
190 |
+
clump_masked as clump_masked,
|
191 |
+
clump_unmasked as clump_unmasked,
|
192 |
+
column_stack as column_stack,
|
193 |
+
compress_cols as compress_cols,
|
194 |
+
compress_nd as compress_nd,
|
195 |
+
compress_rowcols as compress_rowcols,
|
196 |
+
compress_rows as compress_rows,
|
197 |
+
count_masked as count_masked,
|
198 |
+
corrcoef as corrcoef,
|
199 |
+
cov as cov,
|
200 |
+
diagflat as diagflat,
|
201 |
+
dot as dot,
|
202 |
+
dstack as dstack,
|
203 |
+
ediff1d as ediff1d,
|
204 |
+
flatnotmasked_contiguous as flatnotmasked_contiguous,
|
205 |
+
flatnotmasked_edges as flatnotmasked_edges,
|
206 |
+
hsplit as hsplit,
|
207 |
+
hstack as hstack,
|
208 |
+
isin as isin,
|
209 |
+
in1d as in1d,
|
210 |
+
intersect1d as intersect1d,
|
211 |
+
mask_cols as mask_cols,
|
212 |
+
mask_rowcols as mask_rowcols,
|
213 |
+
mask_rows as mask_rows,
|
214 |
+
masked_all as masked_all,
|
215 |
+
masked_all_like as masked_all_like,
|
216 |
+
median as median,
|
217 |
+
mr_ as mr_,
|
218 |
+
ndenumerate as ndenumerate,
|
219 |
+
notmasked_contiguous as notmasked_contiguous,
|
220 |
+
notmasked_edges as notmasked_edges,
|
221 |
+
polyfit as polyfit,
|
222 |
+
row_stack as row_stack,
|
223 |
+
setdiff1d as setdiff1d,
|
224 |
+
setxor1d as setxor1d,
|
225 |
+
stack as stack,
|
226 |
+
unique as unique,
|
227 |
+
union1d as union1d,
|
228 |
+
vander as vander,
|
229 |
+
vstack as vstack,
|
230 |
+
)
|
231 |
+
|
232 |
+
__all__: list[str]
|
233 |
+
__path__: list[str]
|
234 |
+
test: PytestTester
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.72 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/extras.cpython-311.pyc
ADDED
Binary file (82.1 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/mrecords.cpython-311.pyc
ADDED
Binary file (37.9 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/setup.cpython-311.pyc
ADDED
Binary file (924 Bytes). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/testutils.cpython-311.pyc
ADDED
Binary file (14.6 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-311.pyc
ADDED
Binary file (28 kB). View file
|
|
.venv/lib/python3.11/site-packages/numpy/ma/core.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.venv/lib/python3.11/site-packages/numpy/ma/core.pyi
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable
|
2 |
+
from typing import Any, TypeVar
|
3 |
+
from numpy import ndarray, dtype, float64
|
4 |
+
|
5 |
+
from numpy import (
|
6 |
+
amax as amax,
|
7 |
+
amin as amin,
|
8 |
+
bool_ as bool_,
|
9 |
+
expand_dims as expand_dims,
|
10 |
+
clip as clip,
|
11 |
+
indices as indices,
|
12 |
+
ones_like as ones_like,
|
13 |
+
squeeze as squeeze,
|
14 |
+
zeros_like as zeros_like,
|
15 |
+
)
|
16 |
+
|
17 |
+
from numpy.lib.function_base import (
|
18 |
+
angle as angle,
|
19 |
+
)
|
20 |
+
|
21 |
+
# TODO: Set the `bound` to something more suitable once we
|
22 |
+
# have proper shape support
|
23 |
+
_ShapeType = TypeVar("_ShapeType", bound=Any)
|
24 |
+
_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True)
|
25 |
+
|
26 |
+
__all__: list[str]
|
27 |
+
|
28 |
+
MaskType = bool_
|
29 |
+
nomask: bool_
|
30 |
+
|
31 |
+
class MaskedArrayFutureWarning(FutureWarning): ...
|
32 |
+
class MAError(Exception): ...
|
33 |
+
class MaskError(MAError): ...
|
34 |
+
|
35 |
+
def default_fill_value(obj): ...
|
36 |
+
def minimum_fill_value(obj): ...
|
37 |
+
def maximum_fill_value(obj): ...
|
38 |
+
def set_fill_value(a, fill_value): ...
|
39 |
+
def common_fill_value(a, b): ...
|
40 |
+
def filled(a, fill_value=...): ...
|
41 |
+
def getdata(a, subok=...): ...
|
42 |
+
get_data = getdata
|
43 |
+
|
44 |
+
def fix_invalid(a, mask=..., copy=..., fill_value=...): ...
|
45 |
+
|
46 |
+
class _MaskedUFunc:
|
47 |
+
f: Any
|
48 |
+
__doc__: Any
|
49 |
+
__name__: Any
|
50 |
+
def __init__(self, ufunc): ...
|
51 |
+
|
52 |
+
class _MaskedUnaryOperation(_MaskedUFunc):
|
53 |
+
fill: Any
|
54 |
+
domain: Any
|
55 |
+
def __init__(self, mufunc, fill=..., domain=...): ...
|
56 |
+
def __call__(self, a, *args, **kwargs): ...
|
57 |
+
|
58 |
+
class _MaskedBinaryOperation(_MaskedUFunc):
|
59 |
+
fillx: Any
|
60 |
+
filly: Any
|
61 |
+
def __init__(self, mbfunc, fillx=..., filly=...): ...
|
62 |
+
def __call__(self, a, b, *args, **kwargs): ...
|
63 |
+
def reduce(self, target, axis=..., dtype=...): ...
|
64 |
+
def outer(self, a, b): ...
|
65 |
+
def accumulate(self, target, axis=...): ...
|
66 |
+
|
67 |
+
class _DomainedBinaryOperation(_MaskedUFunc):
|
68 |
+
domain: Any
|
69 |
+
fillx: Any
|
70 |
+
filly: Any
|
71 |
+
def __init__(self, dbfunc, domain, fillx=..., filly=...): ...
|
72 |
+
def __call__(self, a, b, *args, **kwargs): ...
|
73 |
+
|
74 |
+
exp: _MaskedUnaryOperation
|
75 |
+
conjugate: _MaskedUnaryOperation
|
76 |
+
sin: _MaskedUnaryOperation
|
77 |
+
cos: _MaskedUnaryOperation
|
78 |
+
arctan: _MaskedUnaryOperation
|
79 |
+
arcsinh: _MaskedUnaryOperation
|
80 |
+
sinh: _MaskedUnaryOperation
|
81 |
+
cosh: _MaskedUnaryOperation
|
82 |
+
tanh: _MaskedUnaryOperation
|
83 |
+
abs: _MaskedUnaryOperation
|
84 |
+
absolute: _MaskedUnaryOperation
|
85 |
+
fabs: _MaskedUnaryOperation
|
86 |
+
negative: _MaskedUnaryOperation
|
87 |
+
floor: _MaskedUnaryOperation
|
88 |
+
ceil: _MaskedUnaryOperation
|
89 |
+
around: _MaskedUnaryOperation
|
90 |
+
logical_not: _MaskedUnaryOperation
|
91 |
+
sqrt: _MaskedUnaryOperation
|
92 |
+
log: _MaskedUnaryOperation
|
93 |
+
log2: _MaskedUnaryOperation
|
94 |
+
log10: _MaskedUnaryOperation
|
95 |
+
tan: _MaskedUnaryOperation
|
96 |
+
arcsin: _MaskedUnaryOperation
|
97 |
+
arccos: _MaskedUnaryOperation
|
98 |
+
arccosh: _MaskedUnaryOperation
|
99 |
+
arctanh: _MaskedUnaryOperation
|
100 |
+
|
101 |
+
add: _MaskedBinaryOperation
|
102 |
+
subtract: _MaskedBinaryOperation
|
103 |
+
multiply: _MaskedBinaryOperation
|
104 |
+
arctan2: _MaskedBinaryOperation
|
105 |
+
equal: _MaskedBinaryOperation
|
106 |
+
not_equal: _MaskedBinaryOperation
|
107 |
+
less_equal: _MaskedBinaryOperation
|
108 |
+
greater_equal: _MaskedBinaryOperation
|
109 |
+
less: _MaskedBinaryOperation
|
110 |
+
greater: _MaskedBinaryOperation
|
111 |
+
logical_and: _MaskedBinaryOperation
|
112 |
+
alltrue: _MaskedBinaryOperation
|
113 |
+
logical_or: _MaskedBinaryOperation
|
114 |
+
sometrue: Callable[..., Any]
|
115 |
+
logical_xor: _MaskedBinaryOperation
|
116 |
+
bitwise_and: _MaskedBinaryOperation
|
117 |
+
bitwise_or: _MaskedBinaryOperation
|
118 |
+
bitwise_xor: _MaskedBinaryOperation
|
119 |
+
hypot: _MaskedBinaryOperation
|
120 |
+
divide: _MaskedBinaryOperation
|
121 |
+
true_divide: _MaskedBinaryOperation
|
122 |
+
floor_divide: _MaskedBinaryOperation
|
123 |
+
remainder: _MaskedBinaryOperation
|
124 |
+
fmod: _MaskedBinaryOperation
|
125 |
+
mod: _MaskedBinaryOperation
|
126 |
+
|
127 |
+
def make_mask_descr(ndtype): ...
|
128 |
+
def getmask(a): ...
|
129 |
+
get_mask = getmask
|
130 |
+
|
131 |
+
def getmaskarray(arr): ...
|
132 |
+
def is_mask(m): ...
|
133 |
+
def make_mask(m, copy=..., shrink=..., dtype=...): ...
|
134 |
+
def make_mask_none(newshape, dtype=...): ...
|
135 |
+
def mask_or(m1, m2, copy=..., shrink=...): ...
|
136 |
+
def flatten_mask(mask): ...
|
137 |
+
def masked_where(condition, a, copy=...): ...
|
138 |
+
def masked_greater(x, value, copy=...): ...
|
139 |
+
def masked_greater_equal(x, value, copy=...): ...
|
140 |
+
def masked_less(x, value, copy=...): ...
|
141 |
+
def masked_less_equal(x, value, copy=...): ...
|
142 |
+
def masked_not_equal(x, value, copy=...): ...
|
143 |
+
def masked_equal(x, value, copy=...): ...
|
144 |
+
def masked_inside(x, v1, v2, copy=...): ...
|
145 |
+
def masked_outside(x, v1, v2, copy=...): ...
|
146 |
+
def masked_object(x, value, copy=..., shrink=...): ...
|
147 |
+
def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ...
|
148 |
+
def masked_invalid(a, copy=...): ...
|
149 |
+
|
150 |
+
class _MaskedPrintOption:
|
151 |
+
def __init__(self, display): ...
|
152 |
+
def display(self): ...
|
153 |
+
def set_display(self, s): ...
|
154 |
+
def enabled(self): ...
|
155 |
+
def enable(self, shrink=...): ...
|
156 |
+
|
157 |
+
masked_print_option: _MaskedPrintOption
|
158 |
+
|
159 |
+
def flatten_structured_array(a): ...
|
160 |
+
|
161 |
+
class MaskedIterator:
|
162 |
+
ma: Any
|
163 |
+
dataiter: Any
|
164 |
+
maskiter: Any
|
165 |
+
def __init__(self, ma): ...
|
166 |
+
def __iter__(self): ...
|
167 |
+
def __getitem__(self, indx): ...
|
168 |
+
def __setitem__(self, index, value): ...
|
169 |
+
def __next__(self): ...
|
170 |
+
|
171 |
+
class MaskedArray(ndarray[_ShapeType, _DType_co]):
|
172 |
+
__array_priority__: Any
|
173 |
+
def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ...
|
174 |
+
def __array_finalize__(self, obj): ...
|
175 |
+
def __array_wrap__(self, obj, context=...): ...
|
176 |
+
def view(self, dtype=..., type=..., fill_value=...): ...
|
177 |
+
def __getitem__(self, indx): ...
|
178 |
+
def __setitem__(self, indx, value): ...
|
179 |
+
@property
|
180 |
+
def dtype(self): ...
|
181 |
+
@dtype.setter
|
182 |
+
def dtype(self, dtype): ...
|
183 |
+
@property
|
184 |
+
def shape(self): ...
|
185 |
+
@shape.setter
|
186 |
+
def shape(self, shape): ...
|
187 |
+
def __setmask__(self, mask, copy=...): ...
|
188 |
+
@property
|
189 |
+
def mask(self): ...
|
190 |
+
@mask.setter
|
191 |
+
def mask(self, value): ...
|
192 |
+
@property
|
193 |
+
def recordmask(self): ...
|
194 |
+
@recordmask.setter
|
195 |
+
def recordmask(self, mask): ...
|
196 |
+
def harden_mask(self): ...
|
197 |
+
def soften_mask(self): ...
|
198 |
+
@property
|
199 |
+
def hardmask(self): ...
|
200 |
+
def unshare_mask(self): ...
|
201 |
+
@property
|
202 |
+
def sharedmask(self): ...
|
203 |
+
def shrink_mask(self): ...
|
204 |
+
@property
|
205 |
+
def baseclass(self): ...
|
206 |
+
data: Any
|
207 |
+
@property
|
208 |
+
def flat(self): ...
|
209 |
+
@flat.setter
|
210 |
+
def flat(self, value): ...
|
211 |
+
@property
|
212 |
+
def fill_value(self): ...
|
213 |
+
@fill_value.setter
|
214 |
+
def fill_value(self, value=...): ...
|
215 |
+
get_fill_value: Any
|
216 |
+
set_fill_value: Any
|
217 |
+
def filled(self, fill_value=...): ...
|
218 |
+
def compressed(self): ...
|
219 |
+
def compress(self, condition, axis=..., out=...): ...
|
220 |
+
def __eq__(self, other): ...
|
221 |
+
def __ne__(self, other): ...
|
222 |
+
def __ge__(self, other): ...
|
223 |
+
def __gt__(self, other): ...
|
224 |
+
def __le__(self, other): ...
|
225 |
+
def __lt__(self, other): ...
|
226 |
+
def __add__(self, other): ...
|
227 |
+
def __radd__(self, other): ...
|
228 |
+
def __sub__(self, other): ...
|
229 |
+
def __rsub__(self, other): ...
|
230 |
+
def __mul__(self, other): ...
|
231 |
+
def __rmul__(self, other): ...
|
232 |
+
def __div__(self, other): ...
|
233 |
+
def __truediv__(self, other): ...
|
234 |
+
def __rtruediv__(self, other): ...
|
235 |
+
def __floordiv__(self, other): ...
|
236 |
+
def __rfloordiv__(self, other): ...
|
237 |
+
def __pow__(self, other): ...
|
238 |
+
def __rpow__(self, other): ...
|
239 |
+
def __iadd__(self, other): ...
|
240 |
+
def __isub__(self, other): ...
|
241 |
+
def __imul__(self, other): ...
|
242 |
+
def __idiv__(self, other): ...
|
243 |
+
def __ifloordiv__(self, other): ...
|
244 |
+
def __itruediv__(self, other): ...
|
245 |
+
def __ipow__(self, other): ...
|
246 |
+
def __float__(self): ...
|
247 |
+
def __int__(self): ...
|
248 |
+
@property # type: ignore[misc]
|
249 |
+
def imag(self): ...
|
250 |
+
get_imag: Any
|
251 |
+
@property # type: ignore[misc]
|
252 |
+
def real(self): ...
|
253 |
+
get_real: Any
|
254 |
+
def count(self, axis=..., keepdims=...): ...
|
255 |
+
def ravel(self, order=...): ...
|
256 |
+
def reshape(self, *s, **kwargs): ...
|
257 |
+
def resize(self, newshape, refcheck=..., order=...): ...
|
258 |
+
def put(self, indices, values, mode=...): ...
|
259 |
+
def ids(self): ...
|
260 |
+
def iscontiguous(self): ...
|
261 |
+
def all(self, axis=..., out=..., keepdims=...): ...
|
262 |
+
def any(self, axis=..., out=..., keepdims=...): ...
|
263 |
+
def nonzero(self): ...
|
264 |
+
def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ...
|
265 |
+
def dot(self, b, out=..., strict=...): ...
|
266 |
+
def sum(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
267 |
+
def cumsum(self, axis=..., dtype=..., out=...): ...
|
268 |
+
def prod(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
269 |
+
product: Any
|
270 |
+
def cumprod(self, axis=..., dtype=..., out=...): ...
|
271 |
+
def mean(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
272 |
+
def anom(self, axis=..., dtype=...): ...
|
273 |
+
def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
|
274 |
+
def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
|
275 |
+
def round(self, decimals=..., out=...): ...
|
276 |
+
def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
277 |
+
def argmin(self, axis=..., fill_value=..., out=..., *, keepdims=...): ...
|
278 |
+
def argmax(self, axis=..., fill_value=..., out=..., *, keepdims=...): ...
|
279 |
+
def sort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
280 |
+
def min(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
281 |
+
# NOTE: deprecated
|
282 |
+
# def tostring(self, fill_value=..., order=...): ...
|
283 |
+
def max(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
284 |
+
def ptp(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
285 |
+
def partition(self, *args, **kwargs): ...
|
286 |
+
def argpartition(self, *args, **kwargs): ...
|
287 |
+
def take(self, indices, axis=..., out=..., mode=...): ...
|
288 |
+
copy: Any
|
289 |
+
diagonal: Any
|
290 |
+
flatten: Any
|
291 |
+
repeat: Any
|
292 |
+
squeeze: Any
|
293 |
+
swapaxes: Any
|
294 |
+
T: Any
|
295 |
+
transpose: Any
|
296 |
+
def tolist(self, fill_value=...): ...
|
297 |
+
def tobytes(self, fill_value=..., order=...): ...
|
298 |
+
def tofile(self, fid, sep=..., format=...): ...
|
299 |
+
def toflex(self): ...
|
300 |
+
torecords: Any
|
301 |
+
def __reduce__(self): ...
|
302 |
+
def __deepcopy__(self, memo=...): ...
|
303 |
+
|
304 |
+
class mvoid(MaskedArray[_ShapeType, _DType_co]):
|
305 |
+
def __new__(
|
306 |
+
self,
|
307 |
+
data,
|
308 |
+
mask=...,
|
309 |
+
dtype=...,
|
310 |
+
fill_value=...,
|
311 |
+
hardmask=...,
|
312 |
+
copy=...,
|
313 |
+
subok=...,
|
314 |
+
): ...
|
315 |
+
def __getitem__(self, indx): ...
|
316 |
+
def __setitem__(self, indx, value): ...
|
317 |
+
def __iter__(self): ...
|
318 |
+
def __len__(self): ...
|
319 |
+
def filled(self, fill_value=...): ...
|
320 |
+
def tolist(self): ...
|
321 |
+
|
322 |
+
def isMaskedArray(x): ...
|
323 |
+
isarray = isMaskedArray
|
324 |
+
isMA = isMaskedArray
|
325 |
+
|
326 |
+
# 0D float64 array
|
327 |
+
class MaskedConstant(MaskedArray[Any, dtype[float64]]):
|
328 |
+
def __new__(cls): ...
|
329 |
+
__class__: Any
|
330 |
+
def __array_finalize__(self, obj): ...
|
331 |
+
def __array_prepare__(self, obj, context=...): ...
|
332 |
+
def __array_wrap__(self, obj, context=...): ...
|
333 |
+
def __format__(self, format_spec): ...
|
334 |
+
def __reduce__(self): ...
|
335 |
+
def __iop__(self, other): ...
|
336 |
+
__iadd__: Any
|
337 |
+
__isub__: Any
|
338 |
+
__imul__: Any
|
339 |
+
__ifloordiv__: Any
|
340 |
+
__itruediv__: Any
|
341 |
+
__ipow__: Any
|
342 |
+
def copy(self, *args, **kwargs): ...
|
343 |
+
def __copy__(self): ...
|
344 |
+
def __deepcopy__(self, memo): ...
|
345 |
+
def __setattr__(self, attr, value): ...
|
346 |
+
|
347 |
+
masked: MaskedConstant
|
348 |
+
masked_singleton: MaskedConstant
|
349 |
+
masked_array = MaskedArray
|
350 |
+
|
351 |
+
def array(
|
352 |
+
data,
|
353 |
+
dtype=...,
|
354 |
+
copy=...,
|
355 |
+
order=...,
|
356 |
+
mask=...,
|
357 |
+
fill_value=...,
|
358 |
+
keep_mask=...,
|
359 |
+
hard_mask=...,
|
360 |
+
shrink=...,
|
361 |
+
subok=...,
|
362 |
+
ndmin=...,
|
363 |
+
): ...
|
364 |
+
def is_masked(x): ...
|
365 |
+
|
366 |
+
class _extrema_operation(_MaskedUFunc):
|
367 |
+
compare: Any
|
368 |
+
fill_value_func: Any
|
369 |
+
def __init__(self, ufunc, compare, fill_value): ...
|
370 |
+
# NOTE: in practice `b` has a default value, but users should
|
371 |
+
# explicitly provide a value here as the default is deprecated
|
372 |
+
def __call__(self, a, b): ...
|
373 |
+
def reduce(self, target, axis=...): ...
|
374 |
+
def outer(self, a, b): ...
|
375 |
+
|
376 |
+
def min(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
377 |
+
def max(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
378 |
+
def ptp(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
379 |
+
|
380 |
+
class _frommethod:
|
381 |
+
__name__: Any
|
382 |
+
__doc__: Any
|
383 |
+
reversed: Any
|
384 |
+
def __init__(self, methodname, reversed=...): ...
|
385 |
+
def getdoc(self): ...
|
386 |
+
def __call__(self, a, *args, **params): ...
|
387 |
+
|
388 |
+
all: _frommethod
|
389 |
+
anomalies: _frommethod
|
390 |
+
anom: _frommethod
|
391 |
+
any: _frommethod
|
392 |
+
compress: _frommethod
|
393 |
+
cumprod: _frommethod
|
394 |
+
cumsum: _frommethod
|
395 |
+
copy: _frommethod
|
396 |
+
diagonal: _frommethod
|
397 |
+
harden_mask: _frommethod
|
398 |
+
ids: _frommethod
|
399 |
+
mean: _frommethod
|
400 |
+
nonzero: _frommethod
|
401 |
+
prod: _frommethod
|
402 |
+
product: _frommethod
|
403 |
+
ravel: _frommethod
|
404 |
+
repeat: _frommethod
|
405 |
+
soften_mask: _frommethod
|
406 |
+
std: _frommethod
|
407 |
+
sum: _frommethod
|
408 |
+
swapaxes: _frommethod
|
409 |
+
trace: _frommethod
|
410 |
+
var: _frommethod
|
411 |
+
count: _frommethod
|
412 |
+
argmin: _frommethod
|
413 |
+
argmax: _frommethod
|
414 |
+
|
415 |
+
minimum: _extrema_operation
|
416 |
+
maximum: _extrema_operation
|
417 |
+
|
418 |
+
def take(a, indices, axis=..., out=..., mode=...): ...
|
419 |
+
def power(a, b, third=...): ...
|
420 |
+
def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
421 |
+
def sort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
422 |
+
def compressed(x): ...
|
423 |
+
def concatenate(arrays, axis=...): ...
|
424 |
+
def diag(v, k=...): ...
|
425 |
+
def left_shift(a, n): ...
|
426 |
+
def right_shift(a, n): ...
|
427 |
+
def put(a, indices, values, mode=...): ...
|
428 |
+
def putmask(a, mask, values): ...
|
429 |
+
def transpose(a, axes=...): ...
|
430 |
+
def reshape(a, new_shape, order=...): ...
|
431 |
+
def resize(x, new_shape): ...
|
432 |
+
def ndim(obj): ...
|
433 |
+
def shape(obj): ...
|
434 |
+
def size(obj, axis=...): ...
|
435 |
+
def diff(a, /, n=..., axis=..., prepend=..., append=...): ...
|
436 |
+
def where(condition, x=..., y=...): ...
|
437 |
+
def choose(indices, choices, out=..., mode=...): ...
|
438 |
+
def round(a, decimals=..., out=...): ...
|
439 |
+
|
440 |
+
def inner(a, b): ...
|
441 |
+
innerproduct = inner
|
442 |
+
|
443 |
+
def outer(a, b): ...
|
444 |
+
outerproduct = outer
|
445 |
+
|
446 |
+
def correlate(a, v, mode=..., propagate_mask=...): ...
|
447 |
+
def convolve(a, v, mode=..., propagate_mask=...): ...
|
448 |
+
def allequal(a, b, fill_value=...): ...
|
449 |
+
def allclose(a, b, masked_equal=..., rtol=..., atol=...): ...
|
450 |
+
def asarray(a, dtype=..., order=...): ...
|
451 |
+
def asanyarray(a, dtype=...): ...
|
452 |
+
def fromflex(fxarray): ...
|
453 |
+
|
454 |
+
class _convert2ma:
|
455 |
+
__doc__: Any
|
456 |
+
def __init__(self, funcname, params=...): ...
|
457 |
+
def getdoc(self): ...
|
458 |
+
def __call__(self, *args, **params): ...
|
459 |
+
|
460 |
+
arange: _convert2ma
|
461 |
+
empty: _convert2ma
|
462 |
+
empty_like: _convert2ma
|
463 |
+
frombuffer: _convert2ma
|
464 |
+
fromfunction: _convert2ma
|
465 |
+
identity: _convert2ma
|
466 |
+
ones: _convert2ma
|
467 |
+
zeros: _convert2ma
|
468 |
+
|
469 |
+
def append(a, b, axis=...): ...
|
470 |
+
def dot(a, b, strict=..., out=...): ...
|
471 |
+
def mask_rowcols(a, axis=...): ...
|
.venv/lib/python3.11/site-packages/numpy/ma/extras.py
ADDED
@@ -0,0 +1,2133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Masked arrays add-ons.
|
3 |
+
|
4 |
+
A collection of utilities for `numpy.ma`.
|
5 |
+
|
6 |
+
:author: Pierre Gerard-Marchant
|
7 |
+
:contact: pierregm_at_uga_dot_edu
|
8 |
+
:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
|
9 |
+
|
10 |
+
"""
|
11 |
+
__all__ = [
|
12 |
+
'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d',
|
13 |
+
'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack',
|
14 |
+
'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows',
|
15 |
+
'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d',
|
16 |
+
'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack',
|
17 |
+
'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows',
|
18 |
+
'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate',
|
19 |
+
'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack',
|
20 |
+
'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack',
|
21 |
+
]
|
22 |
+
|
23 |
+
import itertools
|
24 |
+
import warnings
|
25 |
+
|
26 |
+
from . import core as ma
|
27 |
+
from .core import (
|
28 |
+
MaskedArray, MAError, add, array, asarray, concatenate, filled, count,
|
29 |
+
getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or,
|
30 |
+
nomask, ones, sort, zeros, getdata, get_masked_subclass, dot
|
31 |
+
)
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
from numpy import ndarray, array as nxarray
|
35 |
+
from numpy.core.multiarray import normalize_axis_index
|
36 |
+
from numpy.core.numeric import normalize_axis_tuple
|
37 |
+
from numpy.lib.function_base import _ureduce
|
38 |
+
from numpy.lib.index_tricks import AxisConcatenator
|
39 |
+
|
40 |
+
|
41 |
+
def issequence(seq):
|
42 |
+
"""
|
43 |
+
Is seq a sequence (ndarray, list or tuple)?
|
44 |
+
|
45 |
+
"""
|
46 |
+
return isinstance(seq, (ndarray, tuple, list))
|
47 |
+
|
48 |
+
|
49 |
+
def count_masked(arr, axis=None):
|
50 |
+
"""
|
51 |
+
Count the number of masked elements along the given axis.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
arr : array_like
|
56 |
+
An array with (possibly) masked elements.
|
57 |
+
axis : int, optional
|
58 |
+
Axis along which to count. If None (default), a flattened
|
59 |
+
version of the array is used.
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
count : int, ndarray
|
64 |
+
The total number of masked elements (axis=None) or the number
|
65 |
+
of masked elements along each slice of the given axis.
|
66 |
+
|
67 |
+
See Also
|
68 |
+
--------
|
69 |
+
MaskedArray.count : Count non-masked elements.
|
70 |
+
|
71 |
+
Examples
|
72 |
+
--------
|
73 |
+
>>> import numpy.ma as ma
|
74 |
+
>>> a = np.arange(9).reshape((3,3))
|
75 |
+
>>> a = ma.array(a)
|
76 |
+
>>> a[1, 0] = ma.masked
|
77 |
+
>>> a[1, 2] = ma.masked
|
78 |
+
>>> a[2, 1] = ma.masked
|
79 |
+
>>> a
|
80 |
+
masked_array(
|
81 |
+
data=[[0, 1, 2],
|
82 |
+
[--, 4, --],
|
83 |
+
[6, --, 8]],
|
84 |
+
mask=[[False, False, False],
|
85 |
+
[ True, False, True],
|
86 |
+
[False, True, False]],
|
87 |
+
fill_value=999999)
|
88 |
+
>>> ma.count_masked(a)
|
89 |
+
3
|
90 |
+
|
91 |
+
When the `axis` keyword is used an array is returned.
|
92 |
+
|
93 |
+
>>> ma.count_masked(a, axis=0)
|
94 |
+
array([1, 1, 1])
|
95 |
+
>>> ma.count_masked(a, axis=1)
|
96 |
+
array([0, 2, 1])
|
97 |
+
|
98 |
+
"""
|
99 |
+
m = getmaskarray(arr)
|
100 |
+
return m.sum(axis)
|
101 |
+
|
102 |
+
|
103 |
+
def masked_all(shape, dtype=float):
|
104 |
+
"""
|
105 |
+
Empty masked array with all elements masked.
|
106 |
+
|
107 |
+
Return an empty masked array of the given shape and dtype, where all the
|
108 |
+
data are masked.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
shape : int or tuple of ints
|
113 |
+
Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``.
|
114 |
+
dtype : dtype, optional
|
115 |
+
Data type of the output.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
a : MaskedArray
|
120 |
+
A masked array with all data masked.
|
121 |
+
|
122 |
+
See Also
|
123 |
+
--------
|
124 |
+
masked_all_like : Empty masked array modelled on an existing array.
|
125 |
+
|
126 |
+
Examples
|
127 |
+
--------
|
128 |
+
>>> import numpy.ma as ma
|
129 |
+
>>> ma.masked_all((3, 3))
|
130 |
+
masked_array(
|
131 |
+
data=[[--, --, --],
|
132 |
+
[--, --, --],
|
133 |
+
[--, --, --]],
|
134 |
+
mask=[[ True, True, True],
|
135 |
+
[ True, True, True],
|
136 |
+
[ True, True, True]],
|
137 |
+
fill_value=1e+20,
|
138 |
+
dtype=float64)
|
139 |
+
|
140 |
+
The `dtype` parameter defines the underlying data type.
|
141 |
+
|
142 |
+
>>> a = ma.masked_all((3, 3))
|
143 |
+
>>> a.dtype
|
144 |
+
dtype('float64')
|
145 |
+
>>> a = ma.masked_all((3, 3), dtype=np.int32)
|
146 |
+
>>> a.dtype
|
147 |
+
dtype('int32')
|
148 |
+
|
149 |
+
"""
|
150 |
+
a = masked_array(np.empty(shape, dtype),
|
151 |
+
mask=np.ones(shape, make_mask_descr(dtype)))
|
152 |
+
return a
|
153 |
+
|
154 |
+
|
155 |
+
def masked_all_like(arr):
|
156 |
+
"""
|
157 |
+
Empty masked array with the properties of an existing array.
|
158 |
+
|
159 |
+
Return an empty masked array of the same shape and dtype as
|
160 |
+
the array `arr`, where all the data are masked.
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
arr : ndarray
|
165 |
+
An array describing the shape and dtype of the required MaskedArray.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
a : MaskedArray
|
170 |
+
A masked array with all data masked.
|
171 |
+
|
172 |
+
Raises
|
173 |
+
------
|
174 |
+
AttributeError
|
175 |
+
If `arr` doesn't have a shape attribute (i.e. not an ndarray)
|
176 |
+
|
177 |
+
See Also
|
178 |
+
--------
|
179 |
+
masked_all : Empty masked array with all elements masked.
|
180 |
+
|
181 |
+
Examples
|
182 |
+
--------
|
183 |
+
>>> import numpy.ma as ma
|
184 |
+
>>> arr = np.zeros((2, 3), dtype=np.float32)
|
185 |
+
>>> arr
|
186 |
+
array([[0., 0., 0.],
|
187 |
+
[0., 0., 0.]], dtype=float32)
|
188 |
+
>>> ma.masked_all_like(arr)
|
189 |
+
masked_array(
|
190 |
+
data=[[--, --, --],
|
191 |
+
[--, --, --]],
|
192 |
+
mask=[[ True, True, True],
|
193 |
+
[ True, True, True]],
|
194 |
+
fill_value=1e+20,
|
195 |
+
dtype=float32)
|
196 |
+
|
197 |
+
The dtype of the masked array matches the dtype of `arr`.
|
198 |
+
|
199 |
+
>>> arr.dtype
|
200 |
+
dtype('float32')
|
201 |
+
>>> ma.masked_all_like(arr).dtype
|
202 |
+
dtype('float32')
|
203 |
+
|
204 |
+
"""
|
205 |
+
a = np.empty_like(arr).view(MaskedArray)
|
206 |
+
a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype))
|
207 |
+
return a
|
208 |
+
|
209 |
+
|
210 |
+
#####--------------------------------------------------------------------------
|
211 |
+
#---- --- Standard functions ---
|
212 |
+
#####--------------------------------------------------------------------------
|
213 |
+
class _fromnxfunction:
|
214 |
+
"""
|
215 |
+
Defines a wrapper to adapt NumPy functions to masked arrays.
|
216 |
+
|
217 |
+
|
218 |
+
An instance of `_fromnxfunction` can be called with the same parameters
|
219 |
+
as the wrapped NumPy function. The docstring of `newfunc` is adapted from
|
220 |
+
the wrapped function as well, see `getdoc`.
|
221 |
+
|
222 |
+
This class should not be used directly. Instead, one of its extensions that
|
223 |
+
provides support for a specific type of input should be used.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
funcname : str
|
228 |
+
The name of the function to be adapted. The function should be
|
229 |
+
in the NumPy namespace (i.e. ``np.funcname``).
|
230 |
+
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, funcname):
|
234 |
+
self.__name__ = funcname
|
235 |
+
self.__doc__ = self.getdoc()
|
236 |
+
|
237 |
+
def getdoc(self):
|
238 |
+
"""
|
239 |
+
Retrieve the docstring and signature from the function.
|
240 |
+
|
241 |
+
The ``__doc__`` attribute of the function is used as the docstring for
|
242 |
+
the new masked array version of the function. A note on application
|
243 |
+
of the function to the mask is appended.
|
244 |
+
|
245 |
+
Parameters
|
246 |
+
----------
|
247 |
+
None
|
248 |
+
|
249 |
+
"""
|
250 |
+
npfunc = getattr(np, self.__name__, None)
|
251 |
+
doc = getattr(npfunc, '__doc__', None)
|
252 |
+
if doc:
|
253 |
+
sig = self.__name__ + ma.get_object_signature(npfunc)
|
254 |
+
doc = ma.doc_note(doc, "The function is applied to both the _data "
|
255 |
+
"and the _mask, if any.")
|
256 |
+
return '\n\n'.join((sig, doc))
|
257 |
+
return
|
258 |
+
|
259 |
+
def __call__(self, *args, **params):
|
260 |
+
pass
|
261 |
+
|
262 |
+
|
263 |
+
class _fromnxfunction_single(_fromnxfunction):
|
264 |
+
"""
|
265 |
+
A version of `_fromnxfunction` that is called with a single array
|
266 |
+
argument followed by auxiliary args that are passed verbatim for
|
267 |
+
both the data and mask calls.
|
268 |
+
"""
|
269 |
+
def __call__(self, x, *args, **params):
|
270 |
+
func = getattr(np, self.__name__)
|
271 |
+
if isinstance(x, ndarray):
|
272 |
+
_d = func(x.__array__(), *args, **params)
|
273 |
+
_m = func(getmaskarray(x), *args, **params)
|
274 |
+
return masked_array(_d, mask=_m)
|
275 |
+
else:
|
276 |
+
_d = func(np.asarray(x), *args, **params)
|
277 |
+
_m = func(getmaskarray(x), *args, **params)
|
278 |
+
return masked_array(_d, mask=_m)
|
279 |
+
|
280 |
+
|
281 |
+
class _fromnxfunction_seq(_fromnxfunction):
|
282 |
+
"""
|
283 |
+
A version of `_fromnxfunction` that is called with a single sequence
|
284 |
+
of arrays followed by auxiliary args that are passed verbatim for
|
285 |
+
both the data and mask calls.
|
286 |
+
"""
|
287 |
+
def __call__(self, x, *args, **params):
|
288 |
+
func = getattr(np, self.__name__)
|
289 |
+
_d = func(tuple([np.asarray(a) for a in x]), *args, **params)
|
290 |
+
_m = func(tuple([getmaskarray(a) for a in x]), *args, **params)
|
291 |
+
return masked_array(_d, mask=_m)
|
292 |
+
|
293 |
+
|
294 |
+
class _fromnxfunction_args(_fromnxfunction):
|
295 |
+
"""
|
296 |
+
A version of `_fromnxfunction` that is called with multiple array
|
297 |
+
arguments. The first non-array-like input marks the beginning of the
|
298 |
+
arguments that are passed verbatim for both the data and mask calls.
|
299 |
+
Array arguments are processed independently and the results are
|
300 |
+
returned in a list. If only one array is found, the return value is
|
301 |
+
just the processed array instead of a list.
|
302 |
+
"""
|
303 |
+
def __call__(self, *args, **params):
|
304 |
+
func = getattr(np, self.__name__)
|
305 |
+
arrays = []
|
306 |
+
args = list(args)
|
307 |
+
while len(args) > 0 and issequence(args[0]):
|
308 |
+
arrays.append(args.pop(0))
|
309 |
+
res = []
|
310 |
+
for x in arrays:
|
311 |
+
_d = func(np.asarray(x), *args, **params)
|
312 |
+
_m = func(getmaskarray(x), *args, **params)
|
313 |
+
res.append(masked_array(_d, mask=_m))
|
314 |
+
if len(arrays) == 1:
|
315 |
+
return res[0]
|
316 |
+
return res
|
317 |
+
|
318 |
+
|
319 |
+
class _fromnxfunction_allargs(_fromnxfunction):
|
320 |
+
"""
|
321 |
+
A version of `_fromnxfunction` that is called with multiple array
|
322 |
+
arguments. Similar to `_fromnxfunction_args` except that all args
|
323 |
+
are converted to arrays even if they are not so already. This makes
|
324 |
+
it possible to process scalars as 1-D arrays. Only keyword arguments
|
325 |
+
are passed through verbatim for the data and mask calls. Arrays
|
326 |
+
arguments are processed independently and the results are returned
|
327 |
+
in a list. If only one arg is present, the return value is just the
|
328 |
+
processed array instead of a list.
|
329 |
+
"""
|
330 |
+
def __call__(self, *args, **params):
|
331 |
+
func = getattr(np, self.__name__)
|
332 |
+
res = []
|
333 |
+
for x in args:
|
334 |
+
_d = func(np.asarray(x), **params)
|
335 |
+
_m = func(getmaskarray(x), **params)
|
336 |
+
res.append(masked_array(_d, mask=_m))
|
337 |
+
if len(args) == 1:
|
338 |
+
return res[0]
|
339 |
+
return res
|
340 |
+
|
341 |
+
|
342 |
+
atleast_1d = _fromnxfunction_allargs('atleast_1d')
|
343 |
+
atleast_2d = _fromnxfunction_allargs('atleast_2d')
|
344 |
+
atleast_3d = _fromnxfunction_allargs('atleast_3d')
|
345 |
+
|
346 |
+
vstack = row_stack = _fromnxfunction_seq('vstack')
|
347 |
+
hstack = _fromnxfunction_seq('hstack')
|
348 |
+
column_stack = _fromnxfunction_seq('column_stack')
|
349 |
+
dstack = _fromnxfunction_seq('dstack')
|
350 |
+
stack = _fromnxfunction_seq('stack')
|
351 |
+
|
352 |
+
hsplit = _fromnxfunction_single('hsplit')
|
353 |
+
|
354 |
+
diagflat = _fromnxfunction_single('diagflat')
|
355 |
+
|
356 |
+
|
357 |
+
#####--------------------------------------------------------------------------
|
358 |
+
#----
|
359 |
+
#####--------------------------------------------------------------------------
|
360 |
+
def flatten_inplace(seq):
|
361 |
+
"""Flatten a sequence in place."""
|
362 |
+
k = 0
|
363 |
+
while (k != len(seq)):
|
364 |
+
while hasattr(seq[k], '__iter__'):
|
365 |
+
seq[k:(k + 1)] = seq[k]
|
366 |
+
k += 1
|
367 |
+
return seq
|
368 |
+
|
369 |
+
|
370 |
+
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
371 |
+
"""
|
372 |
+
(This docstring should be overwritten)
|
373 |
+
"""
|
374 |
+
arr = array(arr, copy=False, subok=True)
|
375 |
+
nd = arr.ndim
|
376 |
+
axis = normalize_axis_index(axis, nd)
|
377 |
+
ind = [0] * (nd - 1)
|
378 |
+
i = np.zeros(nd, 'O')
|
379 |
+
indlist = list(range(nd))
|
380 |
+
indlist.remove(axis)
|
381 |
+
i[axis] = slice(None, None)
|
382 |
+
outshape = np.asarray(arr.shape).take(indlist)
|
383 |
+
i.put(indlist, ind)
|
384 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
385 |
+
# if res is a number, then we have a smaller output array
|
386 |
+
asscalar = np.isscalar(res)
|
387 |
+
if not asscalar:
|
388 |
+
try:
|
389 |
+
len(res)
|
390 |
+
except TypeError:
|
391 |
+
asscalar = True
|
392 |
+
# Note: we shouldn't set the dtype of the output from the first result
|
393 |
+
# so we force the type to object, and build a list of dtypes. We'll
|
394 |
+
# just take the largest, to avoid some downcasting
|
395 |
+
dtypes = []
|
396 |
+
if asscalar:
|
397 |
+
dtypes.append(np.asarray(res).dtype)
|
398 |
+
outarr = zeros(outshape, object)
|
399 |
+
outarr[tuple(ind)] = res
|
400 |
+
Ntot = np.prod(outshape)
|
401 |
+
k = 1
|
402 |
+
while k < Ntot:
|
403 |
+
# increment the index
|
404 |
+
ind[-1] += 1
|
405 |
+
n = -1
|
406 |
+
while (ind[n] >= outshape[n]) and (n > (1 - nd)):
|
407 |
+
ind[n - 1] += 1
|
408 |
+
ind[n] = 0
|
409 |
+
n -= 1
|
410 |
+
i.put(indlist, ind)
|
411 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
412 |
+
outarr[tuple(ind)] = res
|
413 |
+
dtypes.append(asarray(res).dtype)
|
414 |
+
k += 1
|
415 |
+
else:
|
416 |
+
res = array(res, copy=False, subok=True)
|
417 |
+
j = i.copy()
|
418 |
+
j[axis] = ([slice(None, None)] * res.ndim)
|
419 |
+
j.put(indlist, ind)
|
420 |
+
Ntot = np.prod(outshape)
|
421 |
+
holdshape = outshape
|
422 |
+
outshape = list(arr.shape)
|
423 |
+
outshape[axis] = res.shape
|
424 |
+
dtypes.append(asarray(res).dtype)
|
425 |
+
outshape = flatten_inplace(outshape)
|
426 |
+
outarr = zeros(outshape, object)
|
427 |
+
outarr[tuple(flatten_inplace(j.tolist()))] = res
|
428 |
+
k = 1
|
429 |
+
while k < Ntot:
|
430 |
+
# increment the index
|
431 |
+
ind[-1] += 1
|
432 |
+
n = -1
|
433 |
+
while (ind[n] >= holdshape[n]) and (n > (1 - nd)):
|
434 |
+
ind[n - 1] += 1
|
435 |
+
ind[n] = 0
|
436 |
+
n -= 1
|
437 |
+
i.put(indlist, ind)
|
438 |
+
j.put(indlist, ind)
|
439 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
440 |
+
outarr[tuple(flatten_inplace(j.tolist()))] = res
|
441 |
+
dtypes.append(asarray(res).dtype)
|
442 |
+
k += 1
|
443 |
+
max_dtypes = np.dtype(np.asarray(dtypes).max())
|
444 |
+
if not hasattr(arr, '_mask'):
|
445 |
+
result = np.asarray(outarr, dtype=max_dtypes)
|
446 |
+
else:
|
447 |
+
result = asarray(outarr, dtype=max_dtypes)
|
448 |
+
result.fill_value = ma.default_fill_value(result)
|
449 |
+
return result
|
450 |
+
apply_along_axis.__doc__ = np.apply_along_axis.__doc__
|
451 |
+
|
452 |
+
|
453 |
+
def apply_over_axes(func, a, axes):
|
454 |
+
"""
|
455 |
+
(This docstring will be overwritten)
|
456 |
+
"""
|
457 |
+
val = asarray(a)
|
458 |
+
N = a.ndim
|
459 |
+
if array(axes).ndim == 0:
|
460 |
+
axes = (axes,)
|
461 |
+
for axis in axes:
|
462 |
+
if axis < 0:
|
463 |
+
axis = N + axis
|
464 |
+
args = (val, axis)
|
465 |
+
res = func(*args)
|
466 |
+
if res.ndim == val.ndim:
|
467 |
+
val = res
|
468 |
+
else:
|
469 |
+
res = ma.expand_dims(res, axis)
|
470 |
+
if res.ndim == val.ndim:
|
471 |
+
val = res
|
472 |
+
else:
|
473 |
+
raise ValueError("function is not returning "
|
474 |
+
"an array of the correct shape")
|
475 |
+
return val
|
476 |
+
|
477 |
+
|
478 |
+
if apply_over_axes.__doc__ is not None:
|
479 |
+
apply_over_axes.__doc__ = np.apply_over_axes.__doc__[
|
480 |
+
:np.apply_over_axes.__doc__.find('Notes')].rstrip() + \
|
481 |
+
"""
|
482 |
+
|
483 |
+
Examples
|
484 |
+
--------
|
485 |
+
>>> a = np.ma.arange(24).reshape(2,3,4)
|
486 |
+
>>> a[:,0,1] = np.ma.masked
|
487 |
+
>>> a[:,1,:] = np.ma.masked
|
488 |
+
>>> a
|
489 |
+
masked_array(
|
490 |
+
data=[[[0, --, 2, 3],
|
491 |
+
[--, --, --, --],
|
492 |
+
[8, 9, 10, 11]],
|
493 |
+
[[12, --, 14, 15],
|
494 |
+
[--, --, --, --],
|
495 |
+
[20, 21, 22, 23]]],
|
496 |
+
mask=[[[False, True, False, False],
|
497 |
+
[ True, True, True, True],
|
498 |
+
[False, False, False, False]],
|
499 |
+
[[False, True, False, False],
|
500 |
+
[ True, True, True, True],
|
501 |
+
[False, False, False, False]]],
|
502 |
+
fill_value=999999)
|
503 |
+
>>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
|
504 |
+
masked_array(
|
505 |
+
data=[[[46],
|
506 |
+
[--],
|
507 |
+
[124]]],
|
508 |
+
mask=[[[False],
|
509 |
+
[ True],
|
510 |
+
[False]]],
|
511 |
+
fill_value=999999)
|
512 |
+
|
513 |
+
Tuple axis arguments to ufuncs are equivalent:
|
514 |
+
|
515 |
+
>>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
|
516 |
+
masked_array(
|
517 |
+
data=[[[46],
|
518 |
+
[--],
|
519 |
+
[124]]],
|
520 |
+
mask=[[[False],
|
521 |
+
[ True],
|
522 |
+
[False]]],
|
523 |
+
fill_value=999999)
|
524 |
+
"""
|
525 |
+
|
526 |
+
|
527 |
+
def average(a, axis=None, weights=None, returned=False, *,
|
528 |
+
keepdims=np._NoValue):
|
529 |
+
"""
|
530 |
+
Return the weighted average of array over the given axis.
|
531 |
+
|
532 |
+
Parameters
|
533 |
+
----------
|
534 |
+
a : array_like
|
535 |
+
Data to be averaged.
|
536 |
+
Masked entries are not taken into account in the computation.
|
537 |
+
axis : int, optional
|
538 |
+
Axis along which to average `a`. If None, averaging is done over
|
539 |
+
the flattened array.
|
540 |
+
weights : array_like, optional
|
541 |
+
The importance that each element has in the computation of the average.
|
542 |
+
The weights array can either be 1-D (in which case its length must be
|
543 |
+
the size of `a` along the given axis) or of the same shape as `a`.
|
544 |
+
If ``weights=None``, then all data in `a` are assumed to have a
|
545 |
+
weight equal to one. The 1-D calculation is::
|
546 |
+
|
547 |
+
avg = sum(a * weights) / sum(weights)
|
548 |
+
|
549 |
+
The only constraint on `weights` is that `sum(weights)` must not be 0.
|
550 |
+
returned : bool, optional
|
551 |
+
Flag indicating whether a tuple ``(result, sum of weights)``
|
552 |
+
should be returned as output (True), or just the result (False).
|
553 |
+
Default is False.
|
554 |
+
keepdims : bool, optional
|
555 |
+
If this is set to True, the axes which are reduced are left
|
556 |
+
in the result as dimensions with size one. With this option,
|
557 |
+
the result will broadcast correctly against the original `a`.
|
558 |
+
*Note:* `keepdims` will not work with instances of `numpy.matrix`
|
559 |
+
or other classes whose methods do not support `keepdims`.
|
560 |
+
|
561 |
+
.. versionadded:: 1.23.0
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
average, [sum_of_weights] : (tuple of) scalar or MaskedArray
|
566 |
+
The average along the specified axis. When returned is `True`,
|
567 |
+
return a tuple with the average as the first element and the sum
|
568 |
+
of the weights as the second element. The return type is `np.float64`
|
569 |
+
if `a` is of integer type and floats smaller than `float64`, or the
|
570 |
+
input data-type, otherwise. If returned, `sum_of_weights` is always
|
571 |
+
`float64`.
|
572 |
+
|
573 |
+
Examples
|
574 |
+
--------
|
575 |
+
>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
|
576 |
+
>>> np.ma.average(a, weights=[3, 1, 0, 0])
|
577 |
+
1.25
|
578 |
+
|
579 |
+
>>> x = np.ma.arange(6.).reshape(3, 2)
|
580 |
+
>>> x
|
581 |
+
masked_array(
|
582 |
+
data=[[0., 1.],
|
583 |
+
[2., 3.],
|
584 |
+
[4., 5.]],
|
585 |
+
mask=False,
|
586 |
+
fill_value=1e+20)
|
587 |
+
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
|
588 |
+
... returned=True)
|
589 |
+
>>> avg
|
590 |
+
masked_array(data=[2.6666666666666665, 3.6666666666666665],
|
591 |
+
mask=[False, False],
|
592 |
+
fill_value=1e+20)
|
593 |
+
|
594 |
+
With ``keepdims=True``, the following result has shape (3, 1).
|
595 |
+
|
596 |
+
>>> np.ma.average(x, axis=1, keepdims=True)
|
597 |
+
masked_array(
|
598 |
+
data=[[0.5],
|
599 |
+
[2.5],
|
600 |
+
[4.5]],
|
601 |
+
mask=False,
|
602 |
+
fill_value=1e+20)
|
603 |
+
"""
|
604 |
+
a = asarray(a)
|
605 |
+
m = getmask(a)
|
606 |
+
|
607 |
+
# inspired by 'average' in numpy/lib/function_base.py
|
608 |
+
|
609 |
+
if keepdims is np._NoValue:
|
610 |
+
# Don't pass on the keepdims argument if one wasn't given.
|
611 |
+
keepdims_kw = {}
|
612 |
+
else:
|
613 |
+
keepdims_kw = {'keepdims': keepdims}
|
614 |
+
|
615 |
+
if weights is None:
|
616 |
+
avg = a.mean(axis, **keepdims_kw)
|
617 |
+
scl = avg.dtype.type(a.count(axis))
|
618 |
+
else:
|
619 |
+
wgt = asarray(weights)
|
620 |
+
|
621 |
+
if issubclass(a.dtype.type, (np.integer, np.bool_)):
|
622 |
+
result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
|
623 |
+
else:
|
624 |
+
result_dtype = np.result_type(a.dtype, wgt.dtype)
|
625 |
+
|
626 |
+
# Sanity checks
|
627 |
+
if a.shape != wgt.shape:
|
628 |
+
if axis is None:
|
629 |
+
raise TypeError(
|
630 |
+
"Axis must be specified when shapes of a and weights "
|
631 |
+
"differ.")
|
632 |
+
if wgt.ndim != 1:
|
633 |
+
raise TypeError(
|
634 |
+
"1D weights expected when shapes of a and weights differ.")
|
635 |
+
if wgt.shape[0] != a.shape[axis]:
|
636 |
+
raise ValueError(
|
637 |
+
"Length of weights not compatible with specified axis.")
|
638 |
+
|
639 |
+
# setup wgt to broadcast along axis
|
640 |
+
wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape, subok=True)
|
641 |
+
wgt = wgt.swapaxes(-1, axis)
|
642 |
+
|
643 |
+
if m is not nomask:
|
644 |
+
wgt = wgt*(~a.mask)
|
645 |
+
wgt.mask |= a.mask
|
646 |
+
|
647 |
+
scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw)
|
648 |
+
avg = np.multiply(a, wgt,
|
649 |
+
dtype=result_dtype).sum(axis, **keepdims_kw) / scl
|
650 |
+
|
651 |
+
if returned:
|
652 |
+
if scl.shape != avg.shape:
|
653 |
+
scl = np.broadcast_to(scl, avg.shape).copy()
|
654 |
+
return avg, scl
|
655 |
+
else:
|
656 |
+
return avg
|
657 |
+
|
658 |
+
|
659 |
+
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
|
660 |
+
"""
|
661 |
+
Compute the median along the specified axis.
|
662 |
+
|
663 |
+
Returns the median of the array elements.
|
664 |
+
|
665 |
+
Parameters
|
666 |
+
----------
|
667 |
+
a : array_like
|
668 |
+
Input array or object that can be converted to an array.
|
669 |
+
axis : int, optional
|
670 |
+
Axis along which the medians are computed. The default (None) is
|
671 |
+
to compute the median along a flattened version of the array.
|
672 |
+
out : ndarray, optional
|
673 |
+
Alternative output array in which to place the result. It must
|
674 |
+
have the same shape and buffer length as the expected output
|
675 |
+
but the type will be cast if necessary.
|
676 |
+
overwrite_input : bool, optional
|
677 |
+
If True, then allow use of memory of input array (a) for
|
678 |
+
calculations. The input array will be modified by the call to
|
679 |
+
median. This will save memory when you do not need to preserve
|
680 |
+
the contents of the input array. Treat the input as undefined,
|
681 |
+
but it will probably be fully or partially sorted. Default is
|
682 |
+
False. Note that, if `overwrite_input` is True, and the input
|
683 |
+
is not already an `ndarray`, an error will be raised.
|
684 |
+
keepdims : bool, optional
|
685 |
+
If this is set to True, the axes which are reduced are left
|
686 |
+
in the result as dimensions with size one. With this option,
|
687 |
+
the result will broadcast correctly against the input array.
|
688 |
+
|
689 |
+
.. versionadded:: 1.10.0
|
690 |
+
|
691 |
+
Returns
|
692 |
+
-------
|
693 |
+
median : ndarray
|
694 |
+
A new array holding the result is returned unless out is
|
695 |
+
specified, in which case a reference to out is returned.
|
696 |
+
Return data-type is `float64` for integers and floats smaller than
|
697 |
+
`float64`, or the input data-type, otherwise.
|
698 |
+
|
699 |
+
See Also
|
700 |
+
--------
|
701 |
+
mean
|
702 |
+
|
703 |
+
Notes
|
704 |
+
-----
|
705 |
+
Given a vector ``V`` with ``N`` non masked values, the median of ``V``
|
706 |
+
is the middle value of a sorted copy of ``V`` (``Vs``) - i.e.
|
707 |
+
``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2``
|
708 |
+
when ``N`` is even.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
--------
|
712 |
+
>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
|
713 |
+
>>> np.ma.median(x)
|
714 |
+
1.5
|
715 |
+
|
716 |
+
>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
|
717 |
+
>>> np.ma.median(x)
|
718 |
+
2.5
|
719 |
+
>>> np.ma.median(x, axis=-1, overwrite_input=True)
|
720 |
+
masked_array(data=[2.0, 5.0],
|
721 |
+
mask=[False, False],
|
722 |
+
fill_value=1e+20)
|
723 |
+
|
724 |
+
"""
|
725 |
+
if not hasattr(a, 'mask'):
|
726 |
+
m = np.median(getdata(a, subok=True), axis=axis,
|
727 |
+
out=out, overwrite_input=overwrite_input,
|
728 |
+
keepdims=keepdims)
|
729 |
+
if isinstance(m, np.ndarray) and 1 <= m.ndim:
|
730 |
+
return masked_array(m, copy=False)
|
731 |
+
else:
|
732 |
+
return m
|
733 |
+
|
734 |
+
return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out,
|
735 |
+
overwrite_input=overwrite_input)
|
736 |
+
|
737 |
+
|
738 |
+
def _median(a, axis=None, out=None, overwrite_input=False):
|
739 |
+
# when an unmasked NaN is present return it, so we need to sort the NaN
|
740 |
+
# values behind the mask
|
741 |
+
if np.issubdtype(a.dtype, np.inexact):
|
742 |
+
fill_value = np.inf
|
743 |
+
else:
|
744 |
+
fill_value = None
|
745 |
+
if overwrite_input:
|
746 |
+
if axis is None:
|
747 |
+
asorted = a.ravel()
|
748 |
+
asorted.sort(fill_value=fill_value)
|
749 |
+
else:
|
750 |
+
a.sort(axis=axis, fill_value=fill_value)
|
751 |
+
asorted = a
|
752 |
+
else:
|
753 |
+
asorted = sort(a, axis=axis, fill_value=fill_value)
|
754 |
+
|
755 |
+
if axis is None:
|
756 |
+
axis = 0
|
757 |
+
else:
|
758 |
+
axis = normalize_axis_index(axis, asorted.ndim)
|
759 |
+
|
760 |
+
if asorted.shape[axis] == 0:
|
761 |
+
# for empty axis integer indices fail so use slicing to get same result
|
762 |
+
# as median (which is mean of empty slice = nan)
|
763 |
+
indexer = [slice(None)] * asorted.ndim
|
764 |
+
indexer[axis] = slice(0, 0)
|
765 |
+
indexer = tuple(indexer)
|
766 |
+
return np.ma.mean(asorted[indexer], axis=axis, out=out)
|
767 |
+
|
768 |
+
if asorted.ndim == 1:
|
769 |
+
idx, odd = divmod(count(asorted), 2)
|
770 |
+
mid = asorted[idx + odd - 1:idx + 1]
|
771 |
+
if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0:
|
772 |
+
# avoid inf / x = masked
|
773 |
+
s = mid.sum(out=out)
|
774 |
+
if not odd:
|
775 |
+
s = np.true_divide(s, 2., casting='safe', out=out)
|
776 |
+
s = np.lib.utils._median_nancheck(asorted, s, axis)
|
777 |
+
else:
|
778 |
+
s = mid.mean(out=out)
|
779 |
+
|
780 |
+
# if result is masked either the input contained enough
|
781 |
+
# minimum_fill_value so that it would be the median or all values
|
782 |
+
# masked
|
783 |
+
if np.ma.is_masked(s) and not np.all(asorted.mask):
|
784 |
+
return np.ma.minimum_fill_value(asorted)
|
785 |
+
return s
|
786 |
+
|
787 |
+
counts = count(asorted, axis=axis, keepdims=True)
|
788 |
+
h = counts // 2
|
789 |
+
|
790 |
+
# duplicate high if odd number of elements so mean does nothing
|
791 |
+
odd = counts % 2 == 1
|
792 |
+
l = np.where(odd, h, h-1)
|
793 |
+
|
794 |
+
lh = np.concatenate([l,h], axis=axis)
|
795 |
+
|
796 |
+
# get low and high median
|
797 |
+
low_high = np.take_along_axis(asorted, lh, axis=axis)
|
798 |
+
|
799 |
+
def replace_masked(s):
|
800 |
+
# Replace masked entries with minimum_full_value unless it all values
|
801 |
+
# are masked. This is required as the sort order of values equal or
|
802 |
+
# larger than the fill value is undefined and a valid value placed
|
803 |
+
# elsewhere, e.g. [4, --, inf].
|
804 |
+
if np.ma.is_masked(s):
|
805 |
+
rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask
|
806 |
+
s.data[rep] = np.ma.minimum_fill_value(asorted)
|
807 |
+
s.mask[rep] = False
|
808 |
+
|
809 |
+
replace_masked(low_high)
|
810 |
+
|
811 |
+
if np.issubdtype(asorted.dtype, np.inexact):
|
812 |
+
# avoid inf / x = masked
|
813 |
+
s = np.ma.sum(low_high, axis=axis, out=out)
|
814 |
+
np.true_divide(s.data, 2., casting='unsafe', out=s.data)
|
815 |
+
|
816 |
+
s = np.lib.utils._median_nancheck(asorted, s, axis)
|
817 |
+
else:
|
818 |
+
s = np.ma.mean(low_high, axis=axis, out=out)
|
819 |
+
|
820 |
+
return s
|
821 |
+
|
822 |
+
|
823 |
+
def compress_nd(x, axis=None):
|
824 |
+
"""Suppress slices from multiple dimensions which contain masked values.
|
825 |
+
|
826 |
+
Parameters
|
827 |
+
----------
|
828 |
+
x : array_like, MaskedArray
|
829 |
+
The array to operate on. If not a MaskedArray instance (or if no array
|
830 |
+
elements are masked), `x` is interpreted as a MaskedArray with `mask`
|
831 |
+
set to `nomask`.
|
832 |
+
axis : tuple of ints or int, optional
|
833 |
+
Which dimensions to suppress slices from can be configured with this
|
834 |
+
parameter.
|
835 |
+
- If axis is a tuple of ints, those are the axes to suppress slices from.
|
836 |
+
- If axis is an int, then that is the only axis to suppress slices from.
|
837 |
+
- If axis is None, all axis are selected.
|
838 |
+
|
839 |
+
Returns
|
840 |
+
-------
|
841 |
+
compress_array : ndarray
|
842 |
+
The compressed array.
|
843 |
+
"""
|
844 |
+
x = asarray(x)
|
845 |
+
m = getmask(x)
|
846 |
+
# Set axis to tuple of ints
|
847 |
+
if axis is None:
|
848 |
+
axis = tuple(range(x.ndim))
|
849 |
+
else:
|
850 |
+
axis = normalize_axis_tuple(axis, x.ndim)
|
851 |
+
|
852 |
+
# Nothing is masked: return x
|
853 |
+
if m is nomask or not m.any():
|
854 |
+
return x._data
|
855 |
+
# All is masked: return empty
|
856 |
+
if m.all():
|
857 |
+
return nxarray([])
|
858 |
+
# Filter elements through boolean indexing
|
859 |
+
data = x._data
|
860 |
+
for ax in axis:
|
861 |
+
axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim)))
|
862 |
+
data = data[(slice(None),)*ax + (~m.any(axis=axes),)]
|
863 |
+
return data
|
864 |
+
|
865 |
+
|
866 |
+
def compress_rowcols(x, axis=None):
|
867 |
+
"""
|
868 |
+
Suppress the rows and/or columns of a 2-D array that contain
|
869 |
+
masked values.
|
870 |
+
|
871 |
+
The suppression behavior is selected with the `axis` parameter.
|
872 |
+
|
873 |
+
- If axis is None, both rows and columns are suppressed.
|
874 |
+
- If axis is 0, only rows are suppressed.
|
875 |
+
- If axis is 1 or -1, only columns are suppressed.
|
876 |
+
|
877 |
+
Parameters
|
878 |
+
----------
|
879 |
+
x : array_like, MaskedArray
|
880 |
+
The array to operate on. If not a MaskedArray instance (or if no array
|
881 |
+
elements are masked), `x` is interpreted as a MaskedArray with
|
882 |
+
`mask` set to `nomask`. Must be a 2D array.
|
883 |
+
axis : int, optional
|
884 |
+
Axis along which to perform the operation. Default is None.
|
885 |
+
|
886 |
+
Returns
|
887 |
+
-------
|
888 |
+
compressed_array : ndarray
|
889 |
+
The compressed array.
|
890 |
+
|
891 |
+
Examples
|
892 |
+
--------
|
893 |
+
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
|
894 |
+
... [1, 0, 0],
|
895 |
+
... [0, 0, 0]])
|
896 |
+
>>> x
|
897 |
+
masked_array(
|
898 |
+
data=[[--, 1, 2],
|
899 |
+
[--, 4, 5],
|
900 |
+
[6, 7, 8]],
|
901 |
+
mask=[[ True, False, False],
|
902 |
+
[ True, False, False],
|
903 |
+
[False, False, False]],
|
904 |
+
fill_value=999999)
|
905 |
+
|
906 |
+
>>> np.ma.compress_rowcols(x)
|
907 |
+
array([[7, 8]])
|
908 |
+
>>> np.ma.compress_rowcols(x, 0)
|
909 |
+
array([[6, 7, 8]])
|
910 |
+
>>> np.ma.compress_rowcols(x, 1)
|
911 |
+
array([[1, 2],
|
912 |
+
[4, 5],
|
913 |
+
[7, 8]])
|
914 |
+
|
915 |
+
"""
|
916 |
+
if asarray(x).ndim != 2:
|
917 |
+
raise NotImplementedError("compress_rowcols works for 2D arrays only.")
|
918 |
+
return compress_nd(x, axis=axis)
|
919 |
+
|
920 |
+
|
921 |
+
def compress_rows(a):
|
922 |
+
"""
|
923 |
+
Suppress whole rows of a 2-D array that contain masked values.
|
924 |
+
|
925 |
+
This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see
|
926 |
+
`compress_rowcols` for details.
|
927 |
+
|
928 |
+
See Also
|
929 |
+
--------
|
930 |
+
compress_rowcols
|
931 |
+
|
932 |
+
"""
|
933 |
+
a = asarray(a)
|
934 |
+
if a.ndim != 2:
|
935 |
+
raise NotImplementedError("compress_rows works for 2D arrays only.")
|
936 |
+
return compress_rowcols(a, 0)
|
937 |
+
|
938 |
+
|
939 |
+
def compress_cols(a):
|
940 |
+
"""
|
941 |
+
Suppress whole columns of a 2-D array that contain masked values.
|
942 |
+
|
943 |
+
This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see
|
944 |
+
`compress_rowcols` for details.
|
945 |
+
|
946 |
+
See Also
|
947 |
+
--------
|
948 |
+
compress_rowcols
|
949 |
+
|
950 |
+
"""
|
951 |
+
a = asarray(a)
|
952 |
+
if a.ndim != 2:
|
953 |
+
raise NotImplementedError("compress_cols works for 2D arrays only.")
|
954 |
+
return compress_rowcols(a, 1)
|
955 |
+
|
956 |
+
|
957 |
+
def mask_rowcols(a, axis=None):
|
958 |
+
"""
|
959 |
+
Mask rows and/or columns of a 2D array that contain masked values.
|
960 |
+
|
961 |
+
Mask whole rows and/or columns of a 2D array that contain
|
962 |
+
masked values. The masking behavior is selected using the
|
963 |
+
`axis` parameter.
|
964 |
+
|
965 |
+
- If `axis` is None, rows *and* columns are masked.
|
966 |
+
- If `axis` is 0, only rows are masked.
|
967 |
+
- If `axis` is 1 or -1, only columns are masked.
|
968 |
+
|
969 |
+
Parameters
|
970 |
+
----------
|
971 |
+
a : array_like, MaskedArray
|
972 |
+
The array to mask. If not a MaskedArray instance (or if no array
|
973 |
+
elements are masked), the result is a MaskedArray with `mask` set
|
974 |
+
to `nomask` (False). Must be a 2D array.
|
975 |
+
axis : int, optional
|
976 |
+
Axis along which to perform the operation. If None, applies to a
|
977 |
+
flattened version of the array.
|
978 |
+
|
979 |
+
Returns
|
980 |
+
-------
|
981 |
+
a : MaskedArray
|
982 |
+
A modified version of the input array, masked depending on the value
|
983 |
+
of the `axis` parameter.
|
984 |
+
|
985 |
+
Raises
|
986 |
+
------
|
987 |
+
NotImplementedError
|
988 |
+
If input array `a` is not 2D.
|
989 |
+
|
990 |
+
See Also
|
991 |
+
--------
|
992 |
+
mask_rows : Mask rows of a 2D array that contain masked values.
|
993 |
+
mask_cols : Mask cols of a 2D array that contain masked values.
|
994 |
+
masked_where : Mask where a condition is met.
|
995 |
+
|
996 |
+
Notes
|
997 |
+
-----
|
998 |
+
The input array's mask is modified by this function.
|
999 |
+
|
1000 |
+
Examples
|
1001 |
+
--------
|
1002 |
+
>>> import numpy.ma as ma
|
1003 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1004 |
+
>>> a[1, 1] = 1
|
1005 |
+
>>> a
|
1006 |
+
array([[0, 0, 0],
|
1007 |
+
[0, 1, 0],
|
1008 |
+
[0, 0, 0]])
|
1009 |
+
>>> a = ma.masked_equal(a, 1)
|
1010 |
+
>>> a
|
1011 |
+
masked_array(
|
1012 |
+
data=[[0, 0, 0],
|
1013 |
+
[0, --, 0],
|
1014 |
+
[0, 0, 0]],
|
1015 |
+
mask=[[False, False, False],
|
1016 |
+
[False, True, False],
|
1017 |
+
[False, False, False]],
|
1018 |
+
fill_value=1)
|
1019 |
+
>>> ma.mask_rowcols(a)
|
1020 |
+
masked_array(
|
1021 |
+
data=[[0, --, 0],
|
1022 |
+
[--, --, --],
|
1023 |
+
[0, --, 0]],
|
1024 |
+
mask=[[False, True, False],
|
1025 |
+
[ True, True, True],
|
1026 |
+
[False, True, False]],
|
1027 |
+
fill_value=1)
|
1028 |
+
|
1029 |
+
"""
|
1030 |
+
a = array(a, subok=False)
|
1031 |
+
if a.ndim != 2:
|
1032 |
+
raise NotImplementedError("mask_rowcols works for 2D arrays only.")
|
1033 |
+
m = getmask(a)
|
1034 |
+
# Nothing is masked: return a
|
1035 |
+
if m is nomask or not m.any():
|
1036 |
+
return a
|
1037 |
+
maskedval = m.nonzero()
|
1038 |
+
a._mask = a._mask.copy()
|
1039 |
+
if not axis:
|
1040 |
+
a[np.unique(maskedval[0])] = masked
|
1041 |
+
if axis in [None, 1, -1]:
|
1042 |
+
a[:, np.unique(maskedval[1])] = masked
|
1043 |
+
return a
|
1044 |
+
|
1045 |
+
|
1046 |
+
def mask_rows(a, axis=np._NoValue):
|
1047 |
+
"""
|
1048 |
+
Mask rows of a 2D array that contain masked values.
|
1049 |
+
|
1050 |
+
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0.
|
1051 |
+
|
1052 |
+
See Also
|
1053 |
+
--------
|
1054 |
+
mask_rowcols : Mask rows and/or columns of a 2D array.
|
1055 |
+
masked_where : Mask where a condition is met.
|
1056 |
+
|
1057 |
+
Examples
|
1058 |
+
--------
|
1059 |
+
>>> import numpy.ma as ma
|
1060 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1061 |
+
>>> a[1, 1] = 1
|
1062 |
+
>>> a
|
1063 |
+
array([[0, 0, 0],
|
1064 |
+
[0, 1, 0],
|
1065 |
+
[0, 0, 0]])
|
1066 |
+
>>> a = ma.masked_equal(a, 1)
|
1067 |
+
>>> a
|
1068 |
+
masked_array(
|
1069 |
+
data=[[0, 0, 0],
|
1070 |
+
[0, --, 0],
|
1071 |
+
[0, 0, 0]],
|
1072 |
+
mask=[[False, False, False],
|
1073 |
+
[False, True, False],
|
1074 |
+
[False, False, False]],
|
1075 |
+
fill_value=1)
|
1076 |
+
|
1077 |
+
>>> ma.mask_rows(a)
|
1078 |
+
masked_array(
|
1079 |
+
data=[[0, 0, 0],
|
1080 |
+
[--, --, --],
|
1081 |
+
[0, 0, 0]],
|
1082 |
+
mask=[[False, False, False],
|
1083 |
+
[ True, True, True],
|
1084 |
+
[False, False, False]],
|
1085 |
+
fill_value=1)
|
1086 |
+
|
1087 |
+
"""
|
1088 |
+
if axis is not np._NoValue:
|
1089 |
+
# remove the axis argument when this deprecation expires
|
1090 |
+
# NumPy 1.18.0, 2019-11-28
|
1091 |
+
warnings.warn(
|
1092 |
+
"The axis argument has always been ignored, in future passing it "
|
1093 |
+
"will raise TypeError", DeprecationWarning, stacklevel=2)
|
1094 |
+
return mask_rowcols(a, 0)
|
1095 |
+
|
1096 |
+
|
1097 |
+
def mask_cols(a, axis=np._NoValue):
|
1098 |
+
"""
|
1099 |
+
Mask columns of a 2D array that contain masked values.
|
1100 |
+
|
1101 |
+
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1.
|
1102 |
+
|
1103 |
+
See Also
|
1104 |
+
--------
|
1105 |
+
mask_rowcols : Mask rows and/or columns of a 2D array.
|
1106 |
+
masked_where : Mask where a condition is met.
|
1107 |
+
|
1108 |
+
Examples
|
1109 |
+
--------
|
1110 |
+
>>> import numpy.ma as ma
|
1111 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1112 |
+
>>> a[1, 1] = 1
|
1113 |
+
>>> a
|
1114 |
+
array([[0, 0, 0],
|
1115 |
+
[0, 1, 0],
|
1116 |
+
[0, 0, 0]])
|
1117 |
+
>>> a = ma.masked_equal(a, 1)
|
1118 |
+
>>> a
|
1119 |
+
masked_array(
|
1120 |
+
data=[[0, 0, 0],
|
1121 |
+
[0, --, 0],
|
1122 |
+
[0, 0, 0]],
|
1123 |
+
mask=[[False, False, False],
|
1124 |
+
[False, True, False],
|
1125 |
+
[False, False, False]],
|
1126 |
+
fill_value=1)
|
1127 |
+
>>> ma.mask_cols(a)
|
1128 |
+
masked_array(
|
1129 |
+
data=[[0, --, 0],
|
1130 |
+
[0, --, 0],
|
1131 |
+
[0, --, 0]],
|
1132 |
+
mask=[[False, True, False],
|
1133 |
+
[False, True, False],
|
1134 |
+
[False, True, False]],
|
1135 |
+
fill_value=1)
|
1136 |
+
|
1137 |
+
"""
|
1138 |
+
if axis is not np._NoValue:
|
1139 |
+
# remove the axis argument when this deprecation expires
|
1140 |
+
# NumPy 1.18.0, 2019-11-28
|
1141 |
+
warnings.warn(
|
1142 |
+
"The axis argument has always been ignored, in future passing it "
|
1143 |
+
"will raise TypeError", DeprecationWarning, stacklevel=2)
|
1144 |
+
return mask_rowcols(a, 1)
|
1145 |
+
|
1146 |
+
|
1147 |
+
#####--------------------------------------------------------------------------
|
1148 |
+
#---- --- arraysetops ---
|
1149 |
+
#####--------------------------------------------------------------------------
|
1150 |
+
|
1151 |
+
def ediff1d(arr, to_end=None, to_begin=None):
|
1152 |
+
"""
|
1153 |
+
Compute the differences between consecutive elements of an array.
|
1154 |
+
|
1155 |
+
This function is the equivalent of `numpy.ediff1d` that takes masked
|
1156 |
+
values into account, see `numpy.ediff1d` for details.
|
1157 |
+
|
1158 |
+
See Also
|
1159 |
+
--------
|
1160 |
+
numpy.ediff1d : Equivalent function for ndarrays.
|
1161 |
+
|
1162 |
+
"""
|
1163 |
+
arr = ma.asanyarray(arr).flat
|
1164 |
+
ed = arr[1:] - arr[:-1]
|
1165 |
+
arrays = [ed]
|
1166 |
+
#
|
1167 |
+
if to_begin is not None:
|
1168 |
+
arrays.insert(0, to_begin)
|
1169 |
+
if to_end is not None:
|
1170 |
+
arrays.append(to_end)
|
1171 |
+
#
|
1172 |
+
if len(arrays) != 1:
|
1173 |
+
# We'll save ourselves a copy of a potentially large array in the common
|
1174 |
+
# case where neither to_begin or to_end was given.
|
1175 |
+
ed = hstack(arrays)
|
1176 |
+
#
|
1177 |
+
return ed
|
1178 |
+
|
1179 |
+
|
1180 |
+
def unique(ar1, return_index=False, return_inverse=False):
|
1181 |
+
"""
|
1182 |
+
Finds the unique elements of an array.
|
1183 |
+
|
1184 |
+
Masked values are considered the same element (masked). The output array
|
1185 |
+
is always a masked array. See `numpy.unique` for more details.
|
1186 |
+
|
1187 |
+
See Also
|
1188 |
+
--------
|
1189 |
+
numpy.unique : Equivalent function for ndarrays.
|
1190 |
+
|
1191 |
+
Examples
|
1192 |
+
--------
|
1193 |
+
>>> import numpy.ma as ma
|
1194 |
+
>>> a = [1, 2, 1000, 2, 3]
|
1195 |
+
>>> mask = [0, 0, 1, 0, 0]
|
1196 |
+
>>> masked_a = ma.masked_array(a, mask)
|
1197 |
+
>>> masked_a
|
1198 |
+
masked_array(data=[1, 2, --, 2, 3],
|
1199 |
+
mask=[False, False, True, False, False],
|
1200 |
+
fill_value=999999)
|
1201 |
+
>>> ma.unique(masked_a)
|
1202 |
+
masked_array(data=[1, 2, 3, --],
|
1203 |
+
mask=[False, False, False, True],
|
1204 |
+
fill_value=999999)
|
1205 |
+
>>> ma.unique(masked_a, return_index=True)
|
1206 |
+
(masked_array(data=[1, 2, 3, --],
|
1207 |
+
mask=[False, False, False, True],
|
1208 |
+
fill_value=999999), array([0, 1, 4, 2]))
|
1209 |
+
>>> ma.unique(masked_a, return_inverse=True)
|
1210 |
+
(masked_array(data=[1, 2, 3, --],
|
1211 |
+
mask=[False, False, False, True],
|
1212 |
+
fill_value=999999), array([0, 1, 3, 1, 2]))
|
1213 |
+
>>> ma.unique(masked_a, return_index=True, return_inverse=True)
|
1214 |
+
(masked_array(data=[1, 2, 3, --],
|
1215 |
+
mask=[False, False, False, True],
|
1216 |
+
fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2]))
|
1217 |
+
"""
|
1218 |
+
output = np.unique(ar1,
|
1219 |
+
return_index=return_index,
|
1220 |
+
return_inverse=return_inverse)
|
1221 |
+
if isinstance(output, tuple):
|
1222 |
+
output = list(output)
|
1223 |
+
output[0] = output[0].view(MaskedArray)
|
1224 |
+
output = tuple(output)
|
1225 |
+
else:
|
1226 |
+
output = output.view(MaskedArray)
|
1227 |
+
return output
|
1228 |
+
|
1229 |
+
|
1230 |
+
def intersect1d(ar1, ar2, assume_unique=False):
|
1231 |
+
"""
|
1232 |
+
Returns the unique elements common to both arrays.
|
1233 |
+
|
1234 |
+
Masked values are considered equal one to the other.
|
1235 |
+
The output is always a masked array.
|
1236 |
+
|
1237 |
+
See `numpy.intersect1d` for more details.
|
1238 |
+
|
1239 |
+
See Also
|
1240 |
+
--------
|
1241 |
+
numpy.intersect1d : Equivalent function for ndarrays.
|
1242 |
+
|
1243 |
+
Examples
|
1244 |
+
--------
|
1245 |
+
>>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
|
1246 |
+
>>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
|
1247 |
+
>>> np.ma.intersect1d(x, y)
|
1248 |
+
masked_array(data=[1, 3, --],
|
1249 |
+
mask=[False, False, True],
|
1250 |
+
fill_value=999999)
|
1251 |
+
|
1252 |
+
"""
|
1253 |
+
if assume_unique:
|
1254 |
+
aux = ma.concatenate((ar1, ar2))
|
1255 |
+
else:
|
1256 |
+
# Might be faster than unique( intersect1d( ar1, ar2 ) )?
|
1257 |
+
aux = ma.concatenate((unique(ar1), unique(ar2)))
|
1258 |
+
aux.sort()
|
1259 |
+
return aux[:-1][aux[1:] == aux[:-1]]
|
1260 |
+
|
1261 |
+
|
1262 |
+
def setxor1d(ar1, ar2, assume_unique=False):
|
1263 |
+
"""
|
1264 |
+
Set exclusive-or of 1-D arrays with unique elements.
|
1265 |
+
|
1266 |
+
The output is always a masked array. See `numpy.setxor1d` for more details.
|
1267 |
+
|
1268 |
+
See Also
|
1269 |
+
--------
|
1270 |
+
numpy.setxor1d : Equivalent function for ndarrays.
|
1271 |
+
|
1272 |
+
"""
|
1273 |
+
if not assume_unique:
|
1274 |
+
ar1 = unique(ar1)
|
1275 |
+
ar2 = unique(ar2)
|
1276 |
+
|
1277 |
+
aux = ma.concatenate((ar1, ar2))
|
1278 |
+
if aux.size == 0:
|
1279 |
+
return aux
|
1280 |
+
aux.sort()
|
1281 |
+
auxf = aux.filled()
|
1282 |
+
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
|
1283 |
+
flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
|
1284 |
+
# flag2 = ediff1d( flag ) == 0
|
1285 |
+
flag2 = (flag[1:] == flag[:-1])
|
1286 |
+
return aux[flag2]
|
1287 |
+
|
1288 |
+
|
1289 |
+
def in1d(ar1, ar2, assume_unique=False, invert=False):
|
1290 |
+
"""
|
1291 |
+
Test whether each element of an array is also present in a second
|
1292 |
+
array.
|
1293 |
+
|
1294 |
+
The output is always a masked array. See `numpy.in1d` for more details.
|
1295 |
+
|
1296 |
+
We recommend using :func:`isin` instead of `in1d` for new code.
|
1297 |
+
|
1298 |
+
See Also
|
1299 |
+
--------
|
1300 |
+
isin : Version of this function that preserves the shape of ar1.
|
1301 |
+
numpy.in1d : Equivalent function for ndarrays.
|
1302 |
+
|
1303 |
+
Notes
|
1304 |
+
-----
|
1305 |
+
.. versionadded:: 1.4.0
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
if not assume_unique:
|
1309 |
+
ar1, rev_idx = unique(ar1, return_inverse=True)
|
1310 |
+
ar2 = unique(ar2)
|
1311 |
+
|
1312 |
+
ar = ma.concatenate((ar1, ar2))
|
1313 |
+
# We need this to be a stable sort, so always use 'mergesort'
|
1314 |
+
# here. The values from the first array should always come before
|
1315 |
+
# the values from the second array.
|
1316 |
+
order = ar.argsort(kind='mergesort')
|
1317 |
+
sar = ar[order]
|
1318 |
+
if invert:
|
1319 |
+
bool_ar = (sar[1:] != sar[:-1])
|
1320 |
+
else:
|
1321 |
+
bool_ar = (sar[1:] == sar[:-1])
|
1322 |
+
flag = ma.concatenate((bool_ar, [invert]))
|
1323 |
+
indx = order.argsort(kind='mergesort')[:len(ar1)]
|
1324 |
+
|
1325 |
+
if assume_unique:
|
1326 |
+
return flag[indx]
|
1327 |
+
else:
|
1328 |
+
return flag[indx][rev_idx]
|
1329 |
+
|
1330 |
+
|
1331 |
+
def isin(element, test_elements, assume_unique=False, invert=False):
|
1332 |
+
"""
|
1333 |
+
Calculates `element in test_elements`, broadcasting over
|
1334 |
+
`element` only.
|
1335 |
+
|
1336 |
+
The output is always a masked array of the same shape as `element`.
|
1337 |
+
See `numpy.isin` for more details.
|
1338 |
+
|
1339 |
+
See Also
|
1340 |
+
--------
|
1341 |
+
in1d : Flattened version of this function.
|
1342 |
+
numpy.isin : Equivalent function for ndarrays.
|
1343 |
+
|
1344 |
+
Notes
|
1345 |
+
-----
|
1346 |
+
.. versionadded:: 1.13.0
|
1347 |
+
|
1348 |
+
"""
|
1349 |
+
element = ma.asarray(element)
|
1350 |
+
return in1d(element, test_elements, assume_unique=assume_unique,
|
1351 |
+
invert=invert).reshape(element.shape)
|
1352 |
+
|
1353 |
+
|
1354 |
+
def union1d(ar1, ar2):
|
1355 |
+
"""
|
1356 |
+
Union of two arrays.
|
1357 |
+
|
1358 |
+
The output is always a masked array. See `numpy.union1d` for more details.
|
1359 |
+
|
1360 |
+
See Also
|
1361 |
+
--------
|
1362 |
+
numpy.union1d : Equivalent function for ndarrays.
|
1363 |
+
|
1364 |
+
"""
|
1365 |
+
return unique(ma.concatenate((ar1, ar2), axis=None))
|
1366 |
+
|
1367 |
+
|
1368 |
+
def setdiff1d(ar1, ar2, assume_unique=False):
|
1369 |
+
"""
|
1370 |
+
Set difference of 1D arrays with unique elements.
|
1371 |
+
|
1372 |
+
The output is always a masked array. See `numpy.setdiff1d` for more
|
1373 |
+
details.
|
1374 |
+
|
1375 |
+
See Also
|
1376 |
+
--------
|
1377 |
+
numpy.setdiff1d : Equivalent function for ndarrays.
|
1378 |
+
|
1379 |
+
Examples
|
1380 |
+
--------
|
1381 |
+
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
|
1382 |
+
>>> np.ma.setdiff1d(x, [1, 2])
|
1383 |
+
masked_array(data=[3, --],
|
1384 |
+
mask=[False, True],
|
1385 |
+
fill_value=999999)
|
1386 |
+
|
1387 |
+
"""
|
1388 |
+
if assume_unique:
|
1389 |
+
ar1 = ma.asarray(ar1).ravel()
|
1390 |
+
else:
|
1391 |
+
ar1 = unique(ar1)
|
1392 |
+
ar2 = unique(ar2)
|
1393 |
+
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
|
1394 |
+
|
1395 |
+
|
1396 |
+
###############################################################################
|
1397 |
+
# Covariance #
|
1398 |
+
###############################################################################
|
1399 |
+
|
1400 |
+
|
1401 |
+
def _covhelper(x, y=None, rowvar=True, allow_masked=True):
|
1402 |
+
"""
|
1403 |
+
Private function for the computation of covariance and correlation
|
1404 |
+
coefficients.
|
1405 |
+
|
1406 |
+
"""
|
1407 |
+
x = ma.array(x, ndmin=2, copy=True, dtype=float)
|
1408 |
+
xmask = ma.getmaskarray(x)
|
1409 |
+
# Quick exit if we can't process masked data
|
1410 |
+
if not allow_masked and xmask.any():
|
1411 |
+
raise ValueError("Cannot process masked data.")
|
1412 |
+
#
|
1413 |
+
if x.shape[0] == 1:
|
1414 |
+
rowvar = True
|
1415 |
+
# Make sure that rowvar is either 0 or 1
|
1416 |
+
rowvar = int(bool(rowvar))
|
1417 |
+
axis = 1 - rowvar
|
1418 |
+
if rowvar:
|
1419 |
+
tup = (slice(None), None)
|
1420 |
+
else:
|
1421 |
+
tup = (None, slice(None))
|
1422 |
+
#
|
1423 |
+
if y is None:
|
1424 |
+
xnotmask = np.logical_not(xmask).astype(int)
|
1425 |
+
else:
|
1426 |
+
y = array(y, copy=False, ndmin=2, dtype=float)
|
1427 |
+
ymask = ma.getmaskarray(y)
|
1428 |
+
if not allow_masked and ymask.any():
|
1429 |
+
raise ValueError("Cannot process masked data.")
|
1430 |
+
if xmask.any() or ymask.any():
|
1431 |
+
if y.shape == x.shape:
|
1432 |
+
# Define some common mask
|
1433 |
+
common_mask = np.logical_or(xmask, ymask)
|
1434 |
+
if common_mask is not nomask:
|
1435 |
+
xmask = x._mask = y._mask = ymask = common_mask
|
1436 |
+
x._sharedmask = False
|
1437 |
+
y._sharedmask = False
|
1438 |
+
x = ma.concatenate((x, y), axis)
|
1439 |
+
xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int)
|
1440 |
+
x -= x.mean(axis=rowvar)[tup]
|
1441 |
+
return (x, xnotmask, rowvar)
|
1442 |
+
|
1443 |
+
|
1444 |
+
def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None):
|
1445 |
+
"""
|
1446 |
+
Estimate the covariance matrix.
|
1447 |
+
|
1448 |
+
Except for the handling of missing data this function does the same as
|
1449 |
+
`numpy.cov`. For more details and examples, see `numpy.cov`.
|
1450 |
+
|
1451 |
+
By default, masked values are recognized as such. If `x` and `y` have the
|
1452 |
+
same shape, a common mask is allocated: if ``x[i,j]`` is masked, then
|
1453 |
+
``y[i,j]`` will also be masked.
|
1454 |
+
Setting `allow_masked` to False will raise an exception if values are
|
1455 |
+
missing in either of the input arrays.
|
1456 |
+
|
1457 |
+
Parameters
|
1458 |
+
----------
|
1459 |
+
x : array_like
|
1460 |
+
A 1-D or 2-D array containing multiple variables and observations.
|
1461 |
+
Each row of `x` represents a variable, and each column a single
|
1462 |
+
observation of all those variables. Also see `rowvar` below.
|
1463 |
+
y : array_like, optional
|
1464 |
+
An additional set of variables and observations. `y` has the same
|
1465 |
+
shape as `x`.
|
1466 |
+
rowvar : bool, optional
|
1467 |
+
If `rowvar` is True (default), then each row represents a
|
1468 |
+
variable, with observations in the columns. Otherwise, the relationship
|
1469 |
+
is transposed: each column represents a variable, while the rows
|
1470 |
+
contain observations.
|
1471 |
+
bias : bool, optional
|
1472 |
+
Default normalization (False) is by ``(N-1)``, where ``N`` is the
|
1473 |
+
number of observations given (unbiased estimate). If `bias` is True,
|
1474 |
+
then normalization is by ``N``. This keyword can be overridden by
|
1475 |
+
the keyword ``ddof`` in numpy versions >= 1.5.
|
1476 |
+
allow_masked : bool, optional
|
1477 |
+
If True, masked values are propagated pair-wise: if a value is masked
|
1478 |
+
in `x`, the corresponding value is masked in `y`.
|
1479 |
+
If False, raises a `ValueError` exception when some values are missing.
|
1480 |
+
ddof : {None, int}, optional
|
1481 |
+
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
|
1482 |
+
the number of observations; this overrides the value implied by
|
1483 |
+
``bias``. The default value is ``None``.
|
1484 |
+
|
1485 |
+
.. versionadded:: 1.5
|
1486 |
+
|
1487 |
+
Raises
|
1488 |
+
------
|
1489 |
+
ValueError
|
1490 |
+
Raised if some values are missing and `allow_masked` is False.
|
1491 |
+
|
1492 |
+
See Also
|
1493 |
+
--------
|
1494 |
+
numpy.cov
|
1495 |
+
|
1496 |
+
"""
|
1497 |
+
# Check inputs
|
1498 |
+
if ddof is not None and ddof != int(ddof):
|
1499 |
+
raise ValueError("ddof must be an integer")
|
1500 |
+
# Set up ddof
|
1501 |
+
if ddof is None:
|
1502 |
+
if bias:
|
1503 |
+
ddof = 0
|
1504 |
+
else:
|
1505 |
+
ddof = 1
|
1506 |
+
|
1507 |
+
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
|
1508 |
+
if not rowvar:
|
1509 |
+
fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof
|
1510 |
+
result = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
|
1511 |
+
else:
|
1512 |
+
fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof
|
1513 |
+
result = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
|
1514 |
+
return result
|
1515 |
+
|
1516 |
+
|
1517 |
+
def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True,
|
1518 |
+
ddof=np._NoValue):
|
1519 |
+
"""
|
1520 |
+
Return Pearson product-moment correlation coefficients.
|
1521 |
+
|
1522 |
+
Except for the handling of missing data this function does the same as
|
1523 |
+
`numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`.
|
1524 |
+
|
1525 |
+
Parameters
|
1526 |
+
----------
|
1527 |
+
x : array_like
|
1528 |
+
A 1-D or 2-D array containing multiple variables and observations.
|
1529 |
+
Each row of `x` represents a variable, and each column a single
|
1530 |
+
observation of all those variables. Also see `rowvar` below.
|
1531 |
+
y : array_like, optional
|
1532 |
+
An additional set of variables and observations. `y` has the same
|
1533 |
+
shape as `x`.
|
1534 |
+
rowvar : bool, optional
|
1535 |
+
If `rowvar` is True (default), then each row represents a
|
1536 |
+
variable, with observations in the columns. Otherwise, the relationship
|
1537 |
+
is transposed: each column represents a variable, while the rows
|
1538 |
+
contain observations.
|
1539 |
+
bias : _NoValue, optional
|
1540 |
+
Has no effect, do not use.
|
1541 |
+
|
1542 |
+
.. deprecated:: 1.10.0
|
1543 |
+
allow_masked : bool, optional
|
1544 |
+
If True, masked values are propagated pair-wise: if a value is masked
|
1545 |
+
in `x`, the corresponding value is masked in `y`.
|
1546 |
+
If False, raises an exception. Because `bias` is deprecated, this
|
1547 |
+
argument needs to be treated as keyword only to avoid a warning.
|
1548 |
+
ddof : _NoValue, optional
|
1549 |
+
Has no effect, do not use.
|
1550 |
+
|
1551 |
+
.. deprecated:: 1.10.0
|
1552 |
+
|
1553 |
+
See Also
|
1554 |
+
--------
|
1555 |
+
numpy.corrcoef : Equivalent function in top-level NumPy module.
|
1556 |
+
cov : Estimate the covariance matrix.
|
1557 |
+
|
1558 |
+
Notes
|
1559 |
+
-----
|
1560 |
+
This function accepts but discards arguments `bias` and `ddof`. This is
|
1561 |
+
for backwards compatibility with previous versions of this function. These
|
1562 |
+
arguments had no effect on the return values of the function and can be
|
1563 |
+
safely ignored in this and previous versions of numpy.
|
1564 |
+
"""
|
1565 |
+
msg = 'bias and ddof have no effect and are deprecated'
|
1566 |
+
if bias is not np._NoValue or ddof is not np._NoValue:
|
1567 |
+
# 2015-03-15, 1.10
|
1568 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
1569 |
+
# Get the data
|
1570 |
+
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
|
1571 |
+
# Compute the covariance matrix
|
1572 |
+
if not rowvar:
|
1573 |
+
fact = np.dot(xnotmask.T, xnotmask) * 1.
|
1574 |
+
c = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
|
1575 |
+
else:
|
1576 |
+
fact = np.dot(xnotmask, xnotmask.T) * 1.
|
1577 |
+
c = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
|
1578 |
+
# Check whether we have a scalar
|
1579 |
+
try:
|
1580 |
+
diag = ma.diagonal(c)
|
1581 |
+
except ValueError:
|
1582 |
+
return 1
|
1583 |
+
#
|
1584 |
+
if xnotmask.all():
|
1585 |
+
_denom = ma.sqrt(ma.multiply.outer(diag, diag))
|
1586 |
+
else:
|
1587 |
+
_denom = diagflat(diag)
|
1588 |
+
_denom._sharedmask = False # We know return is always a copy
|
1589 |
+
n = x.shape[1 - rowvar]
|
1590 |
+
if rowvar:
|
1591 |
+
for i in range(n - 1):
|
1592 |
+
for j in range(i + 1, n):
|
1593 |
+
_x = mask_cols(vstack((x[i], x[j]))).var(axis=1)
|
1594 |
+
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
|
1595 |
+
else:
|
1596 |
+
for i in range(n - 1):
|
1597 |
+
for j in range(i + 1, n):
|
1598 |
+
_x = mask_cols(
|
1599 |
+
vstack((x[:, i], x[:, j]))).var(axis=1)
|
1600 |
+
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
|
1601 |
+
return c / _denom
|
1602 |
+
|
1603 |
+
#####--------------------------------------------------------------------------
|
1604 |
+
#---- --- Concatenation helpers ---
|
1605 |
+
#####--------------------------------------------------------------------------
|
1606 |
+
|
1607 |
+
class MAxisConcatenator(AxisConcatenator):
|
1608 |
+
"""
|
1609 |
+
Translate slice objects to concatenation along an axis.
|
1610 |
+
|
1611 |
+
For documentation on usage, see `mr_class`.
|
1612 |
+
|
1613 |
+
See Also
|
1614 |
+
--------
|
1615 |
+
mr_class
|
1616 |
+
|
1617 |
+
"""
|
1618 |
+
concatenate = staticmethod(concatenate)
|
1619 |
+
|
1620 |
+
@classmethod
|
1621 |
+
def makemat(cls, arr):
|
1622 |
+
# There used to be a view as np.matrix here, but we may eventually
|
1623 |
+
# deprecate that class. In preparation, we use the unmasked version
|
1624 |
+
# to construct the matrix (with copy=False for backwards compatibility
|
1625 |
+
# with the .view)
|
1626 |
+
data = super().makemat(arr.data, copy=False)
|
1627 |
+
return array(data, mask=arr.mask)
|
1628 |
+
|
1629 |
+
def __getitem__(self, key):
|
1630 |
+
# matrix builder syntax, like 'a, b; c, d'
|
1631 |
+
if isinstance(key, str):
|
1632 |
+
raise MAError("Unavailable for masked array.")
|
1633 |
+
|
1634 |
+
return super().__getitem__(key)
|
1635 |
+
|
1636 |
+
|
1637 |
+
class mr_class(MAxisConcatenator):
|
1638 |
+
"""
|
1639 |
+
Translate slice objects to concatenation along the first axis.
|
1640 |
+
|
1641 |
+
This is the masked array version of `lib.index_tricks.RClass`.
|
1642 |
+
|
1643 |
+
See Also
|
1644 |
+
--------
|
1645 |
+
lib.index_tricks.RClass
|
1646 |
+
|
1647 |
+
Examples
|
1648 |
+
--------
|
1649 |
+
>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
|
1650 |
+
masked_array(data=[1, 2, 3, ..., 4, 5, 6],
|
1651 |
+
mask=False,
|
1652 |
+
fill_value=999999)
|
1653 |
+
|
1654 |
+
"""
|
1655 |
+
def __init__(self):
|
1656 |
+
MAxisConcatenator.__init__(self, 0)
|
1657 |
+
|
1658 |
+
mr_ = mr_class()
|
1659 |
+
|
1660 |
+
|
1661 |
+
#####--------------------------------------------------------------------------
|
1662 |
+
#---- Find unmasked data ---
|
1663 |
+
#####--------------------------------------------------------------------------
|
1664 |
+
|
1665 |
+
def ndenumerate(a, compressed=True):
|
1666 |
+
"""
|
1667 |
+
Multidimensional index iterator.
|
1668 |
+
|
1669 |
+
Return an iterator yielding pairs of array coordinates and values,
|
1670 |
+
skipping elements that are masked. With `compressed=False`,
|
1671 |
+
`ma.masked` is yielded as the value of masked elements. This
|
1672 |
+
behavior differs from that of `numpy.ndenumerate`, which yields the
|
1673 |
+
value of the underlying data array.
|
1674 |
+
|
1675 |
+
Notes
|
1676 |
+
-----
|
1677 |
+
.. versionadded:: 1.23.0
|
1678 |
+
|
1679 |
+
Parameters
|
1680 |
+
----------
|
1681 |
+
a : array_like
|
1682 |
+
An array with (possibly) masked elements.
|
1683 |
+
compressed : bool, optional
|
1684 |
+
If True (default), masked elements are skipped.
|
1685 |
+
|
1686 |
+
See Also
|
1687 |
+
--------
|
1688 |
+
numpy.ndenumerate : Equivalent function ignoring any mask.
|
1689 |
+
|
1690 |
+
Examples
|
1691 |
+
--------
|
1692 |
+
>>> a = np.ma.arange(9).reshape((3, 3))
|
1693 |
+
>>> a[1, 0] = np.ma.masked
|
1694 |
+
>>> a[1, 2] = np.ma.masked
|
1695 |
+
>>> a[2, 1] = np.ma.masked
|
1696 |
+
>>> a
|
1697 |
+
masked_array(
|
1698 |
+
data=[[0, 1, 2],
|
1699 |
+
[--, 4, --],
|
1700 |
+
[6, --, 8]],
|
1701 |
+
mask=[[False, False, False],
|
1702 |
+
[ True, False, True],
|
1703 |
+
[False, True, False]],
|
1704 |
+
fill_value=999999)
|
1705 |
+
>>> for index, x in np.ma.ndenumerate(a):
|
1706 |
+
... print(index, x)
|
1707 |
+
(0, 0) 0
|
1708 |
+
(0, 1) 1
|
1709 |
+
(0, 2) 2
|
1710 |
+
(1, 1) 4
|
1711 |
+
(2, 0) 6
|
1712 |
+
(2, 2) 8
|
1713 |
+
|
1714 |
+
>>> for index, x in np.ma.ndenumerate(a, compressed=False):
|
1715 |
+
... print(index, x)
|
1716 |
+
(0, 0) 0
|
1717 |
+
(0, 1) 1
|
1718 |
+
(0, 2) 2
|
1719 |
+
(1, 0) --
|
1720 |
+
(1, 1) 4
|
1721 |
+
(1, 2) --
|
1722 |
+
(2, 0) 6
|
1723 |
+
(2, 1) --
|
1724 |
+
(2, 2) 8
|
1725 |
+
"""
|
1726 |
+
for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat):
|
1727 |
+
if not mask:
|
1728 |
+
yield it
|
1729 |
+
elif not compressed:
|
1730 |
+
yield it[0], masked
|
1731 |
+
|
1732 |
+
|
1733 |
+
def flatnotmasked_edges(a):
|
1734 |
+
"""
|
1735 |
+
Find the indices of the first and last unmasked values.
|
1736 |
+
|
1737 |
+
Expects a 1-D `MaskedArray`, returns None if all values are masked.
|
1738 |
+
|
1739 |
+
Parameters
|
1740 |
+
----------
|
1741 |
+
a : array_like
|
1742 |
+
Input 1-D `MaskedArray`
|
1743 |
+
|
1744 |
+
Returns
|
1745 |
+
-------
|
1746 |
+
edges : ndarray or None
|
1747 |
+
The indices of first and last non-masked value in the array.
|
1748 |
+
Returns None if all values are masked.
|
1749 |
+
|
1750 |
+
See Also
|
1751 |
+
--------
|
1752 |
+
flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
|
1753 |
+
clump_masked, clump_unmasked
|
1754 |
+
|
1755 |
+
Notes
|
1756 |
+
-----
|
1757 |
+
Only accepts 1-D arrays.
|
1758 |
+
|
1759 |
+
Examples
|
1760 |
+
--------
|
1761 |
+
>>> a = np.ma.arange(10)
|
1762 |
+
>>> np.ma.flatnotmasked_edges(a)
|
1763 |
+
array([0, 9])
|
1764 |
+
|
1765 |
+
>>> mask = (a < 3) | (a > 8) | (a == 5)
|
1766 |
+
>>> a[mask] = np.ma.masked
|
1767 |
+
>>> np.array(a[~a.mask])
|
1768 |
+
array([3, 4, 6, 7, 8])
|
1769 |
+
|
1770 |
+
>>> np.ma.flatnotmasked_edges(a)
|
1771 |
+
array([3, 8])
|
1772 |
+
|
1773 |
+
>>> a[:] = np.ma.masked
|
1774 |
+
>>> print(np.ma.flatnotmasked_edges(a))
|
1775 |
+
None
|
1776 |
+
|
1777 |
+
"""
|
1778 |
+
m = getmask(a)
|
1779 |
+
if m is nomask or not np.any(m):
|
1780 |
+
return np.array([0, a.size - 1])
|
1781 |
+
unmasked = np.flatnonzero(~m)
|
1782 |
+
if len(unmasked) > 0:
|
1783 |
+
return unmasked[[0, -1]]
|
1784 |
+
else:
|
1785 |
+
return None
|
1786 |
+
|
1787 |
+
|
1788 |
+
def notmasked_edges(a, axis=None):
|
1789 |
+
"""
|
1790 |
+
Find the indices of the first and last unmasked values along an axis.
|
1791 |
+
|
1792 |
+
If all values are masked, return None. Otherwise, return a list
|
1793 |
+
of two tuples, corresponding to the indices of the first and last
|
1794 |
+
unmasked values respectively.
|
1795 |
+
|
1796 |
+
Parameters
|
1797 |
+
----------
|
1798 |
+
a : array_like
|
1799 |
+
The input array.
|
1800 |
+
axis : int, optional
|
1801 |
+
Axis along which to perform the operation.
|
1802 |
+
If None (default), applies to a flattened version of the array.
|
1803 |
+
|
1804 |
+
Returns
|
1805 |
+
-------
|
1806 |
+
edges : ndarray or list
|
1807 |
+
An array of start and end indexes if there are any masked data in
|
1808 |
+
the array. If there are no masked data in the array, `edges` is a
|
1809 |
+
list of the first and last index.
|
1810 |
+
|
1811 |
+
See Also
|
1812 |
+
--------
|
1813 |
+
flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
|
1814 |
+
clump_masked, clump_unmasked
|
1815 |
+
|
1816 |
+
Examples
|
1817 |
+
--------
|
1818 |
+
>>> a = np.arange(9).reshape((3, 3))
|
1819 |
+
>>> m = np.zeros_like(a)
|
1820 |
+
>>> m[1:, 1:] = 1
|
1821 |
+
|
1822 |
+
>>> am = np.ma.array(a, mask=m)
|
1823 |
+
>>> np.array(am[~am.mask])
|
1824 |
+
array([0, 1, 2, 3, 6])
|
1825 |
+
|
1826 |
+
>>> np.ma.notmasked_edges(am)
|
1827 |
+
array([0, 6])
|
1828 |
+
|
1829 |
+
"""
|
1830 |
+
a = asarray(a)
|
1831 |
+
if axis is None or a.ndim == 1:
|
1832 |
+
return flatnotmasked_edges(a)
|
1833 |
+
m = getmaskarray(a)
|
1834 |
+
idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim))
|
1835 |
+
return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
|
1836 |
+
tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ]
|
1837 |
+
|
1838 |
+
|
1839 |
+
def flatnotmasked_contiguous(a):
|
1840 |
+
"""
|
1841 |
+
Find contiguous unmasked data in a masked array.
|
1842 |
+
|
1843 |
+
Parameters
|
1844 |
+
----------
|
1845 |
+
a : array_like
|
1846 |
+
The input array.
|
1847 |
+
|
1848 |
+
Returns
|
1849 |
+
-------
|
1850 |
+
slice_list : list
|
1851 |
+
A sorted sequence of `slice` objects (start index, end index).
|
1852 |
+
|
1853 |
+
.. versionchanged:: 1.15.0
|
1854 |
+
Now returns an empty list instead of None for a fully masked array
|
1855 |
+
|
1856 |
+
See Also
|
1857 |
+
--------
|
1858 |
+
flatnotmasked_edges, notmasked_contiguous, notmasked_edges
|
1859 |
+
clump_masked, clump_unmasked
|
1860 |
+
|
1861 |
+
Notes
|
1862 |
+
-----
|
1863 |
+
Only accepts 2-D arrays at most.
|
1864 |
+
|
1865 |
+
Examples
|
1866 |
+
--------
|
1867 |
+
>>> a = np.ma.arange(10)
|
1868 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1869 |
+
[slice(0, 10, None)]
|
1870 |
+
|
1871 |
+
>>> mask = (a < 3) | (a > 8) | (a == 5)
|
1872 |
+
>>> a[mask] = np.ma.masked
|
1873 |
+
>>> np.array(a[~a.mask])
|
1874 |
+
array([3, 4, 6, 7, 8])
|
1875 |
+
|
1876 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1877 |
+
[slice(3, 5, None), slice(6, 9, None)]
|
1878 |
+
>>> a[:] = np.ma.masked
|
1879 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1880 |
+
[]
|
1881 |
+
|
1882 |
+
"""
|
1883 |
+
m = getmask(a)
|
1884 |
+
if m is nomask:
|
1885 |
+
return [slice(0, a.size)]
|
1886 |
+
i = 0
|
1887 |
+
result = []
|
1888 |
+
for (k, g) in itertools.groupby(m.ravel()):
|
1889 |
+
n = len(list(g))
|
1890 |
+
if not k:
|
1891 |
+
result.append(slice(i, i + n))
|
1892 |
+
i += n
|
1893 |
+
return result
|
1894 |
+
|
1895 |
+
|
1896 |
+
def notmasked_contiguous(a, axis=None):
|
1897 |
+
"""
|
1898 |
+
Find contiguous unmasked data in a masked array along the given axis.
|
1899 |
+
|
1900 |
+
Parameters
|
1901 |
+
----------
|
1902 |
+
a : array_like
|
1903 |
+
The input array.
|
1904 |
+
axis : int, optional
|
1905 |
+
Axis along which to perform the operation.
|
1906 |
+
If None (default), applies to a flattened version of the array, and this
|
1907 |
+
is the same as `flatnotmasked_contiguous`.
|
1908 |
+
|
1909 |
+
Returns
|
1910 |
+
-------
|
1911 |
+
endpoints : list
|
1912 |
+
A list of slices (start and end indexes) of unmasked indexes
|
1913 |
+
in the array.
|
1914 |
+
|
1915 |
+
If the input is 2d and axis is specified, the result is a list of lists.
|
1916 |
+
|
1917 |
+
See Also
|
1918 |
+
--------
|
1919 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
1920 |
+
clump_masked, clump_unmasked
|
1921 |
+
|
1922 |
+
Notes
|
1923 |
+
-----
|
1924 |
+
Only accepts 2-D arrays at most.
|
1925 |
+
|
1926 |
+
Examples
|
1927 |
+
--------
|
1928 |
+
>>> a = np.arange(12).reshape((3, 4))
|
1929 |
+
>>> mask = np.zeros_like(a)
|
1930 |
+
>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
|
1931 |
+
>>> ma = np.ma.array(a, mask=mask)
|
1932 |
+
>>> ma
|
1933 |
+
masked_array(
|
1934 |
+
data=[[0, --, 2, 3],
|
1935 |
+
[--, --, --, 7],
|
1936 |
+
[8, --, --, 11]],
|
1937 |
+
mask=[[False, True, False, False],
|
1938 |
+
[ True, True, True, False],
|
1939 |
+
[False, True, True, False]],
|
1940 |
+
fill_value=999999)
|
1941 |
+
>>> np.array(ma[~ma.mask])
|
1942 |
+
array([ 0, 2, 3, 7, 8, 11])
|
1943 |
+
|
1944 |
+
>>> np.ma.notmasked_contiguous(ma)
|
1945 |
+
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
|
1946 |
+
|
1947 |
+
>>> np.ma.notmasked_contiguous(ma, axis=0)
|
1948 |
+
[[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]
|
1949 |
+
|
1950 |
+
>>> np.ma.notmasked_contiguous(ma, axis=1)
|
1951 |
+
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
|
1952 |
+
|
1953 |
+
"""
|
1954 |
+
a = asarray(a)
|
1955 |
+
nd = a.ndim
|
1956 |
+
if nd > 2:
|
1957 |
+
raise NotImplementedError("Currently limited to at most 2D array.")
|
1958 |
+
if axis is None or nd == 1:
|
1959 |
+
return flatnotmasked_contiguous(a)
|
1960 |
+
#
|
1961 |
+
result = []
|
1962 |
+
#
|
1963 |
+
other = (axis + 1) % 2
|
1964 |
+
idx = [0, 0]
|
1965 |
+
idx[axis] = slice(None, None)
|
1966 |
+
#
|
1967 |
+
for i in range(a.shape[other]):
|
1968 |
+
idx[other] = i
|
1969 |
+
result.append(flatnotmasked_contiguous(a[tuple(idx)]))
|
1970 |
+
return result
|
1971 |
+
|
1972 |
+
|
1973 |
+
def _ezclump(mask):
|
1974 |
+
"""
|
1975 |
+
Finds the clumps (groups of data with the same values) for a 1D bool array.
|
1976 |
+
|
1977 |
+
Returns a series of slices.
|
1978 |
+
"""
|
1979 |
+
if mask.ndim > 1:
|
1980 |
+
mask = mask.ravel()
|
1981 |
+
idx = (mask[1:] ^ mask[:-1]).nonzero()
|
1982 |
+
idx = idx[0] + 1
|
1983 |
+
|
1984 |
+
if mask[0]:
|
1985 |
+
if len(idx) == 0:
|
1986 |
+
return [slice(0, mask.size)]
|
1987 |
+
|
1988 |
+
r = [slice(0, idx[0])]
|
1989 |
+
r.extend((slice(left, right)
|
1990 |
+
for left, right in zip(idx[1:-1:2], idx[2::2])))
|
1991 |
+
else:
|
1992 |
+
if len(idx) == 0:
|
1993 |
+
return []
|
1994 |
+
|
1995 |
+
r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])]
|
1996 |
+
|
1997 |
+
if mask[-1]:
|
1998 |
+
r.append(slice(idx[-1], mask.size))
|
1999 |
+
return r
|
2000 |
+
|
2001 |
+
|
2002 |
+
def clump_unmasked(a):
|
2003 |
+
"""
|
2004 |
+
Return list of slices corresponding to the unmasked clumps of a 1-D array.
|
2005 |
+
(A "clump" is defined as a contiguous region of the array).
|
2006 |
+
|
2007 |
+
Parameters
|
2008 |
+
----------
|
2009 |
+
a : ndarray
|
2010 |
+
A one-dimensional masked array.
|
2011 |
+
|
2012 |
+
Returns
|
2013 |
+
-------
|
2014 |
+
slices : list of slice
|
2015 |
+
The list of slices, one for each continuous region of unmasked
|
2016 |
+
elements in `a`.
|
2017 |
+
|
2018 |
+
Notes
|
2019 |
+
-----
|
2020 |
+
.. versionadded:: 1.4.0
|
2021 |
+
|
2022 |
+
See Also
|
2023 |
+
--------
|
2024 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
2025 |
+
notmasked_contiguous, clump_masked
|
2026 |
+
|
2027 |
+
Examples
|
2028 |
+
--------
|
2029 |
+
>>> a = np.ma.masked_array(np.arange(10))
|
2030 |
+
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
|
2031 |
+
>>> np.ma.clump_unmasked(a)
|
2032 |
+
[slice(3, 6, None), slice(7, 8, None)]
|
2033 |
+
|
2034 |
+
"""
|
2035 |
+
mask = getattr(a, '_mask', nomask)
|
2036 |
+
if mask is nomask:
|
2037 |
+
return [slice(0, a.size)]
|
2038 |
+
return _ezclump(~mask)
|
2039 |
+
|
2040 |
+
|
2041 |
+
def clump_masked(a):
|
2042 |
+
"""
|
2043 |
+
Returns a list of slices corresponding to the masked clumps of a 1-D array.
|
2044 |
+
(A "clump" is defined as a contiguous region of the array).
|
2045 |
+
|
2046 |
+
Parameters
|
2047 |
+
----------
|
2048 |
+
a : ndarray
|
2049 |
+
A one-dimensional masked array.
|
2050 |
+
|
2051 |
+
Returns
|
2052 |
+
-------
|
2053 |
+
slices : list of slice
|
2054 |
+
The list of slices, one for each continuous region of masked elements
|
2055 |
+
in `a`.
|
2056 |
+
|
2057 |
+
Notes
|
2058 |
+
-----
|
2059 |
+
.. versionadded:: 1.4.0
|
2060 |
+
|
2061 |
+
See Also
|
2062 |
+
--------
|
2063 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
2064 |
+
notmasked_contiguous, clump_unmasked
|
2065 |
+
|
2066 |
+
Examples
|
2067 |
+
--------
|
2068 |
+
>>> a = np.ma.masked_array(np.arange(10))
|
2069 |
+
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
|
2070 |
+
>>> np.ma.clump_masked(a)
|
2071 |
+
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]
|
2072 |
+
|
2073 |
+
"""
|
2074 |
+
mask = ma.getmask(a)
|
2075 |
+
if mask is nomask:
|
2076 |
+
return []
|
2077 |
+
return _ezclump(mask)
|
2078 |
+
|
2079 |
+
|
2080 |
+
###############################################################################
|
2081 |
+
# Polynomial fit #
|
2082 |
+
###############################################################################
|
2083 |
+
|
2084 |
+
|
2085 |
+
def vander(x, n=None):
|
2086 |
+
"""
|
2087 |
+
Masked values in the input array result in rows of zeros.
|
2088 |
+
|
2089 |
+
"""
|
2090 |
+
_vander = np.vander(x, n)
|
2091 |
+
m = getmask(x)
|
2092 |
+
if m is not nomask:
|
2093 |
+
_vander[m] = 0
|
2094 |
+
return _vander
|
2095 |
+
|
2096 |
+
vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__)
|
2097 |
+
|
2098 |
+
|
2099 |
+
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
|
2100 |
+
"""
|
2101 |
+
Any masked values in x is propagated in y, and vice-versa.
|
2102 |
+
|
2103 |
+
"""
|
2104 |
+
x = asarray(x)
|
2105 |
+
y = asarray(y)
|
2106 |
+
|
2107 |
+
m = getmask(x)
|
2108 |
+
if y.ndim == 1:
|
2109 |
+
m = mask_or(m, getmask(y))
|
2110 |
+
elif y.ndim == 2:
|
2111 |
+
my = getmask(mask_rows(y))
|
2112 |
+
if my is not nomask:
|
2113 |
+
m = mask_or(m, my[:, 0])
|
2114 |
+
else:
|
2115 |
+
raise TypeError("Expected a 1D or 2D array for y!")
|
2116 |
+
|
2117 |
+
if w is not None:
|
2118 |
+
w = asarray(w)
|
2119 |
+
if w.ndim != 1:
|
2120 |
+
raise TypeError("expected a 1-d array for weights")
|
2121 |
+
if w.shape[0] != y.shape[0]:
|
2122 |
+
raise TypeError("expected w and y to have the same length")
|
2123 |
+
m = mask_or(m, getmask(w))
|
2124 |
+
|
2125 |
+
if m is not nomask:
|
2126 |
+
not_m = ~m
|
2127 |
+
if w is not None:
|
2128 |
+
w = w[not_m]
|
2129 |
+
return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov)
|
2130 |
+
else:
|
2131 |
+
return np.polyfit(x, y, deg, rcond, full, w, cov)
|
2132 |
+
|
2133 |
+
polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)
|