diff --git a/.gitattributes b/.gitattributes index 9e9194b957033c77ad3a5da50d83a52e43b7ff62..e4214e211e5b44e2ce15db5d36379e955dbd839e 100644 --- a/.gitattributes +++ b/.gitattributes @@ -382,3 +382,6 @@ tuning-competition-baseline/.venv/lib/python3.11/site-packages/nvidia/cudnn/lib/ .venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_ufunc.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text .venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_nditer.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text .venv/lib/python3.11/site-packages/numpy/core/tests/__pycache__/test_numeric.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/__config__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/__config__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..06e050eb59cb5559288f584a5634bcc9ec5b2f2b Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/__config__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..470794714eb1796e7d2a0f14d46749e21eefdc25 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/_distributor_init.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_distributor_init.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e2a604be654ef393e5d71eafffaca4be16afcfda Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_distributor_init.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/_globals.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_globals.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce6ecd090e75fa28e4acdeb10a9352314f6e905c Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_globals.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/_pytesttester.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_pytesttester.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5180318f59bc6fc5f52b74ac4029eadf42d2873f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/_pytesttester.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/conftest.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/conftest.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..60ec5e47b6410b16a57ef3dc883dc1278897040f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/conftest.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/ctypeslib.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/ctypeslib.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff0dcfe5876c1eaab6476adcb7feda9c0a51dbe0 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/ctypeslib.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/dtypes.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/dtypes.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..598aff477e6ea2a5a907607957e01fbc3deecf7a Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/dtypes.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/exceptions.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/exceptions.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c5061e90b35e1cf4e468ef171229aff2312a8d8 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/exceptions.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/matlib.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/matlib.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5e51d0a472002e861c60113138c9ef413b26ec6 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/matlib.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/__pycache__/version.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/__pycache__/version.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7638cfc1c206d33c5f99e5a40000ff7dcfa2038d Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/__pycache__/version.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__init__.py b/.venv/lib/python3.11/site-packages/numpy/_core/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a2f096f3f1744f5f122b97d6b7b2ce0559c6abaa --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/__init__.py @@ -0,0 +1,4 @@ +""" +This private module only contains stubs for interoperability with +NumPy 2.0 pickled arrays. It may not be used by the end user. +""" diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__init__.pyi b/.venv/lib/python3.11/site-packages/numpy/_core/__init__.pyi new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..44828bfd7d0a518afac6e2af129c1471120df859 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..786842bfcbdb3b0647f600e8f263b69cca27d6ae Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2a3b1b3bd202528a339638293599a61061c5dc4 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_internal.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_internal.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e434514a51874f46cd01d6725dc83193d6f7f19 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_internal.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_multiarray_umath.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_multiarray_umath.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6a48acc13428307ca7f1399e14092ba083b3334 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/_multiarray_umath.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/multiarray.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/multiarray.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..438d99cb3d9441301823b819a8c5f78055be3d7f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/multiarray.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/umath.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/umath.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..acb87369d106f0edcae2c8d066f215d06f5f077b Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/_core/__pycache__/umath.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/_dtype.py b/.venv/lib/python3.11/site-packages/numpy/_core/_dtype.py new file mode 100644 index 0000000000000000000000000000000000000000..974d93d98cbbbcd25c7aae6d299c9f0f43e41cfa --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/_dtype.py @@ -0,0 +1,6 @@ +from numpy.core import _dtype + +_globals = globals() + +for item in _dtype.__dir__(): + _globals[item] = getattr(_dtype, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/_dtype_ctypes.py b/.venv/lib/python3.11/site-packages/numpy/_core/_dtype_ctypes.py new file mode 100644 index 0000000000000000000000000000000000000000..bfa16aabf423d478af4ea2ab1910e454f5966028 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/_dtype_ctypes.py @@ -0,0 +1,6 @@ +from numpy.core import _dtype_ctypes + +_globals = globals() + +for item in _dtype_ctypes.__dir__(): + _globals[item] = getattr(_dtype_ctypes, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/_internal.py b/.venv/lib/python3.11/site-packages/numpy/_core/_internal.py new file mode 100644 index 0000000000000000000000000000000000000000..52a8e907292ebbadb481c78be2522aa37a5ba533 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/_internal.py @@ -0,0 +1,6 @@ +from numpy.core import _internal + +_globals = globals() + +for item in _internal.__dir__(): + _globals[item] = getattr(_internal, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/_multiarray_umath.py b/.venv/lib/python3.11/site-packages/numpy/_core/_multiarray_umath.py new file mode 100644 index 0000000000000000000000000000000000000000..7ce48fcb258d56855ffd104e0bb1cd4aafba9de2 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/_multiarray_umath.py @@ -0,0 +1,6 @@ +from numpy.core import _multiarray_umath + +_globals = globals() + +for item in _multiarray_umath.__dir__(): + _globals[item] = getattr(_multiarray_umath, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/multiarray.py b/.venv/lib/python3.11/site-packages/numpy/_core/multiarray.py new file mode 100644 index 0000000000000000000000000000000000000000..6c37d1da9fe7eede0cdf77ce3c5e6d4f2ad65550 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/multiarray.py @@ -0,0 +1,6 @@ +from numpy.core import multiarray + +_globals = globals() + +for item in multiarray.__dir__(): + _globals[item] = getattr(multiarray, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/_core/umath.py b/.venv/lib/python3.11/site-packages/numpy/_core/umath.py new file mode 100644 index 0000000000000000000000000000000000000000..3d08c90332a358aab1405dcc22f5dd0502a1f152 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/_core/umath.py @@ -0,0 +1,6 @@ +from numpy.core import umath + +_globals = globals() + +for item in umath.__dir__(): + _globals[item] = getattr(umath, item) diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..203062a08adc87733fe77224b533161df5dfd479 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/ccompiler_opt.cpython-311.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1f028da28ccdb1a5a6e60c4f0a116f52a11e5d7135c99e75298848c3d5bdbdd1 +size 120311 diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6d46b0c24d744008f4d47f9c3ab754bee803bb6 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/misc_util.cpython-311.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7a8a1c343739460f44df3f6fa2b7ebbf39191903196c937c6c82a5f412da965f +size 118777 diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76e5de19c45eb7db78582f767874bbc71c7e8765 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/distutils/__pycache__/system_info.cpython-311.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:42cdd14962a62a36c736f614fa765b62a87a5c4a148b35e9e0b93ea397a2fd92 +size 158862 diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..49d80f044b4dd93955a39a88e698b62912198c95 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/intel.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/intel.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..20b75dff91210c87ec5482d804a6d03ccca91e0a Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/intel.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/mips.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/mips.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c76e87df6c0e3597e7077f7e765685fa4e5b5843 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/mips.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/none.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/none.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2dd5cb79fe1ff5a14c8c4c92d4b23a0881a5d604 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/none.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/pathf95.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/pathf95.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67ee68261d633d9e617e2911d2d2bf7039e4a944 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/pathf95.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/sun.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/sun.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c080e25f96817c8733ad0b8a679f8c5f7b63f3e Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/distutils/fcompiler/__pycache__/sun.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/API_CHANGES.txt b/.venv/lib/python3.11/site-packages/numpy/ma/API_CHANGES.txt new file mode 100644 index 0000000000000000000000000000000000000000..a3d792a1fad983fc0b8403870c2e2d801dabf314 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/API_CHANGES.txt @@ -0,0 +1,135 @@ +.. -*- rest -*- + +================================================== +API changes in the new masked array implementation +================================================== + +Masked arrays are subclasses of ndarray +--------------------------------------- + +Contrary to the original implementation, masked arrays are now regular +ndarrays:: + + >>> x = masked_array([1,2,3],mask=[0,0,1]) + >>> print isinstance(x, numpy.ndarray) + True + + +``_data`` returns a view of the masked array +-------------------------------------------- + +Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the +``_data`` part will return a regular ndarray or any of its subclass, depending +on the initial data:: + + >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) + >>> print x._data + [[1 2] + [3 4]] + >>> print type(x._data) + + + +In practice, ``_data`` is implemented as a property, not as an attribute. +Therefore, you cannot access it directly, and some simple tests such as the +following one will fail:: + + >>>x._data is x._data + False + + +``filled(x)`` can return a subclass of ndarray +---------------------------------------------- +The function ``filled(a)`` returns an array of the same type as ``a._data``:: + + >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) + >>> y = filled(x) + >>> print type(y) + + >>> print y + matrix([[ 1, 2], + [ 3, 999999]]) + + +``put``, ``putmask`` behave like their ndarray counterparts +----------------------------------------------------------- + +Previously, ``putmask`` was used like this:: + + mask = [False,True,True] + x = array([1,4,7],mask=mask) + putmask(x,mask,[3]) + +which translated to:: + + x[~mask] = [3] + +(Note that a ``True``-value in a mask suppresses a value.) + +In other words, the mask had the same length as ``x``, whereas +``values`` had ``sum(~mask)`` elements. + +Now, the behaviour is similar to that of ``ndarray.putmask``, where +the mask and the values are both the same length as ``x``, i.e. + +:: + + putmask(x,mask,[3,0,0]) + + +``fill_value`` is a property +---------------------------- + +``fill_value`` is no longer a method, but a property:: + + >>> print x.fill_value + 999999 + +``cumsum`` and ``cumprod`` ignore missing values +------------------------------------------------ + +Missing values are assumed to be the identity element, i.e. 0 for +``cumsum`` and 1 for ``cumprod``:: + + >>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False]) + >>> print x + [1 -- 3 4] + >>> print x.cumsum() + [1 -- 4 8] + >> print x.cumprod() + [1 -- 3 12] + +``bool(x)`` raises a ValueError +------------------------------- + +Masked arrays now behave like regular ``ndarrays``, in that they cannot be +converted to booleans: + +:: + + >>> x = N.ma.array([1,2,3]) + >>> bool(x) + Traceback (most recent call last): + File "", line 1, in + ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() + + +================================== +New features (non exhaustive list) +================================== + +``mr_`` +------- + +``mr_`` mimics the behavior of ``r_`` for masked arrays:: + + >>> np.ma.mr_[3,4,5] + masked_array(data = [3 4 5], + mask = False, + fill_value=999999) + + +``anom`` +-------- + +The ``anom`` method returns the deviations from the average (anomalies). diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/LICENSE b/.venv/lib/python3.11/site-packages/numpy/ma/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..b41aae0c89a0f2486843d395f972db759c73c4b8 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/LICENSE @@ -0,0 +1,24 @@ +* Copyright (c) 2006, University of Georgia and Pierre G.F. Gerard-Marchant +* All rights reserved. +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions are met: +* +* * Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* * Redistributions in binary form must reproduce the above copyright +* notice, this list of conditions and the following disclaimer in the +* documentation and/or other materials provided with the distribution. +* * Neither the name of the University of Georgia nor the +* names of its contributors may be used to endorse or promote products +* derived from this software without specific prior written permission. +* +* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY +* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY +* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/README.rst b/.venv/lib/python3.11/site-packages/numpy/ma/README.rst new file mode 100644 index 0000000000000000000000000000000000000000..47f20d6458e835319252a327d31f77531ab14e8c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/README.rst @@ -0,0 +1,236 @@ +================================== +A Guide to Masked Arrays in NumPy +================================== + +.. Contents:: + +See http://www.scipy.org/scipy/numpy/wiki/MaskedArray (dead link) +for updates of this document. + + +History +------- + +As a regular user of MaskedArray, I (Pierre G.F. Gerard-Marchant) became +increasingly frustrated with the subclassing of masked arrays (even if +I can only blame my inexperience). I needed to develop a class of arrays +that could store some additional information along with numerical values, +while keeping the possibility for missing data (picture storing a series +of dates along with measurements, what would later become the `TimeSeries +Scikit `__ +(dead link). + +I started to implement such a class, but then quickly realized that +any additional information disappeared when processing these subarrays +(for example, adding a constant value to a subarray would erase its +dates). I ended up writing the equivalent of *numpy.core.ma* for my +particular class, ufuncs included. Everything went fine until I needed to +subclass my new class, when more problems showed up: some attributes of +the new subclass were lost during processing. I identified the culprit as +MaskedArray, which returns masked ndarrays when I expected masked +arrays of my class. I was preparing myself to rewrite *numpy.core.ma* +when I forced myself to learn how to subclass ndarrays. As I became more +familiar with the *__new__* and *__array_finalize__* methods, +I started to wonder why masked arrays were objects, and not ndarrays, +and whether it wouldn't be more convenient for subclassing if they did +behave like regular ndarrays. + +The new *maskedarray* is what I eventually come up with. The +main differences with the initial *numpy.core.ma* package are +that MaskedArray is now a subclass of *ndarray* and that the +*_data* section can now be any subclass of *ndarray*. Apart from a +couple of issues listed below, the behavior of the new MaskedArray +class reproduces the old one. Initially the *maskedarray* +implementation was marginally slower than *numpy.ma* in some areas, +but work is underway to speed it up; the expectation is that it can be +made substantially faster than the present *numpy.ma*. + + +Note that if the subclass has some special methods and +attributes, they are not propagated to the masked version: +this would require a modification of the *__getattribute__* +method (first trying *ndarray.__getattribute__*, then trying +*self._data.__getattribute__* if an exception is raised in the first +place), which really slows things down. + +Main differences +---------------- + + * The *_data* part of the masked array can be any subclass of ndarray (but not recarray, cf below). + * *fill_value* is now a property, not a function. + * in the majority of cases, the mask is forced to *nomask* when no value is actually masked. A notable exception is when a masked array (with no masked values) has just been unpickled. + * I got rid of the *share_mask* flag, I never understood its purpose. + * *put*, *putmask* and *take* now mimic the ndarray methods, to avoid unpleasant surprises. Moreover, *put* and *putmask* both update the mask when needed. * if *a* is a masked array, *bool(a)* raises a *ValueError*, as it does with ndarrays. + * in the same way, the comparison of two masked arrays is a masked array, not a boolean + * *filled(a)* returns an array of the same subclass as *a._data*, and no test is performed on whether it is contiguous or not. + * the mask is always printed, even if it's *nomask*, which makes things easy (for me at least) to remember that a masked array is used. + * *cumsum* works as if the *_data* array was filled with 0. The mask is preserved, but not updated. + * *cumprod* works as if the *_data* array was filled with 1. The mask is preserved, but not updated. + +New features +------------ + +This list is non-exhaustive... + + * the *mr_* function mimics *r_* for masked arrays. + * the *anom* method returns the anomalies (deviations from the average) + +Using the new package with numpy.core.ma +---------------------------------------- + +I tried to make sure that the new package can understand old masked +arrays. Unfortunately, there's no upward compatibility. + +For example: + +>>> import numpy.core.ma as old_ma +>>> import maskedarray as new_ma +>>> x = old_ma.array([1,2,3,4,5], mask=[0,0,1,0,0]) +>>> x +array(data = + [ 1 2 999999 4 5], + mask = + [False False True False False], + fill_value=999999) +>>> y = new_ma.array([1,2,3,4,5], mask=[0,0,1,0,0]) +>>> y +array(data = [1 2 -- 4 5], + mask = [False False True False False], + fill_value=999999) +>>> x==y +array(data = + [True True True True True], + mask = + [False False True False False], + fill_value=?) +>>> old_ma.getmask(x) == new_ma.getmask(x) +array([True, True, True, True, True]) +>>> old_ma.getmask(y) == new_ma.getmask(y) +array([True, True, False, True, True]) +>>> old_ma.getmask(y) +False + + +Using maskedarray with matplotlib +--------------------------------- + +Starting with matplotlib 0.91.2, the masked array importing will work with +the maskedarray branch) as well as with earlier versions. + +By default matplotlib still uses numpy.ma, but there is an rcParams setting +that you can use to select maskedarray instead. In the matplotlibrc file +you will find:: + + #maskedarray : False # True to use external maskedarray module + # instead of numpy.ma; this is a temporary # + setting for testing maskedarray. + + +Uncomment and set to True to select maskedarray everywhere. +Alternatively, you can test a script with maskedarray by using a +command-line option, e.g.:: + + python simple_plot.py --maskedarray + + +Masked records +-------------- + +Like *numpy.core.ma*, the *ndarray*-based implementation +of MaskedArray is limited when working with records: you can +mask any record of the array, but not a field in a record. If you +need this feature, you may want to give the *mrecords* package +a try (available in the *maskedarray* directory in the scipy +sandbox). This module defines a new class, *MaskedRecord*. An +instance of this class accepts a *recarray* as data, and uses two +masks: the *fieldmask* has as many entries as records in the array, +each entry with the same fields as a record, but of boolean types: +they indicate whether the field is masked or not; a record entry +is flagged as masked in the *mask* array if all the fields are +masked. A few examples in the file should give you an idea of what +can be done. Note that *mrecords* is still experimental... + +Optimizing maskedarray +---------------------- + +Should masked arrays be filled before processing or not? +-------------------------------------------------------- + +In the current implementation, most operations on masked arrays involve +the following steps: + + * the input arrays are filled + * the operation is performed on the filled arrays + * the mask is set for the results, from the combination of the input masks and the mask corresponding to the domain of the operation. + +For example, consider the division of two masked arrays:: + + import numpy + import maskedarray as ma + x = ma.array([1,2,3,4],mask=[1,0,0,0], dtype=numpy.float_) + y = ma.array([-1,0,1,2], mask=[0,0,0,1], dtype=numpy.float_) + +The division of x by y is then computed as:: + + d1 = x.filled(0) # d1 = array([0., 2., 3., 4.]) + d2 = y.filled(1) # array([-1., 0., 1., 1.]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + result = (d1/d2).view(MaskedArray) # masked_array([-0. inf, 3., 4.]) + result._mask = logical_or(m, dm) + +Note that a division by zero takes place. To avoid it, we can consider +to fill the input arrays, taking the domain mask into account, so that:: + + d1 = x._data.copy() # d1 = array([1., 2., 3., 4.]) + d2 = y._data.copy() # array([-1., 0., 1., 2.]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + numpy.putmask(d2, dm, 1) # d2 = array([-1., 1., 1., 2.]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + result = (d1/d2).view(MaskedArray) # masked_array([-1. 0., 3., 2.]) + result._mask = logical_or(m, dm) + +Note that the *.copy()* is required to avoid updating the inputs with +*putmask*. The *.filled()* method also involves a *.copy()*. + +A third possibility consists in avoid filling the arrays:: + + d1 = x._data # d1 = array([1., 2., 3., 4.]) + d2 = y._data # array([-1., 0., 1., 2.]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + result = (d1/d2).view(MaskedArray) # masked_array([-1. inf, 3., 2.]) + result._mask = logical_or(m, dm) + +Note that here again the division by zero takes place. + +A quick benchmark gives the following results: + + * *numpy.ma.divide* : 2.69 ms per loop + * classical division : 2.21 ms per loop + * division w/ prefilling : 2.34 ms per loop + * division w/o filling : 1.55 ms per loop + +So, is it worth filling the arrays beforehand ? Yes, if we are interested +in avoiding floating-point exceptions that may fill the result with infs +and nans. No, if we are only interested into speed... + + +Thanks +------ + +I'd like to thank Paul Dubois, Travis Oliphant and Sasha for the +original masked array package: without you, I would never have started +that (it might be argued that I shouldn't have anyway, but that's +another story...). I also wish to extend these thanks to Reggie Dugard +and Eric Firing for their suggestions and numerous improvements. + + +Revision notes +-------------- + + * 08/25/2007 : Creation of this page + * 01/23/2007 : The package has been moved to the SciPy sandbox, and is regularly updated: please check out your SVN version! diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__init__.py b/.venv/lib/python3.11/site-packages/numpy/ma/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..870cc4ef2daabf7ac770415f73940b3edfd2477c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/__init__.py @@ -0,0 +1,54 @@ +""" +============= +Masked Arrays +============= + +Arrays sometimes contain invalid or missing data. When doing operations +on such arrays, we wish to suppress invalid values, which is the purpose masked +arrays fulfill (an example of typical use is given below). + +For example, examine the following array: + +>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan]) + +When we try to calculate the mean of the data, the result is undetermined: + +>>> np.mean(x) +nan + +The mean is calculated using roughly ``np.sum(x)/len(x)``, but since +any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter +masked arrays: + +>>> m = np.ma.masked_array(x, np.isnan(x)) +>>> m +masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --], + mask = [False False False True False False False True], + fill_value=1e+20) + +Here, we construct a masked array that suppress all ``NaN`` values. We +may now proceed to calculate the mean of the other values: + +>>> np.mean(m) +2.6666666666666665 + +.. [1] Not-a-Number, a floating point value that is the result of an + invalid operation. + +.. moduleauthor:: Pierre Gerard-Marchant +.. moduleauthor:: Jarrod Millman + +""" +from . import core +from .core import * + +from . import extras +from .extras import * + +__all__ = ['core', 'extras'] +__all__ += core.__all__ +__all__ += extras.__all__ + +from numpy._pytesttester import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__init__.pyi b/.venv/lib/python3.11/site-packages/numpy/ma/__init__.pyi new file mode 100644 index 0000000000000000000000000000000000000000..ce72383e5ea3d62d763e74a48694202425f10558 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/__init__.pyi @@ -0,0 +1,234 @@ +from numpy._pytesttester import PytestTester + +from numpy.ma import extras as extras + +from numpy.ma.core import ( + MAError as MAError, + MaskError as MaskError, + MaskType as MaskType, + MaskedArray as MaskedArray, + abs as abs, + absolute as absolute, + add as add, + all as all, + allclose as allclose, + allequal as allequal, + alltrue as alltrue, + amax as amax, + amin as amin, + angle as angle, + anom as anom, + anomalies as anomalies, + any as any, + append as append, + arange as arange, + arccos as arccos, + arccosh as arccosh, + arcsin as arcsin, + arcsinh as arcsinh, + arctan as arctan, + arctan2 as arctan2, + arctanh as arctanh, + argmax as argmax, + argmin as argmin, + argsort as argsort, + around as around, + array as array, + asanyarray as asanyarray, + asarray as asarray, + bitwise_and as bitwise_and, + bitwise_or as bitwise_or, + bitwise_xor as bitwise_xor, + bool_ as bool_, + ceil as ceil, + choose as choose, + clip as clip, + common_fill_value as common_fill_value, + compress as compress, + compressed as compressed, + concatenate as concatenate, + conjugate as conjugate, + convolve as convolve, + copy as copy, + correlate as correlate, + cos as cos, + cosh as cosh, + count as count, + cumprod as cumprod, + cumsum as cumsum, + default_fill_value as default_fill_value, + diag as diag, + diagonal as diagonal, + diff as diff, + divide as divide, + empty as empty, + empty_like as empty_like, + equal as equal, + exp as exp, + expand_dims as expand_dims, + fabs as fabs, + filled as filled, + fix_invalid as fix_invalid, + flatten_mask as flatten_mask, + flatten_structured_array as flatten_structured_array, + floor as floor, + floor_divide as floor_divide, + fmod as fmod, + frombuffer as frombuffer, + fromflex as fromflex, + fromfunction as fromfunction, + getdata as getdata, + getmask as getmask, + getmaskarray as getmaskarray, + greater as greater, + greater_equal as greater_equal, + harden_mask as harden_mask, + hypot as hypot, + identity as identity, + ids as ids, + indices as indices, + inner as inner, + innerproduct as innerproduct, + isMA as isMA, + isMaskedArray as isMaskedArray, + is_mask as is_mask, + is_masked as is_masked, + isarray as isarray, + left_shift as left_shift, + less as less, + less_equal as less_equal, + log as log, + log10 as log10, + log2 as log2, + logical_and as logical_and, + logical_not as logical_not, + logical_or as logical_or, + logical_xor as logical_xor, + make_mask as make_mask, + make_mask_descr as make_mask_descr, + make_mask_none as make_mask_none, + mask_or as mask_or, + masked as masked, + masked_array as masked_array, + masked_equal as masked_equal, + masked_greater as masked_greater, + masked_greater_equal as masked_greater_equal, + masked_inside as masked_inside, + masked_invalid as masked_invalid, + masked_less as masked_less, + masked_less_equal as masked_less_equal, + masked_not_equal as masked_not_equal, + masked_object as masked_object, + masked_outside as masked_outside, + masked_print_option as masked_print_option, + masked_singleton as masked_singleton, + masked_values as masked_values, + masked_where as masked_where, + max as max, + maximum as maximum, + maximum_fill_value as maximum_fill_value, + mean as mean, + min as min, + minimum as minimum, + minimum_fill_value as minimum_fill_value, + mod as mod, + multiply as multiply, + mvoid as mvoid, + ndim as ndim, + negative as negative, + nomask as nomask, + nonzero as nonzero, + not_equal as not_equal, + ones as ones, + outer as outer, + outerproduct as outerproduct, + power as power, + prod as prod, + product as product, + ptp as ptp, + put as put, + putmask as putmask, + ravel as ravel, + remainder as remainder, + repeat as repeat, + reshape as reshape, + resize as resize, + right_shift as right_shift, + round as round, + set_fill_value as set_fill_value, + shape as shape, + sin as sin, + sinh as sinh, + size as size, + soften_mask as soften_mask, + sometrue as sometrue, + sort as sort, + sqrt as sqrt, + squeeze as squeeze, + std as std, + subtract as subtract, + sum as sum, + swapaxes as swapaxes, + take as take, + tan as tan, + tanh as tanh, + trace as trace, + transpose as transpose, + true_divide as true_divide, + var as var, + where as where, + zeros as zeros, +) + +from numpy.ma.extras import ( + apply_along_axis as apply_along_axis, + apply_over_axes as apply_over_axes, + atleast_1d as atleast_1d, + atleast_2d as atleast_2d, + atleast_3d as atleast_3d, + average as average, + clump_masked as clump_masked, + clump_unmasked as clump_unmasked, + column_stack as column_stack, + compress_cols as compress_cols, + compress_nd as compress_nd, + compress_rowcols as compress_rowcols, + compress_rows as compress_rows, + count_masked as count_masked, + corrcoef as corrcoef, + cov as cov, + diagflat as diagflat, + dot as dot, + dstack as dstack, + ediff1d as ediff1d, + flatnotmasked_contiguous as flatnotmasked_contiguous, + flatnotmasked_edges as flatnotmasked_edges, + hsplit as hsplit, + hstack as hstack, + isin as isin, + in1d as in1d, + intersect1d as intersect1d, + mask_cols as mask_cols, + mask_rowcols as mask_rowcols, + mask_rows as mask_rows, + masked_all as masked_all, + masked_all_like as masked_all_like, + median as median, + mr_ as mr_, + ndenumerate as ndenumerate, + notmasked_contiguous as notmasked_contiguous, + notmasked_edges as notmasked_edges, + polyfit as polyfit, + row_stack as row_stack, + setdiff1d as setdiff1d, + setxor1d as setxor1d, + stack as stack, + unique as unique, + union1d as union1d, + vander as vander, + vstack as vstack, +) + +__all__: list[str] +__path__: list[str] +test: PytestTester diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd87f6f033b6bff8d695cd379af158856d3600cc Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/extras.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/extras.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c7e61819bcb4ea81e409ca29c3ba5f501229deed Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/extras.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/mrecords.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/mrecords.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa0b7e6b2c9f0bfa6ecdc1ce74b79297d11f2fef Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/mrecords.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/setup.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/setup.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5523118bd6dd124a8b45d0f16d69dcad6b4adc4 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/setup.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/testutils.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/testutils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0646fa652468fc1da18864dfd08d4d385a895c9 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/testutils.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9379e2cd55d8b084c961874328c9dc782e880112 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/core.py b/.venv/lib/python3.11/site-packages/numpy/ma/core.py new file mode 100644 index 0000000000000000000000000000000000000000..16f74e89e9023fffef14b459fb21736f3219ac2f --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/core.py @@ -0,0 +1,8565 @@ +""" +numpy.ma : a package to handle missing or invalid values. + +This package was initially written for numarray by Paul F. Dubois +at Lawrence Livermore National Laboratory. +In 2006, the package was completely rewritten by Pierre Gerard-Marchant +(University of Georgia) to make the MaskedArray class a subclass of ndarray, +and to improve support of structured arrays. + + +Copyright 1999, 2000, 2001 Regents of the University of California. +Released for unlimited redistribution. + +* Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois. +* Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant + (pgmdevlist_AT_gmail_DOT_com) +* Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com) + +.. moduleauthor:: Pierre Gerard-Marchant + +""" +# pylint: disable-msg=E1002 +import builtins +import inspect +import operator +import warnings +import textwrap +import re +from functools import reduce + +import numpy as np +import numpy.core.umath as umath +import numpy.core.numerictypes as ntypes +from numpy.core import multiarray as mu +from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue +from numpy import array as narray +from numpy.lib.function_base import angle +from numpy.compat import ( + getargspec, formatargspec, long, unicode, bytes + ) +from numpy import expand_dims +from numpy.core.numeric import normalize_axis_tuple + + +__all__ = [ + 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute', + 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin', + 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos', + 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', + 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray', + 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil', + 'choose', 'clip', 'common_fill_value', 'compress', 'compressed', + 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh', + 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal', + 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp', + 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask', + 'flatten_structured_array', 'floor', 'floor_divide', 'fmod', + 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask', + 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot', + 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA', + 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift', + 'less', 'less_equal', 'log', 'log10', 'log2', + 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask', + 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked', + 'masked_array', 'masked_equal', 'masked_greater', + 'masked_greater_equal', 'masked_inside', 'masked_invalid', + 'masked_less', 'masked_less_equal', 'masked_not_equal', + 'masked_object', 'masked_outside', 'masked_print_option', + 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum', + 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value', + 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero', + 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod', + 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder', + 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_', + 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask', + 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum', + 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide', + 'var', 'where', 'zeros', 'zeros_like', + ] + +MaskType = np.bool_ +nomask = MaskType(0) + +class MaskedArrayFutureWarning(FutureWarning): + pass + +def _deprecate_argsort_axis(arr): + """ + Adjust the axis passed to argsort, warning if necessary + + Parameters + ---------- + arr + The array which argsort was called on + + np.ma.argsort has a long-term bug where the default of the axis argument + is wrong (gh-8701), which now must be kept for backwards compatibility. + Thankfully, this only makes a difference when arrays are 2- or more- + dimensional, so we only need a warning then. + """ + if arr.ndim <= 1: + # no warning needed - but switch to -1 anyway, to avoid surprising + # subclasses, which are more likely to implement scalar axes. + return -1 + else: + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + warnings.warn( + "In the future the default for argsort will be axis=-1, not the " + "current None, to match its documentation and np.argsort. " + "Explicitly pass -1 or None to silence this warning.", + MaskedArrayFutureWarning, stacklevel=3) + return None + + +def doc_note(initialdoc, note): + """ + Adds a Notes section to an existing docstring. + + """ + if initialdoc is None: + return + if note is None: + return initialdoc + + notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc)) + notedoc = "\n\nNotes\n-----\n%s\n" % inspect.cleandoc(note) + + return ''.join(notesplit[:1] + [notedoc] + notesplit[1:]) + + +def get_object_signature(obj): + """ + Get the signature from obj + + """ + try: + sig = formatargspec(*getargspec(obj)) + except TypeError: + sig = '' + return sig + + +############################################################################### +# Exceptions # +############################################################################### + + +class MAError(Exception): + """ + Class for masked array related errors. + + """ + pass + + +class MaskError(MAError): + """ + Class for mask related errors. + + """ + pass + + +############################################################################### +# Filling options # +############################################################################### + + +# b: boolean - c: complex - f: floats - i: integer - O: object - S: string +default_filler = {'b': True, + 'c': 1.e20 + 0.0j, + 'f': 1.e20, + 'i': 999999, + 'O': '?', + 'S': b'N/A', + 'u': 999999, + 'V': b'???', + 'U': 'N/A' + } + +# Add datetime64 and timedelta64 types +for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", + "fs", "as"]: + default_filler["M8[" + v + "]"] = np.datetime64("NaT", v) + default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v) + +float_types_list = [np.half, np.single, np.double, np.longdouble, + np.csingle, np.cdouble, np.clongdouble] +max_filler = ntypes._minvals +max_filler.update([(k, -np.inf) for k in float_types_list[:4]]) +max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]]) + +min_filler = ntypes._maxvals +min_filler.update([(k, +np.inf) for k in float_types_list[:4]]) +min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]]) + +del float_types_list + +def _recursive_fill_value(dtype, f): + """ + Recursively produce a fill value for `dtype`, calling f on scalar dtypes + """ + if dtype.names is not None: + # We wrap into `array` here, which ensures we use NumPy cast rules + # for integer casts, this allows the use of 99999 as a fill value + # for int8. + # TODO: This is probably a mess, but should best preserve behavior? + vals = tuple( + np.array(_recursive_fill_value(dtype[name], f)) + for name in dtype.names) + return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d + elif dtype.subdtype: + subtype, shape = dtype.subdtype + subval = _recursive_fill_value(subtype, f) + return np.full(shape, subval) + else: + return f(dtype) + + +def _get_dtype_of(obj): + """ Convert the argument for *_fill_value into a dtype """ + if isinstance(obj, np.dtype): + return obj + elif hasattr(obj, 'dtype'): + return obj.dtype + else: + return np.asanyarray(obj).dtype + + +def default_fill_value(obj): + """ + Return the default fill value for the argument object. + + The default filling value depends on the datatype of the input + array or the type of the input scalar: + + ======== ======== + datatype default + ======== ======== + bool True + int 999999 + float 1.e20 + complex 1.e20+0j + object '?' + string 'N/A' + ======== ======== + + For structured types, a structured scalar is returned, with each field the + default fill value for its type. + + For subarray types, the fill value is an array of the same size containing + the default scalar fill value. + + Parameters + ---------- + obj : ndarray, dtype or scalar + The array data-type or scalar for which the default fill value + is returned. + + Returns + ------- + fill_value : scalar + The default fill value. + + Examples + -------- + >>> np.ma.default_fill_value(1) + 999999 + >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi])) + 1e+20 + >>> np.ma.default_fill_value(np.dtype(complex)) + (1e+20+0j) + + """ + def _scalar_fill_value(dtype): + if dtype.kind in 'Mm': + return default_filler.get(dtype.str[1:], '?') + else: + return default_filler.get(dtype.kind, '?') + + dtype = _get_dtype_of(obj) + return _recursive_fill_value(dtype, _scalar_fill_value) + + +def _extremum_fill_value(obj, extremum, extremum_name): + + def _scalar_fill_value(dtype): + try: + return extremum[dtype] + except KeyError as e: + raise TypeError( + f"Unsuitable type {dtype} for calculating {extremum_name}." + ) from None + + dtype = _get_dtype_of(obj) + return _recursive_fill_value(dtype, _scalar_fill_value) + + +def minimum_fill_value(obj): + """ + Return the maximum value that can be represented by the dtype of an object. + + This function is useful for calculating a fill value suitable for + taking the minimum of an array with a given dtype. + + Parameters + ---------- + obj : ndarray, dtype or scalar + An object that can be queried for it's numeric type. + + Returns + ------- + val : scalar + The maximum representable value. + + Raises + ------ + TypeError + If `obj` isn't a suitable numeric type. + + See Also + -------- + maximum_fill_value : The inverse function. + set_fill_value : Set the filling value of a masked array. + MaskedArray.fill_value : Return current fill value. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.int8() + >>> ma.minimum_fill_value(a) + 127 + >>> a = np.int32() + >>> ma.minimum_fill_value(a) + 2147483647 + + An array of numeric data can also be passed. + + >>> a = np.array([1, 2, 3], dtype=np.int8) + >>> ma.minimum_fill_value(a) + 127 + >>> a = np.array([1, 2, 3], dtype=np.float32) + >>> ma.minimum_fill_value(a) + inf + + """ + return _extremum_fill_value(obj, min_filler, "minimum") + + +def maximum_fill_value(obj): + """ + Return the minimum value that can be represented by the dtype of an object. + + This function is useful for calculating a fill value suitable for + taking the maximum of an array with a given dtype. + + Parameters + ---------- + obj : ndarray, dtype or scalar + An object that can be queried for it's numeric type. + + Returns + ------- + val : scalar + The minimum representable value. + + Raises + ------ + TypeError + If `obj` isn't a suitable numeric type. + + See Also + -------- + minimum_fill_value : The inverse function. + set_fill_value : Set the filling value of a masked array. + MaskedArray.fill_value : Return current fill value. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.int8() + >>> ma.maximum_fill_value(a) + -128 + >>> a = np.int32() + >>> ma.maximum_fill_value(a) + -2147483648 + + An array of numeric data can also be passed. + + >>> a = np.array([1, 2, 3], dtype=np.int8) + >>> ma.maximum_fill_value(a) + -128 + >>> a = np.array([1, 2, 3], dtype=np.float32) + >>> ma.maximum_fill_value(a) + -inf + + """ + return _extremum_fill_value(obj, max_filler, "maximum") + + +def _recursive_set_fill_value(fillvalue, dt): + """ + Create a fill value for a structured dtype. + + Parameters + ---------- + fillvalue : scalar or array_like + Scalar or array representing the fill value. If it is of shorter + length than the number of fields in dt, it will be resized. + dt : dtype + The structured dtype for which to create the fill value. + + Returns + ------- + val : tuple + A tuple of values corresponding to the structured fill value. + + """ + fillvalue = np.resize(fillvalue, len(dt.names)) + output_value = [] + for (fval, name) in zip(fillvalue, dt.names): + cdtype = dt[name] + if cdtype.subdtype: + cdtype = cdtype.subdtype[0] + + if cdtype.names is not None: + output_value.append(tuple(_recursive_set_fill_value(fval, cdtype))) + else: + output_value.append(np.array(fval, dtype=cdtype).item()) + return tuple(output_value) + + +def _check_fill_value(fill_value, ndtype): + """ + Private function validating the given `fill_value` for the given dtype. + + If fill_value is None, it is set to the default corresponding to the dtype. + + If fill_value is not None, its value is forced to the given dtype. + + The result is always a 0d array. + + """ + ndtype = np.dtype(ndtype) + if fill_value is None: + fill_value = default_fill_value(ndtype) + elif ndtype.names is not None: + if isinstance(fill_value, (ndarray, np.void)): + try: + fill_value = np.array(fill_value, copy=False, dtype=ndtype) + except ValueError as e: + err_msg = "Unable to transform %s to dtype %s" + raise ValueError(err_msg % (fill_value, ndtype)) from e + else: + fill_value = np.asarray(fill_value, dtype=object) + fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype), + dtype=ndtype) + else: + if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'): + # Note this check doesn't work if fill_value is not a scalar + err_msg = "Cannot set fill value of string with array of dtype %s" + raise TypeError(err_msg % ndtype) + else: + # In case we want to convert 1e20 to int. + # Also in case of converting string arrays. + try: + fill_value = np.array(fill_value, copy=False, dtype=ndtype) + except (OverflowError, ValueError) as e: + # Raise TypeError instead of OverflowError or ValueError. + # OverflowError is seldom used, and the real problem here is + # that the passed fill_value is not compatible with the ndtype. + err_msg = "Cannot convert fill_value %s to dtype %s" + raise TypeError(err_msg % (fill_value, ndtype)) from e + return np.array(fill_value) + + +def set_fill_value(a, fill_value): + """ + Set the filling value of a, if a is a masked array. + + This function changes the fill value of the masked array `a` in place. + If `a` is not a masked array, the function returns silently, without + doing anything. + + Parameters + ---------- + a : array_like + Input array. + fill_value : dtype + Filling value. A consistency test is performed to make sure + the value is compatible with the dtype of `a`. + + Returns + ------- + None + Nothing returned by this function. + + See Also + -------- + maximum_fill_value : Return the default fill value for a dtype. + MaskedArray.fill_value : Return current fill value. + MaskedArray.set_fill_value : Equivalent method. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(5) + >>> a + array([0, 1, 2, 3, 4]) + >>> a = ma.masked_where(a < 3, a) + >>> a + masked_array(data=[--, --, --, 3, 4], + mask=[ True, True, True, False, False], + fill_value=999999) + >>> ma.set_fill_value(a, -999) + >>> a + masked_array(data=[--, --, --, 3, 4], + mask=[ True, True, True, False, False], + fill_value=-999) + + Nothing happens if `a` is not a masked array. + + >>> a = list(range(5)) + >>> a + [0, 1, 2, 3, 4] + >>> ma.set_fill_value(a, 100) + >>> a + [0, 1, 2, 3, 4] + >>> a = np.arange(5) + >>> a + array([0, 1, 2, 3, 4]) + >>> ma.set_fill_value(a, 100) + >>> a + array([0, 1, 2, 3, 4]) + + """ + if isinstance(a, MaskedArray): + a.set_fill_value(fill_value) + return + + +def get_fill_value(a): + """ + Return the filling value of a, if any. Otherwise, returns the + default filling value for that type. + + """ + if isinstance(a, MaskedArray): + result = a.fill_value + else: + result = default_fill_value(a) + return result + + +def common_fill_value(a, b): + """ + Return the common filling value of two masked arrays, if any. + + If ``a.fill_value == b.fill_value``, return the fill value, + otherwise return None. + + Parameters + ---------- + a, b : MaskedArray + The masked arrays for which to compare fill values. + + Returns + ------- + fill_value : scalar or None + The common fill value, or None. + + Examples + -------- + >>> x = np.ma.array([0, 1.], fill_value=3) + >>> y = np.ma.array([0, 1.], fill_value=3) + >>> np.ma.common_fill_value(x, y) + 3.0 + + """ + t1 = get_fill_value(a) + t2 = get_fill_value(b) + if t1 == t2: + return t1 + return None + + +def filled(a, fill_value=None): + """ + Return input as an array with masked data replaced by a fill value. + + If `a` is not a `MaskedArray`, `a` itself is returned. + If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to + ``a.fill_value``. + + Parameters + ---------- + a : MaskedArray or array_like + An input object. + fill_value : array_like, optional. + Can be scalar or non-scalar. If non-scalar, the + resulting filled array should be broadcastable + over input array. Default is None. + + Returns + ------- + a : ndarray + The filled array. + + See Also + -------- + compressed + + Examples + -------- + >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> x.filled() + array([[999999, 1, 2], + [999999, 4, 5], + [ 6, 7, 8]]) + >>> x.filled(fill_value=333) + array([[333, 1, 2], + [333, 4, 5], + [ 6, 7, 8]]) + >>> x.filled(fill_value=np.arange(3)) + array([[0, 1, 2], + [0, 4, 5], + [6, 7, 8]]) + + """ + if hasattr(a, 'filled'): + return a.filled(fill_value) + + elif isinstance(a, ndarray): + # Should we check for contiguity ? and a.flags['CONTIGUOUS']: + return a + elif isinstance(a, dict): + return np.array(a, 'O') + else: + return np.array(a) + + +def get_masked_subclass(*arrays): + """ + Return the youngest subclass of MaskedArray from a list of (masked) arrays. + + In case of siblings, the first listed takes over. + + """ + if len(arrays) == 1: + arr = arrays[0] + if isinstance(arr, MaskedArray): + rcls = type(arr) + else: + rcls = MaskedArray + else: + arrcls = [type(a) for a in arrays] + rcls = arrcls[0] + if not issubclass(rcls, MaskedArray): + rcls = MaskedArray + for cls in arrcls[1:]: + if issubclass(cls, rcls): + rcls = cls + # Don't return MaskedConstant as result: revert to MaskedArray + if rcls.__name__ == 'MaskedConstant': + return MaskedArray + return rcls + + +def getdata(a, subok=True): + """ + Return the data of a masked array as an ndarray. + + Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``, + else return `a` as a ndarray or subclass (depending on `subok`) if not. + + Parameters + ---------- + a : array_like + Input ``MaskedArray``, alternatively a ndarray or a subclass thereof. + subok : bool + Whether to force the output to be a `pure` ndarray (False) or to + return a subclass of ndarray if appropriate (True, default). + + See Also + -------- + getmask : Return the mask of a masked array, or nomask. + getmaskarray : Return the mask of a masked array, or full array of False. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getdata(a) + array([[1, 2], + [3, 4]]) + + Equivalently use the ``MaskedArray`` `data` attribute. + + >>> a.data + array([[1, 2], + [3, 4]]) + + """ + try: + data = a._data + except AttributeError: + data = np.array(a, copy=False, subok=subok) + if not subok: + return data.view(ndarray) + return data + + +get_data = getdata + + +def fix_invalid(a, mask=nomask, copy=True, fill_value=None): + """ + Return input with invalid data masked and replaced by a fill value. + + Invalid data means values of `nan`, `inf`, etc. + + Parameters + ---------- + a : array_like + Input array, a (subclass of) ndarray. + mask : sequence, optional + Mask. Must be convertible to an array of booleans with the same + shape as `data`. True indicates a masked (i.e. invalid) data. + copy : bool, optional + Whether to use a copy of `a` (True) or to fix `a` in place (False). + Default is True. + fill_value : scalar, optional + Value used for fixing invalid data. Default is None, in which case + the ``a.fill_value`` is used. + + Returns + ------- + b : MaskedArray + The input array with invalid entries fixed. + + Notes + ----- + A copy is performed by default. + + Examples + -------- + >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) + >>> x + masked_array(data=[--, -1.0, nan, inf], + mask=[ True, False, False, False], + fill_value=1e+20) + >>> np.ma.fix_invalid(x) + masked_array(data=[--, -1.0, --, --], + mask=[ True, False, True, True], + fill_value=1e+20) + + >>> fixed = np.ma.fix_invalid(x) + >>> fixed.data + array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) + >>> x.data + array([ 1., -1., nan, inf]) + + """ + a = masked_array(a, copy=copy, mask=mask, subok=True) + invalid = np.logical_not(np.isfinite(a._data)) + if not invalid.any(): + return a + a._mask |= invalid + if fill_value is None: + fill_value = a.fill_value + a._data[invalid] = fill_value + return a + +def is_string_or_list_of_strings(val): + return (isinstance(val, str) or + (isinstance(val, list) and val and + builtins.all(isinstance(s, str) for s in val))) + +############################################################################### +# Ufuncs # +############################################################################### + + +ufunc_domain = {} +ufunc_fills = {} + + +class _DomainCheckInterval: + """ + Define a valid interval, so that : + + ``domain_check_interval(a,b)(x) == True`` where + ``x < a`` or ``x > b``. + + """ + + def __init__(self, a, b): + "domain_check_interval(a,b)(x) = true where x < a or y > b" + if a > b: + (a, b) = (b, a) + self.a = a + self.b = b + + def __call__(self, x): + "Execute the call behavior." + # nans at masked positions cause RuntimeWarnings, even though + # they are masked. To avoid this we suppress warnings. + with np.errstate(invalid='ignore'): + return umath.logical_or(umath.greater(x, self.b), + umath.less(x, self.a)) + + +class _DomainTan: + """ + Define a valid interval for the `tan` function, so that: + + ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps`` + + """ + + def __init__(self, eps): + "domain_tan(eps) = true where abs(cos(x)) < eps)" + self.eps = eps + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less(umath.absolute(umath.cos(x)), self.eps) + + +class _DomainSafeDivide: + """ + Define a domain for safe division. + + """ + + def __init__(self, tolerance=None): + self.tolerance = tolerance + + def __call__(self, a, b): + # Delay the selection of the tolerance to here in order to reduce numpy + # import times. The calculation of these parameters is a substantial + # component of numpy's import time. + if self.tolerance is None: + self.tolerance = np.finfo(float).tiny + # don't call ma ufuncs from __array_wrap__ which would fail for scalars + a, b = np.asarray(a), np.asarray(b) + with np.errstate(invalid='ignore'): + return umath.absolute(a) * self.tolerance >= umath.absolute(b) + + +class _DomainGreater: + """ + DomainGreater(v)(x) is True where x <= v. + + """ + + def __init__(self, critical_value): + "DomainGreater(v)(x) = true where x <= v" + self.critical_value = critical_value + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less_equal(x, self.critical_value) + + +class _DomainGreaterEqual: + """ + DomainGreaterEqual(v)(x) is True where x < v. + + """ + + def __init__(self, critical_value): + "DomainGreaterEqual(v)(x) = true where x < v" + self.critical_value = critical_value + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less(x, self.critical_value) + + +class _MaskedUFunc: + def __init__(self, ufunc): + self.f = ufunc + self.__doc__ = ufunc.__doc__ + self.__name__ = ufunc.__name__ + + def __str__(self): + return f"Masked version of {self.f}" + + +class _MaskedUnaryOperation(_MaskedUFunc): + """ + Defines masked version of unary operations, where invalid values are + pre-masked. + + Parameters + ---------- + mufunc : callable + The function for which to define a masked version. Made available + as ``_MaskedUnaryOperation.f``. + fill : scalar, optional + Filling value, default is 0. + domain : class instance + Domain for the function. Should be one of the ``_Domain*`` + classes. Default is None. + + """ + + def __init__(self, mufunc, fill=0, domain=None): + super().__init__(mufunc) + self.fill = fill + self.domain = domain + ufunc_domain[mufunc] = domain + ufunc_fills[mufunc] = fill + + def __call__(self, a, *args, **kwargs): + """ + Execute the call behavior. + + """ + d = getdata(a) + # Deal with domain + if self.domain is not None: + # Case 1.1. : Domained function + # nans at masked positions cause RuntimeWarnings, even though + # they are masked. To avoid this we suppress warnings. + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(d, *args, **kwargs) + # Make a mask + m = ~umath.isfinite(result) + m |= self.domain(d) + m |= getmask(a) + else: + # Case 1.2. : Function without a domain + # Get the result and the mask + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(d, *args, **kwargs) + m = getmask(a) + + if not result.ndim: + # Case 2.1. : The result is scalarscalar + if m: + return masked + return result + + if m is not nomask: + # Case 2.2. The result is an array + # We need to fill the invalid data back w/ the input Now, + # that's plain silly: in C, we would just skip the element and + # keep the original, but we do have to do it that way in Python + + # In case result has a lower dtype than the inputs (as in + # equal) + try: + np.copyto(result, d, where=m) + except TypeError: + pass + # Transform to + masked_result = result.view(get_masked_subclass(a)) + masked_result._mask = m + masked_result._update_from(a) + return masked_result + + +class _MaskedBinaryOperation(_MaskedUFunc): + """ + Define masked version of binary operations, where invalid + values are pre-masked. + + Parameters + ---------- + mbfunc : function + The function for which to define a masked version. Made available + as ``_MaskedBinaryOperation.f``. + domain : class instance + Default domain for the function. Should be one of the ``_Domain*`` + classes. Default is None. + fillx : scalar, optional + Filling value for the first argument, default is 0. + filly : scalar, optional + Filling value for the second argument, default is 0. + + """ + + def __init__(self, mbfunc, fillx=0, filly=0): + """ + abfunc(fillx, filly) must be defined. + + abfunc(x, filly) = x for all x to enable reduce. + + """ + super().__init__(mbfunc) + self.fillx = fillx + self.filly = filly + ufunc_domain[mbfunc] = None + ufunc_fills[mbfunc] = (fillx, filly) + + def __call__(self, a, b, *args, **kwargs): + """ + Execute the call behavior. + + """ + # Get the data, as ndarray + (da, db) = (getdata(a), getdata(b)) + # Get the result + with np.errstate(): + np.seterr(divide='ignore', invalid='ignore') + result = self.f(da, db, *args, **kwargs) + # Get the mask for the result + (ma, mb) = (getmask(a), getmask(b)) + if ma is nomask: + if mb is nomask: + m = nomask + else: + m = umath.logical_or(getmaskarray(a), mb) + elif mb is nomask: + m = umath.logical_or(ma, getmaskarray(b)) + else: + m = umath.logical_or(ma, mb) + + # Case 1. : scalar + if not result.ndim: + if m: + return masked + return result + + # Case 2. : array + # Revert result to da where masked + if m is not nomask and m.any(): + # any errors, just abort; impossible to guarantee masked values + try: + np.copyto(result, da, casting='unsafe', where=m) + except Exception: + pass + + # Transforms to a (subclass of) MaskedArray + masked_result = result.view(get_masked_subclass(a, b)) + masked_result._mask = m + if isinstance(a, MaskedArray): + masked_result._update_from(a) + elif isinstance(b, MaskedArray): + masked_result._update_from(b) + return masked_result + + def reduce(self, target, axis=0, dtype=None): + """ + Reduce `target` along the given `axis`. + + """ + tclass = get_masked_subclass(target) + m = getmask(target) + t = filled(target, self.filly) + if t.shape == (): + t = t.reshape(1) + if m is not nomask: + m = make_mask(m, copy=True) + m.shape = (1,) + + if m is nomask: + tr = self.f.reduce(t, axis) + mr = nomask + else: + tr = self.f.reduce(t, axis, dtype=dtype) + mr = umath.logical_and.reduce(m, axis) + + if not tr.shape: + if mr: + return masked + else: + return tr + masked_tr = tr.view(tclass) + masked_tr._mask = mr + return masked_tr + + def outer(self, a, b): + """ + Return the function applied to the outer product of a and b. + + """ + (da, db) = (getdata(a), getdata(b)) + d = self.f.outer(da, db) + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + m = nomask + else: + ma = getmaskarray(a) + mb = getmaskarray(b) + m = umath.logical_or.outer(ma, mb) + if (not m.ndim) and m: + return masked + if m is not nomask: + np.copyto(d, da, where=m) + if not d.shape: + return d + masked_d = d.view(get_masked_subclass(a, b)) + masked_d._mask = m + return masked_d + + def accumulate(self, target, axis=0): + """Accumulate `target` along `axis` after filling with y fill + value. + + """ + tclass = get_masked_subclass(target) + t = filled(target, self.filly) + result = self.f.accumulate(t, axis) + masked_result = result.view(tclass) + return masked_result + + + +class _DomainedBinaryOperation(_MaskedUFunc): + """ + Define binary operations that have a domain, like divide. + + They have no reduce, outer or accumulate. + + Parameters + ---------- + mbfunc : function + The function for which to define a masked version. Made available + as ``_DomainedBinaryOperation.f``. + domain : class instance + Default domain for the function. Should be one of the ``_Domain*`` + classes. + fillx : scalar, optional + Filling value for the first argument, default is 0. + filly : scalar, optional + Filling value for the second argument, default is 0. + + """ + + def __init__(self, dbfunc, domain, fillx=0, filly=0): + """abfunc(fillx, filly) must be defined. + abfunc(x, filly) = x for all x to enable reduce. + """ + super().__init__(dbfunc) + self.domain = domain + self.fillx = fillx + self.filly = filly + ufunc_domain[dbfunc] = domain + ufunc_fills[dbfunc] = (fillx, filly) + + def __call__(self, a, b, *args, **kwargs): + "Execute the call behavior." + # Get the data + (da, db) = (getdata(a), getdata(b)) + # Get the result + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(da, db, *args, **kwargs) + # Get the mask as a combination of the source masks and invalid + m = ~umath.isfinite(result) + m |= getmask(a) + m |= getmask(b) + # Apply the domain + domain = ufunc_domain.get(self.f, None) + if domain is not None: + m |= domain(da, db) + # Take care of the scalar case first + if not m.ndim: + if m: + return masked + else: + return result + # When the mask is True, put back da if possible + # any errors, just abort; impossible to guarantee masked values + try: + np.copyto(result, 0, casting='unsafe', where=m) + # avoid using "*" since this may be overlaid + masked_da = umath.multiply(m, da) + # only add back if it can be cast safely + if np.can_cast(masked_da.dtype, result.dtype, casting='safe'): + result += masked_da + except Exception: + pass + + # Transforms to a (subclass of) MaskedArray + masked_result = result.view(get_masked_subclass(a, b)) + masked_result._mask = m + if isinstance(a, MaskedArray): + masked_result._update_from(a) + elif isinstance(b, MaskedArray): + masked_result._update_from(b) + return masked_result + + +# Unary ufuncs +exp = _MaskedUnaryOperation(umath.exp) +conjugate = _MaskedUnaryOperation(umath.conjugate) +sin = _MaskedUnaryOperation(umath.sin) +cos = _MaskedUnaryOperation(umath.cos) +arctan = _MaskedUnaryOperation(umath.arctan) +arcsinh = _MaskedUnaryOperation(umath.arcsinh) +sinh = _MaskedUnaryOperation(umath.sinh) +cosh = _MaskedUnaryOperation(umath.cosh) +tanh = _MaskedUnaryOperation(umath.tanh) +abs = absolute = _MaskedUnaryOperation(umath.absolute) +angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base +fabs = _MaskedUnaryOperation(umath.fabs) +negative = _MaskedUnaryOperation(umath.negative) +floor = _MaskedUnaryOperation(umath.floor) +ceil = _MaskedUnaryOperation(umath.ceil) +around = _MaskedUnaryOperation(np.round_) +logical_not = _MaskedUnaryOperation(umath.logical_not) + +# Domained unary ufuncs +sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0, + _DomainGreaterEqual(0.0)) +log = _MaskedUnaryOperation(umath.log, 1.0, + _DomainGreater(0.0)) +log2 = _MaskedUnaryOperation(umath.log2, 1.0, + _DomainGreater(0.0)) +log10 = _MaskedUnaryOperation(umath.log10, 1.0, + _DomainGreater(0.0)) +tan = _MaskedUnaryOperation(umath.tan, 0.0, + _DomainTan(1e-35)) +arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0, + _DomainCheckInterval(-1.0, 1.0)) +arccos = _MaskedUnaryOperation(umath.arccos, 0.0, + _DomainCheckInterval(-1.0, 1.0)) +arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0, + _DomainGreaterEqual(1.0)) +arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0, + _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15)) + +# Binary ufuncs +add = _MaskedBinaryOperation(umath.add) +subtract = _MaskedBinaryOperation(umath.subtract) +multiply = _MaskedBinaryOperation(umath.multiply, 1, 1) +arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0) +equal = _MaskedBinaryOperation(umath.equal) +equal.reduce = None +not_equal = _MaskedBinaryOperation(umath.not_equal) +not_equal.reduce = None +less_equal = _MaskedBinaryOperation(umath.less_equal) +less_equal.reduce = None +greater_equal = _MaskedBinaryOperation(umath.greater_equal) +greater_equal.reduce = None +less = _MaskedBinaryOperation(umath.less) +less.reduce = None +greater = _MaskedBinaryOperation(umath.greater) +greater.reduce = None +logical_and = _MaskedBinaryOperation(umath.logical_and) +alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce +logical_or = _MaskedBinaryOperation(umath.logical_or) +sometrue = logical_or.reduce +logical_xor = _MaskedBinaryOperation(umath.logical_xor) +bitwise_and = _MaskedBinaryOperation(umath.bitwise_and) +bitwise_or = _MaskedBinaryOperation(umath.bitwise_or) +bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor) +hypot = _MaskedBinaryOperation(umath.hypot) + +# Domained binary ufuncs +divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1) +true_divide = _DomainedBinaryOperation(umath.true_divide, + _DomainSafeDivide(), 0, 1) +floor_divide = _DomainedBinaryOperation(umath.floor_divide, + _DomainSafeDivide(), 0, 1) +remainder = _DomainedBinaryOperation(umath.remainder, + _DomainSafeDivide(), 0, 1) +fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1) +mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1) + + +############################################################################### +# Mask creation functions # +############################################################################### + + +def _replace_dtype_fields_recursive(dtype, primitive_dtype): + "Private function allowing recursion in _replace_dtype_fields." + _recurse = _replace_dtype_fields_recursive + + # Do we have some name fields ? + if dtype.names is not None: + descr = [] + for name in dtype.names: + field = dtype.fields[name] + if len(field) == 3: + # Prepend the title to the name + name = (field[-1], name) + descr.append((name, _recurse(field[0], primitive_dtype))) + new_dtype = np.dtype(descr) + + # Is this some kind of composite a la (float,2) + elif dtype.subdtype: + descr = list(dtype.subdtype) + descr[0] = _recurse(dtype.subdtype[0], primitive_dtype) + new_dtype = np.dtype(tuple(descr)) + + # this is a primitive type, so do a direct replacement + else: + new_dtype = primitive_dtype + + # preserve identity of dtypes + if new_dtype == dtype: + new_dtype = dtype + + return new_dtype + + +def _replace_dtype_fields(dtype, primitive_dtype): + """ + Construct a dtype description list from a given dtype. + + Returns a new dtype object, with all fields and subtypes in the given type + recursively replaced with `primitive_dtype`. + + Arguments are coerced to dtypes first. + """ + dtype = np.dtype(dtype) + primitive_dtype = np.dtype(primitive_dtype) + return _replace_dtype_fields_recursive(dtype, primitive_dtype) + + +def make_mask_descr(ndtype): + """ + Construct a dtype description list from a given dtype. + + Returns a new dtype object, with the type of all fields in `ndtype` to a + boolean type. Field names are not altered. + + Parameters + ---------- + ndtype : dtype + The dtype to convert. + + Returns + ------- + result : dtype + A dtype that looks like `ndtype`, the type of all fields is boolean. + + Examples + -------- + >>> import numpy.ma as ma + >>> dtype = np.dtype({'names':['foo', 'bar'], + ... 'formats':[np.float32, np.int64]}) + >>> dtype + dtype([('foo', '>> ma.make_mask_descr(dtype) + dtype([('foo', '|b1'), ('bar', '|b1')]) + >>> ma.make_mask_descr(np.float32) + dtype('bool') + + """ + return _replace_dtype_fields(ndtype, MaskType) + + +def getmask(a): + """ + Return the mask of a masked array, or nomask. + + Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the + mask is not `nomask`, else return `nomask`. To guarantee a full array + of booleans of the same shape as a, use `getmaskarray`. + + Parameters + ---------- + a : array_like + Input `MaskedArray` for which the mask is required. + + See Also + -------- + getdata : Return the data of a masked array as an ndarray. + getmaskarray : Return the mask of a masked array, or full array of False. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getmask(a) + array([[False, True], + [False, False]]) + + Equivalently use the `MaskedArray` `mask` attribute. + + >>> a.mask + array([[False, True], + [False, False]]) + + Result when mask == `nomask` + + >>> b = ma.masked_array([[1,2],[3,4]]) + >>> b + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> ma.nomask + False + >>> ma.getmask(b) == ma.nomask + True + >>> b.mask == ma.nomask + True + + """ + return getattr(a, '_mask', nomask) + + +get_mask = getmask + + +def getmaskarray(arr): + """ + Return the mask of a masked array, or full boolean array of False. + + Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and + the mask is not `nomask`, else return a full boolean array of False of + the same shape as `arr`. + + Parameters + ---------- + arr : array_like + Input `MaskedArray` for which the mask is required. + + See Also + -------- + getmask : Return the mask of a masked array, or nomask. + getdata : Return the data of a masked array as an ndarray. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getmaskarray(a) + array([[False, True], + [False, False]]) + + Result when mask == ``nomask`` + + >>> b = ma.masked_array([[1,2],[3,4]]) + >>> b + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> ma.getmaskarray(b) + array([[False, False], + [False, False]]) + + """ + mask = getmask(arr) + if mask is nomask: + mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None)) + return mask + + +def is_mask(m): + """ + Return True if m is a valid, standard mask. + + This function does not check the contents of the input, only that the + type is MaskType. In particular, this function returns False if the + mask has a flexible dtype. + + Parameters + ---------- + m : array_like + Array to test. + + Returns + ------- + result : bool + True if `m.dtype.type` is MaskType, False otherwise. + + See Also + -------- + ma.isMaskedArray : Test whether input is an instance of MaskedArray. + + Examples + -------- + >>> import numpy.ma as ma + >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) + >>> m + masked_array(data=[--, 1, --, 2, 3], + mask=[ True, False, True, False, False], + fill_value=0) + >>> ma.is_mask(m) + False + >>> ma.is_mask(m.mask) + True + + Input must be an ndarray (or have similar attributes) + for it to be considered a valid mask. + + >>> m = [False, True, False] + >>> ma.is_mask(m) + False + >>> m = np.array([False, True, False]) + >>> m + array([False, True, False]) + >>> ma.is_mask(m) + True + + Arrays with complex dtypes don't return True. + + >>> dtype = np.dtype({'names':['monty', 'pithon'], + ... 'formats':[bool, bool]}) + >>> dtype + dtype([('monty', '|b1'), ('pithon', '|b1')]) + >>> m = np.array([(True, False), (False, True), (True, False)], + ... dtype=dtype) + >>> m + array([( True, False), (False, True), ( True, False)], + dtype=[('monty', '?'), ('pithon', '?')]) + >>> ma.is_mask(m) + False + + """ + try: + return m.dtype.type is MaskType + except AttributeError: + return False + + +def _shrink_mask(m): + """ + Shrink a mask to nomask if possible + """ + if m.dtype.names is None and not m.any(): + return nomask + else: + return m + + +def make_mask(m, copy=False, shrink=True, dtype=MaskType): + """ + Create a boolean mask from an array. + + Return `m` as a boolean mask, creating a copy if necessary or requested. + The function can accept any sequence that is convertible to integers, + or ``nomask``. Does not require that contents must be 0s and 1s, values + of 0 are interpreted as False, everything else as True. + + Parameters + ---------- + m : array_like + Potential mask. + copy : bool, optional + Whether to return a copy of `m` (True) or `m` itself (False). + shrink : bool, optional + Whether to shrink `m` to ``nomask`` if all its values are False. + dtype : dtype, optional + Data-type of the output mask. By default, the output mask has a + dtype of MaskType (bool). If the dtype is flexible, each field has + a boolean dtype. This is ignored when `m` is ``nomask``, in which + case ``nomask`` is always returned. + + Returns + ------- + result : ndarray + A boolean mask derived from `m`. + + Examples + -------- + >>> import numpy.ma as ma + >>> m = [True, False, True, True] + >>> ma.make_mask(m) + array([ True, False, True, True]) + >>> m = [1, 0, 1, 1] + >>> ma.make_mask(m) + array([ True, False, True, True]) + >>> m = [1, 0, 2, -3] + >>> ma.make_mask(m) + array([ True, False, True, True]) + + Effect of the `shrink` parameter. + + >>> m = np.zeros(4) + >>> m + array([0., 0., 0., 0.]) + >>> ma.make_mask(m) + False + >>> ma.make_mask(m, shrink=False) + array([False, False, False, False]) + + Using a flexible `dtype`. + + >>> m = [1, 0, 1, 1] + >>> n = [0, 1, 0, 0] + >>> arr = [] + >>> for man, mouse in zip(m, n): + ... arr.append((man, mouse)) + >>> arr + [(1, 0), (0, 1), (1, 0), (1, 0)] + >>> dtype = np.dtype({'names':['man', 'mouse'], + ... 'formats':[np.int64, np.int64]}) + >>> arr = np.array(arr, dtype=dtype) + >>> arr + array([(1, 0), (0, 1), (1, 0), (1, 0)], + dtype=[('man', '>> ma.make_mask(arr, dtype=dtype) + array([(True, False), (False, True), (True, False), (True, False)], + dtype=[('man', '|b1'), ('mouse', '|b1')]) + + """ + if m is nomask: + return nomask + + # Make sure the input dtype is valid. + dtype = make_mask_descr(dtype) + + # legacy boolean special case: "existence of fields implies true" + if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_: + return np.ones(m.shape, dtype=dtype) + + # Fill the mask in case there are missing data; turn it into an ndarray. + result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True) + # Bas les masques ! + if shrink: + result = _shrink_mask(result) + return result + + +def make_mask_none(newshape, dtype=None): + """ + Return a boolean mask of the given shape, filled with False. + + This function returns a boolean ndarray with all entries False, that can + be used in common mask manipulations. If a complex dtype is specified, the + type of each field is converted to a boolean type. + + Parameters + ---------- + newshape : tuple + A tuple indicating the shape of the mask. + dtype : {None, dtype}, optional + If None, use a MaskType instance. Otherwise, use a new datatype with + the same fields as `dtype`, converted to boolean types. + + Returns + ------- + result : ndarray + An ndarray of appropriate shape and dtype, filled with False. + + See Also + -------- + make_mask : Create a boolean mask from an array. + make_mask_descr : Construct a dtype description list from a given dtype. + + Examples + -------- + >>> import numpy.ma as ma + >>> ma.make_mask_none((3,)) + array([False, False, False]) + + Defining a more complex dtype. + + >>> dtype = np.dtype({'names':['foo', 'bar'], + ... 'formats':[np.float32, np.int64]}) + >>> dtype + dtype([('foo', '>> ma.make_mask_none((3,), dtype=dtype) + array([(False, False), (False, False), (False, False)], + dtype=[('foo', '|b1'), ('bar', '|b1')]) + + """ + if dtype is None: + result = np.zeros(newshape, dtype=MaskType) + else: + result = np.zeros(newshape, dtype=make_mask_descr(dtype)) + return result + + +def _recursive_mask_or(m1, m2, newmask): + names = m1.dtype.names + for name in names: + current1 = m1[name] + if current1.dtype.names is not None: + _recursive_mask_or(current1, m2[name], newmask[name]) + else: + umath.logical_or(current1, m2[name], newmask[name]) + + +def mask_or(m1, m2, copy=False, shrink=True): + """ + Combine two masks with the ``logical_or`` operator. + + The result may be a view on `m1` or `m2` if the other is `nomask` + (i.e. False). + + Parameters + ---------- + m1, m2 : array_like + Input masks. + copy : bool, optional + If copy is False and one of the inputs is `nomask`, return a view + of the other input mask. Defaults to False. + shrink : bool, optional + Whether to shrink the output to `nomask` if all its values are + False. Defaults to True. + + Returns + ------- + mask : output mask + The result masks values that are masked in either `m1` or `m2`. + + Raises + ------ + ValueError + If `m1` and `m2` have different flexible dtypes. + + Examples + -------- + >>> m1 = np.ma.make_mask([0, 1, 1, 0]) + >>> m2 = np.ma.make_mask([1, 0, 0, 0]) + >>> np.ma.mask_or(m1, m2) + array([ True, True, True, False]) + + """ + + if (m1 is nomask) or (m1 is False): + dtype = getattr(m2, 'dtype', MaskType) + return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype) + if (m2 is nomask) or (m2 is False): + dtype = getattr(m1, 'dtype', MaskType) + return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype) + if m1 is m2 and is_mask(m1): + return m1 + (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None)) + if dtype1 != dtype2: + raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2)) + if dtype1.names is not None: + # Allocate an output mask array with the properly broadcast shape. + newmask = np.empty(np.broadcast(m1, m2).shape, dtype1) + _recursive_mask_or(m1, m2, newmask) + return newmask + return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink) + + +def flatten_mask(mask): + """ + Returns a completely flattened version of the mask, where nested fields + are collapsed. + + Parameters + ---------- + mask : array_like + Input array, which will be interpreted as booleans. + + Returns + ------- + flattened_mask : ndarray of bools + The flattened input. + + Examples + -------- + >>> mask = np.array([0, 0, 1]) + >>> np.ma.flatten_mask(mask) + array([False, False, True]) + + >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) + >>> np.ma.flatten_mask(mask) + array([False, False, False, True]) + + >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] + >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype) + >>> np.ma.flatten_mask(mask) + array([False, False, False, False, False, True]) + + """ + + def _flatmask(mask): + "Flatten the mask and returns a (maybe nested) sequence of booleans." + mnames = mask.dtype.names + if mnames is not None: + return [flatten_mask(mask[name]) for name in mnames] + else: + return mask + + def _flatsequence(sequence): + "Generates a flattened version of the sequence." + try: + for element in sequence: + if hasattr(element, '__iter__'): + yield from _flatsequence(element) + else: + yield element + except TypeError: + yield sequence + + mask = np.asarray(mask) + flattened = _flatsequence(_flatmask(mask)) + return np.array([_ for _ in flattened], dtype=bool) + + +def _check_mask_axis(mask, axis, keepdims=np._NoValue): + "Check whether there are masked values along the given axis" + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + if mask is not nomask: + return mask.all(axis=axis, **kwargs) + return nomask + + +############################################################################### +# Masking functions # +############################################################################### + +def masked_where(condition, a, copy=True): + """ + Mask an array where a condition is met. + + Return `a` as an array masked where `condition` is True. + Any masked values of `a` or `condition` are also masked in the output. + + Parameters + ---------- + condition : array_like + Masking condition. When `condition` tests floating point values for + equality, consider using ``masked_values`` instead. + a : array_like + Array to mask. + copy : bool + If True (default) make a copy of `a` in the result. If False modify + `a` in place and return a view. + + Returns + ------- + result : MaskedArray + The result of masking `a` where `condition` is True. + + See Also + -------- + masked_values : Mask using floating point equality. + masked_equal : Mask where equal to a given value. + masked_not_equal : Mask where `not` equal to a given value. + masked_less_equal : Mask where less than or equal to a given value. + masked_greater_equal : Mask where greater than or equal to a given value. + masked_less : Mask where less than a given value. + masked_greater : Mask where greater than a given value. + masked_inside : Mask inside a given interval. + masked_outside : Mask outside a given interval. + masked_invalid : Mask invalid values (NaNs or infs). + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_where(a <= 2, a) + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + + Mask array `b` conditional on `a`. + + >>> b = ['a', 'b', 'c', 'd'] + >>> ma.masked_where(a == 2, b) + masked_array(data=['a', 'b', --, 'd'], + mask=[False, False, True, False], + fill_value='N/A', + dtype='>> c = ma.masked_where(a <= 2, a) + >>> c + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + >>> c[0] = 99 + >>> c + masked_array(data=[99, --, --, 3], + mask=[False, True, True, False], + fill_value=999999) + >>> a + array([0, 1, 2, 3]) + >>> c = ma.masked_where(a <= 2, a, copy=False) + >>> c[0] = 99 + >>> c + masked_array(data=[99, --, --, 3], + mask=[False, True, True, False], + fill_value=999999) + >>> a + array([99, 1, 2, 3]) + + When `condition` or `a` contain masked values. + + >>> a = np.arange(4) + >>> a = ma.masked_where(a == 2, a) + >>> a + masked_array(data=[0, 1, --, 3], + mask=[False, False, True, False], + fill_value=999999) + >>> b = np.arange(4) + >>> b = ma.masked_where(b == 0, b) + >>> b + masked_array(data=[--, 1, 2, 3], + mask=[ True, False, False, False], + fill_value=999999) + >>> ma.masked_where(a == 3, b) + masked_array(data=[--, 1, --, --], + mask=[ True, False, True, True], + fill_value=999999) + + """ + # Make sure that condition is a valid standard-type mask. + cond = make_mask(condition, shrink=False) + a = np.array(a, copy=copy, subok=True) + + (cshape, ashape) = (cond.shape, a.shape) + if cshape and cshape != ashape: + raise IndexError("Inconsistent shape between the condition and the input" + " (got %s and %s)" % (cshape, ashape)) + if hasattr(a, '_mask'): + cond = mask_or(cond, a._mask) + cls = type(a) + else: + cls = MaskedArray + result = a.view(cls) + # Assign to *.mask so that structured masks are handled correctly. + result.mask = _shrink_mask(cond) + # There is no view of a boolean so when 'a' is a MaskedArray with nomask + # the update to the result's mask has no effect. + if not copy and hasattr(a, '_mask') and getmask(a) is nomask: + a._mask = result._mask.view() + return result + + +def masked_greater(x, value, copy=True): + """ + Mask an array where greater than a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x > value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_greater(a, 2) + masked_array(data=[0, 1, 2, --], + mask=[False, False, False, True], + fill_value=999999) + + """ + return masked_where(greater(x, value), x, copy=copy) + + +def masked_greater_equal(x, value, copy=True): + """ + Mask an array where greater than or equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x >= value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_greater_equal(a, 2) + masked_array(data=[0, 1, --, --], + mask=[False, False, True, True], + fill_value=999999) + + """ + return masked_where(greater_equal(x, value), x, copy=copy) + + +def masked_less(x, value, copy=True): + """ + Mask an array where less than a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x < value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_less(a, 2) + masked_array(data=[--, --, 2, 3], + mask=[ True, True, False, False], + fill_value=999999) + + """ + return masked_where(less(x, value), x, copy=copy) + + +def masked_less_equal(x, value, copy=True): + """ + Mask an array where less than or equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x <= value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_less_equal(a, 2) + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + + """ + return masked_where(less_equal(x, value), x, copy=copy) + + +def masked_not_equal(x, value, copy=True): + """ + Mask an array where `not` equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x != value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_not_equal(a, 2) + masked_array(data=[--, --, 2, --], + mask=[ True, True, False, True], + fill_value=999999) + + """ + return masked_where(not_equal(x, value), x, copy=copy) + + +def masked_equal(x, value, copy=True): + """ + Mask an array where equal to a given value. + + Return a MaskedArray, masked where the data in array `x` are + equal to `value`. The fill_value of the returned MaskedArray + is set to `value`. + + For floating point arrays, consider using ``masked_values(x, value)``. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_values : Mask using floating point equality. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_equal(a, 2) + masked_array(data=[0, 1, --, 3], + mask=[False, False, True, False], + fill_value=2) + + """ + output = masked_where(equal(x, value), x, copy=copy) + output.fill_value = value + return output + + +def masked_inside(x, v1, v2, copy=True): + """ + Mask an array inside a given interval. + + Shortcut to ``masked_where``, where `condition` is True for `x` inside + the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2` + can be given in either order. + + See Also + -------- + masked_where : Mask where a condition is met. + + Notes + ----- + The array `x` is prefilled with its filling value. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] + >>> ma.masked_inside(x, -0.3, 0.3) + masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], + mask=[False, False, True, True, False, False], + fill_value=1e+20) + + The order of `v1` and `v2` doesn't matter. + + >>> ma.masked_inside(x, 0.3, -0.3) + masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], + mask=[False, False, True, True, False, False], + fill_value=1e+20) + + """ + if v2 < v1: + (v1, v2) = (v2, v1) + xf = filled(x) + condition = (xf >= v1) & (xf <= v2) + return masked_where(condition, x, copy=copy) + + +def masked_outside(x, v1, v2, copy=True): + """ + Mask an array outside a given interval. + + Shortcut to ``masked_where``, where `condition` is True for `x` outside + the interval [v1,v2] (x < v1)|(x > v2). + The boundaries `v1` and `v2` can be given in either order. + + See Also + -------- + masked_where : Mask where a condition is met. + + Notes + ----- + The array `x` is prefilled with its filling value. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] + >>> ma.masked_outside(x, -0.3, 0.3) + masked_array(data=[--, --, 0.01, 0.2, --, --], + mask=[ True, True, False, False, True, True], + fill_value=1e+20) + + The order of `v1` and `v2` doesn't matter. + + >>> ma.masked_outside(x, 0.3, -0.3) + masked_array(data=[--, --, 0.01, 0.2, --, --], + mask=[ True, True, False, False, True, True], + fill_value=1e+20) + + """ + if v2 < v1: + (v1, v2) = (v2, v1) + xf = filled(x) + condition = (xf < v1) | (xf > v2) + return masked_where(condition, x, copy=copy) + + +def masked_object(x, value, copy=True, shrink=True): + """ + Mask the array `x` where the data are exactly equal to value. + + This function is similar to `masked_values`, but only suitable + for object arrays: for floating point, use `masked_values` instead. + + Parameters + ---------- + x : array_like + Array to mask + value : object + Comparison value + copy : {True, False}, optional + Whether to return a copy of `x`. + shrink : {True, False}, optional + Whether to collapse a mask full of False to nomask + + Returns + ------- + result : MaskedArray + The result of masking `x` where equal to `value`. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_equal : Mask where equal to a given value (integers). + masked_values : Mask using floating point equality. + + Examples + -------- + >>> import numpy.ma as ma + >>> food = np.array(['green_eggs', 'ham'], dtype=object) + >>> # don't eat spoiled food + >>> eat = ma.masked_object(food, 'green_eggs') + >>> eat + masked_array(data=[--, 'ham'], + mask=[ True, False], + fill_value='green_eggs', + dtype=object) + >>> # plain ol` ham is boring + >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) + >>> eat = ma.masked_object(fresh_food, 'green_eggs') + >>> eat + masked_array(data=['cheese', 'ham', 'pineapple'], + mask=False, + fill_value='green_eggs', + dtype=object) + + Note that `mask` is set to ``nomask`` if possible. + + >>> eat + masked_array(data=['cheese', 'ham', 'pineapple'], + mask=False, + fill_value='green_eggs', + dtype=object) + + """ + if isMaskedArray(x): + condition = umath.equal(x._data, value) + mask = x._mask + else: + condition = umath.equal(np.asarray(x), value) + mask = nomask + mask = mask_or(mask, make_mask(condition, shrink=shrink)) + return masked_array(x, mask=mask, copy=copy, fill_value=value) + + +def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True): + """ + Mask using floating point equality. + + Return a MaskedArray, masked where the data in array `x` are approximately + equal to `value`, determined using `isclose`. The default tolerances for + `masked_values` are the same as those for `isclose`. + + For integer types, exact equality is used, in the same way as + `masked_equal`. + + The fill_value is set to `value` and the mask is set to ``nomask`` if + possible. + + Parameters + ---------- + x : array_like + Array to mask. + value : float + Masking value. + rtol, atol : float, optional + Tolerance parameters passed on to `isclose` + copy : bool, optional + Whether to return a copy of `x`. + shrink : bool, optional + Whether to collapse a mask full of False to ``nomask``. + + Returns + ------- + result : MaskedArray + The result of masking `x` where approximately equal to `value`. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_equal : Mask where equal to a given value (integers). + + Examples + -------- + >>> import numpy.ma as ma + >>> x = np.array([1, 1.1, 2, 1.1, 3]) + >>> ma.masked_values(x, 1.1) + masked_array(data=[1.0, --, 2.0, --, 3.0], + mask=[False, True, False, True, False], + fill_value=1.1) + + Note that `mask` is set to ``nomask`` if possible. + + >>> ma.masked_values(x, 2.1) + masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], + mask=False, + fill_value=2.1) + + Unlike `masked_equal`, `masked_values` can perform approximate equalities. + + >>> ma.masked_values(x, 2.1, atol=1e-1) + masked_array(data=[1.0, 1.1, --, 1.1, 3.0], + mask=[False, False, True, False, False], + fill_value=2.1) + + """ + xnew = filled(x, value) + if np.issubdtype(xnew.dtype, np.floating): + mask = np.isclose(xnew, value, atol=atol, rtol=rtol) + else: + mask = umath.equal(xnew, value) + ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value) + if shrink: + ret.shrink_mask() + return ret + + +def masked_invalid(a, copy=True): + """ + Mask an array where invalid values occur (NaNs or infs). + + This function is a shortcut to ``masked_where``, with + `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved. + Only applies to arrays with a dtype where NaNs or infs make sense + (i.e. floating point types), but accepts any array_like object. + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(5, dtype=float) + >>> a[2] = np.NaN + >>> a[3] = np.PINF + >>> a + array([ 0., 1., nan, inf, 4.]) + >>> ma.masked_invalid(a) + masked_array(data=[0.0, 1.0, --, --, 4.0], + mask=[False, False, True, True, False], + fill_value=1e+20) + + """ + a = np.array(a, copy=False, subok=True) + res = masked_where(~(np.isfinite(a)), a, copy=copy) + # masked_invalid previously never returned nomask as a mask and doing so + # threw off matplotlib (gh-22842). So use shrink=False: + if res._mask is nomask: + res._mask = make_mask_none(res.shape, res.dtype) + return res + +############################################################################### +# Printing options # +############################################################################### + + +class _MaskedPrintOption: + """ + Handle the string used to represent missing data in a masked array. + + """ + + def __init__(self, display): + """ + Create the masked_print_option object. + + """ + self._display = display + self._enabled = True + + def display(self): + """ + Display the string to print for masked values. + + """ + return self._display + + def set_display(self, s): + """ + Set the string to print for masked values. + + """ + self._display = s + + def enabled(self): + """ + Is the use of the display value enabled? + + """ + return self._enabled + + def enable(self, shrink=1): + """ + Set the enabling shrink to `shrink`. + + """ + self._enabled = shrink + + def __str__(self): + return str(self._display) + + __repr__ = __str__ + +# if you single index into a masked location you get this object. +masked_print_option = _MaskedPrintOption('--') + + +def _recursive_printoption(result, mask, printopt): + """ + Puts printoptions in result where mask is True. + + Private function allowing for recursion + + """ + names = result.dtype.names + if names is not None: + for name in names: + curdata = result[name] + curmask = mask[name] + _recursive_printoption(curdata, curmask, printopt) + else: + np.copyto(result, printopt, where=mask) + return + +# For better or worse, these end in a newline +_legacy_print_templates = dict( + long_std=textwrap.dedent("""\ + masked_%(name)s(data = + %(data)s, + %(nlen)s mask = + %(mask)s, + %(nlen)s fill_value = %(fill)s) + """), + long_flx=textwrap.dedent("""\ + masked_%(name)s(data = + %(data)s, + %(nlen)s mask = + %(mask)s, + %(nlen)s fill_value = %(fill)s, + %(nlen)s dtype = %(dtype)s) + """), + short_std=textwrap.dedent("""\ + masked_%(name)s(data = %(data)s, + %(nlen)s mask = %(mask)s, + %(nlen)s fill_value = %(fill)s) + """), + short_flx=textwrap.dedent("""\ + masked_%(name)s(data = %(data)s, + %(nlen)s mask = %(mask)s, + %(nlen)s fill_value = %(fill)s, + %(nlen)s dtype = %(dtype)s) + """) +) + +############################################################################### +# MaskedArray class # +############################################################################### + + +def _recursive_filled(a, mask, fill_value): + """ + Recursively fill `a` with `fill_value`. + + """ + names = a.dtype.names + for name in names: + current = a[name] + if current.dtype.names is not None: + _recursive_filled(current, mask[name], fill_value[name]) + else: + np.copyto(current, fill_value[name], where=mask[name]) + + +def flatten_structured_array(a): + """ + Flatten a structured array. + + The data type of the output is chosen such that it can represent all of the + (nested) fields. + + Parameters + ---------- + a : structured array + + Returns + ------- + output : masked array or ndarray + A flattened masked array if the input is a masked array, otherwise a + standard ndarray. + + Examples + -------- + >>> ndtype = [('a', int), ('b', float)] + >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype) + >>> np.ma.flatten_structured_array(a) + array([[1., 1.], + [2., 2.]]) + + """ + + def flatten_sequence(iterable): + """ + Flattens a compound of nested iterables. + + """ + for elm in iter(iterable): + if hasattr(elm, '__iter__'): + yield from flatten_sequence(elm) + else: + yield elm + + a = np.asanyarray(a) + inishape = a.shape + a = a.ravel() + if isinstance(a, MaskedArray): + out = np.array([tuple(flatten_sequence(d.item())) for d in a._data]) + out = out.view(MaskedArray) + out._mask = np.array([tuple(flatten_sequence(d.item())) + for d in getmaskarray(a)]) + else: + out = np.array([tuple(flatten_sequence(d.item())) for d in a]) + if len(inishape) > 1: + newshape = list(out.shape) + newshape[0] = inishape + out.shape = tuple(flatten_sequence(newshape)) + return out + + +def _arraymethod(funcname, onmask=True): + """ + Return a class method wrapper around a basic array method. + + Creates a class method which returns a masked array, where the new + ``_data`` array is the output of the corresponding basic method called + on the original ``_data``. + + If `onmask` is True, the new mask is the output of the method called + on the initial mask. Otherwise, the new mask is just a reference + to the initial mask. + + Parameters + ---------- + funcname : str + Name of the function to apply on data. + onmask : bool + Whether the mask must be processed also (True) or left + alone (False). Default is True. Make available as `_onmask` + attribute. + + Returns + ------- + method : instancemethod + Class method wrapper of the specified basic array method. + + """ + def wrapped_method(self, *args, **params): + result = getattr(self._data, funcname)(*args, **params) + result = result.view(type(self)) + result._update_from(self) + mask = self._mask + if not onmask: + result.__setmask__(mask) + elif mask is not nomask: + # __setmask__ makes a copy, which we don't want + result._mask = getattr(mask, funcname)(*args, **params) + return result + methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None) + if methdoc is not None: + wrapped_method.__doc__ = methdoc.__doc__ + wrapped_method.__name__ = funcname + return wrapped_method + + +class MaskedIterator: + """ + Flat iterator object to iterate over masked arrays. + + A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array + `x`. It allows iterating over the array as if it were a 1-D array, + either in a for-loop or by calling its `next` method. + + Iteration is done in C-contiguous style, with the last index varying the + fastest. The iterator can also be indexed using basic slicing or + advanced indexing. + + See Also + -------- + MaskedArray.flat : Return a flat iterator over an array. + MaskedArray.flatten : Returns a flattened copy of an array. + + Notes + ----- + `MaskedIterator` is not exported by the `ma` module. Instead of + instantiating a `MaskedIterator` directly, use `MaskedArray.flat`. + + Examples + -------- + >>> x = np.ma.array(arange(6).reshape(2, 3)) + >>> fl = x.flat + >>> type(fl) + + >>> for item in fl: + ... print(item) + ... + 0 + 1 + 2 + 3 + 4 + 5 + + Extracting more than a single element b indexing the `MaskedIterator` + returns a masked array: + + >>> fl[2:4] + masked_array(data = [2 3], + mask = False, + fill_value = 999999) + + """ + + def __init__(self, ma): + self.ma = ma + self.dataiter = ma._data.flat + + if ma._mask is nomask: + self.maskiter = None + else: + self.maskiter = ma._mask.flat + + def __iter__(self): + return self + + def __getitem__(self, indx): + result = self.dataiter.__getitem__(indx).view(type(self.ma)) + if self.maskiter is not None: + _mask = self.maskiter.__getitem__(indx) + if isinstance(_mask, ndarray): + # set shape to match that of data; this is needed for matrices + _mask.shape = result.shape + result._mask = _mask + elif isinstance(_mask, np.void): + return mvoid(result, mask=_mask, hardmask=self.ma._hardmask) + elif _mask: # Just a scalar, masked + return masked + return result + + # This won't work if ravel makes a copy + def __setitem__(self, index, value): + self.dataiter[index] = getdata(value) + if self.maskiter is not None: + self.maskiter[index] = getmaskarray(value) + + def __next__(self): + """ + Return the next value, or raise StopIteration. + + Examples + -------- + >>> x = np.ma.array([3, 2], mask=[0, 1]) + >>> fl = x.flat + >>> next(fl) + 3 + >>> next(fl) + masked + >>> next(fl) + Traceback (most recent call last): + ... + StopIteration + + """ + d = next(self.dataiter) + if self.maskiter is not None: + m = next(self.maskiter) + if isinstance(m, np.void): + return mvoid(d, mask=m, hardmask=self.ma._hardmask) + elif m: # Just a scalar, masked + return masked + return d + + +class MaskedArray(ndarray): + """ + An array class with possibly masked values. + + Masked values of True exclude the corresponding element from any + computation. + + Construction:: + + x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, + ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, + shrink=True, order=None) + + Parameters + ---------- + data : array_like + Input data. + mask : sequence, optional + Mask. Must be convertible to an array of booleans with the same + shape as `data`. True indicates a masked (i.e. invalid) data. + dtype : dtype, optional + Data type of the output. + If `dtype` is None, the type of the data argument (``data.dtype``) + is used. If `dtype` is not None and different from ``data.dtype``, + a copy is performed. + copy : bool, optional + Whether to copy the input data (True), or to use a reference instead. + Default is False. + subok : bool, optional + Whether to return a subclass of `MaskedArray` if possible (True) or a + plain `MaskedArray`. Default is True. + ndmin : int, optional + Minimum number of dimensions. Default is 0. + fill_value : scalar, optional + Value used to fill in the masked values when necessary. + If None, a default based on the data-type is used. + keep_mask : bool, optional + Whether to combine `mask` with the mask of the input data, if any + (True), or to use only `mask` for the output (False). Default is True. + hard_mask : bool, optional + Whether to use a hard mask or not. With a hard mask, masked values + cannot be unmasked. Default is False. + shrink : bool, optional + Whether to force compression of an empty mask. Default is True. + order : {'C', 'F', 'A'}, optional + Specify the order of the array. If order is 'C', then the array + will be in C-contiguous order (last-index varies the fastest). + If order is 'F', then the returned array will be in + Fortran-contiguous order (first-index varies the fastest). + If order is 'A' (default), then the returned array may be + in any order (either C-, Fortran-contiguous, or even discontiguous), + unless a copy is required, in which case it will be C-contiguous. + + Examples + -------- + + The ``mask`` can be initialized with an array of boolean values + with the same shape as ``data``. + + >>> data = np.arange(6).reshape((2, 3)) + >>> np.ma.MaskedArray(data, mask=[[False, True, False], + ... [False, False, True]]) + masked_array( + data=[[0, --, 2], + [3, 4, --]], + mask=[[False, True, False], + [False, False, True]], + fill_value=999999) + + Alternatively, the ``mask`` can be initialized to homogeneous boolean + array with the same shape as ``data`` by passing in a scalar + boolean value: + + >>> np.ma.MaskedArray(data, mask=False) + masked_array( + data=[[0, 1, 2], + [3, 4, 5]], + mask=[[False, False, False], + [False, False, False]], + fill_value=999999) + + >>> np.ma.MaskedArray(data, mask=True) + masked_array( + data=[[--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True]], + fill_value=999999, + dtype=int64) + + .. note:: + The recommended practice for initializing ``mask`` with a scalar + boolean value is to use ``True``/``False`` rather than + ``np.True_``/``np.False_``. The reason is :attr:`nomask` + is represented internally as ``np.False_``. + + >>> np.False_ is np.ma.nomask + True + + """ + + __array_priority__ = 15 + _defaultmask = nomask + _defaulthardmask = False + _baseclass = ndarray + + # Maximum number of elements per axis used when printing an array. The + # 1d case is handled separately because we need more values in this case. + _print_width = 100 + _print_width_1d = 1500 + + def __new__(cls, data=None, mask=nomask, dtype=None, copy=False, + subok=True, ndmin=0, fill_value=None, keep_mask=True, + hard_mask=None, shrink=True, order=None): + """ + Create a new masked array from scratch. + + Notes + ----- + A masked array can also be created by taking a .view(MaskedArray). + + """ + # Process data. + _data = np.array(data, dtype=dtype, copy=copy, + order=order, subok=True, ndmin=ndmin) + _baseclass = getattr(data, '_baseclass', type(_data)) + # Check that we're not erasing the mask. + if isinstance(data, MaskedArray) and (data.shape != _data.shape): + copy = True + + # Here, we copy the _view_, so that we can attach new properties to it + # we must never do .view(MaskedConstant), as that would create a new + # instance of np.ma.masked, which make identity comparison fail + if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant): + _data = ndarray.view(_data, type(data)) + else: + _data = ndarray.view(_data, cls) + + # Handle the case where data is not a subclass of ndarray, but + # still has the _mask attribute like MaskedArrays + if hasattr(data, '_mask') and not isinstance(data, ndarray): + _data._mask = data._mask + # FIXME: should we set `_data._sharedmask = True`? + # Process mask. + # Type of the mask + mdtype = make_mask_descr(_data.dtype) + if mask is nomask: + # Case 1. : no mask in input. + # Erase the current mask ? + if not keep_mask: + # With a reduced version + if shrink: + _data._mask = nomask + # With full version + else: + _data._mask = np.zeros(_data.shape, dtype=mdtype) + # Check whether we missed something + elif isinstance(data, (tuple, list)): + try: + # If data is a sequence of masked array + mask = np.array( + [getmaskarray(np.asanyarray(m, dtype=_data.dtype)) + for m in data], dtype=mdtype) + except (ValueError, TypeError): + # If data is nested + mask = nomask + # Force shrinking of the mask if needed (and possible) + if (mdtype == MaskType) and mask.any(): + _data._mask = mask + _data._sharedmask = False + else: + _data._sharedmask = not copy + if copy: + _data._mask = _data._mask.copy() + # Reset the shape of the original mask + if getmask(data) is not nomask: + # gh-21022 encounters an issue here + # because data._mask.shape is not writeable, but + # the op was also pointless in that case, because + # the shapes were the same, so we can at least + # avoid that path + if data._mask.shape != data.shape: + data._mask.shape = data.shape + else: + # Case 2. : With a mask in input. + # If mask is boolean, create an array of True or False + + # if users pass `mask=None` be forgiving here and cast it False + # for speed; although the default is `mask=nomask` and can differ. + if mask is None: + mask = False + + if mask is True and mdtype == MaskType: + mask = np.ones(_data.shape, dtype=mdtype) + elif mask is False and mdtype == MaskType: + mask = np.zeros(_data.shape, dtype=mdtype) + else: + # Read the mask with the current mdtype + try: + mask = np.array(mask, copy=copy, dtype=mdtype) + # Or assume it's a sequence of bool/int + except TypeError: + mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + # Make sure the mask and the data have the same shape + if mask.shape != _data.shape: + (nd, nm) = (_data.size, mask.size) + if nm == 1: + mask = np.resize(mask, _data.shape) + elif nm == nd: + mask = np.reshape(mask, _data.shape) + else: + msg = "Mask and data not compatible: data size is %i, " + \ + "mask size is %i." + raise MaskError(msg % (nd, nm)) + copy = True + # Set the mask to the new value + if _data._mask is nomask: + _data._mask = mask + _data._sharedmask = not copy + else: + if not keep_mask: + _data._mask = mask + _data._sharedmask = not copy + else: + if _data.dtype.names is not None: + def _recursive_or(a, b): + "do a|=b on each field of a, recursively" + for name in a.dtype.names: + (af, bf) = (a[name], b[name]) + if af.dtype.names is not None: + _recursive_or(af, bf) + else: + af |= bf + + _recursive_or(_data._mask, mask) + else: + _data._mask = np.logical_or(mask, _data._mask) + _data._sharedmask = False + + # Update fill_value. + if fill_value is None: + fill_value = getattr(data, '_fill_value', None) + # But don't run the check unless we have something to check. + if fill_value is not None: + _data._fill_value = _check_fill_value(fill_value, _data.dtype) + # Process extra options .. + if hard_mask is None: + _data._hardmask = getattr(data, '_hardmask', False) + else: + _data._hardmask = hard_mask + _data._baseclass = _baseclass + return _data + + + def _update_from(self, obj): + """ + Copies some attributes of obj to self. + + """ + if isinstance(obj, ndarray): + _baseclass = type(obj) + else: + _baseclass = ndarray + # We need to copy the _basedict to avoid backward propagation + _optinfo = {} + _optinfo.update(getattr(obj, '_optinfo', {})) + _optinfo.update(getattr(obj, '_basedict', {})) + if not isinstance(obj, MaskedArray): + _optinfo.update(getattr(obj, '__dict__', {})) + _dict = dict(_fill_value=getattr(obj, '_fill_value', None), + _hardmask=getattr(obj, '_hardmask', False), + _sharedmask=getattr(obj, '_sharedmask', False), + _isfield=getattr(obj, '_isfield', False), + _baseclass=getattr(obj, '_baseclass', _baseclass), + _optinfo=_optinfo, + _basedict=_optinfo) + self.__dict__.update(_dict) + self.__dict__.update(_optinfo) + return + + def __array_finalize__(self, obj): + """ + Finalizes the masked array. + + """ + # Get main attributes. + self._update_from(obj) + + # We have to decide how to initialize self.mask, based on + # obj.mask. This is very difficult. There might be some + # correspondence between the elements in the array we are being + # created from (= obj) and us. Or there might not. This method can + # be called in all kinds of places for all kinds of reasons -- could + # be empty_like, could be slicing, could be a ufunc, could be a view. + # The numpy subclassing interface simply doesn't give us any way + # to know, which means that at best this method will be based on + # guesswork and heuristics. To make things worse, there isn't even any + # clear consensus about what the desired behavior is. For instance, + # most users think that np.empty_like(marr) -- which goes via this + # method -- should return a masked array with an empty mask (see + # gh-3404 and linked discussions), but others disagree, and they have + # existing code which depends on empty_like returning an array that + # matches the input mask. + # + # Historically our algorithm was: if the template object mask had the + # same *number of elements* as us, then we used *it's mask object + # itself* as our mask, so that writes to us would also write to the + # original array. This is horribly broken in multiple ways. + # + # Now what we do instead is, if the template object mask has the same + # number of elements as us, and we do not have the same base pointer + # as the template object (b/c views like arr[...] should keep the same + # mask), then we make a copy of the template object mask and use + # that. This is also horribly broken but somewhat less so. Maybe. + if isinstance(obj, ndarray): + # XX: This looks like a bug -- shouldn't it check self.dtype + # instead? + if obj.dtype.names is not None: + _mask = getmaskarray(obj) + else: + _mask = getmask(obj) + + # If self and obj point to exactly the same data, then probably + # self is a simple view of obj (e.g., self = obj[...]), so they + # should share the same mask. (This isn't 100% reliable, e.g. self + # could be the first row of obj, or have strange strides, but as a + # heuristic it's not bad.) In all other cases, we make a copy of + # the mask, so that future modifications to 'self' do not end up + # side-effecting 'obj' as well. + if (_mask is not nomask and obj.__array_interface__["data"][0] + != self.__array_interface__["data"][0]): + # We should make a copy. But we could get here via astype, + # in which case the mask might need a new dtype as well + # (e.g., changing to or from a structured dtype), and the + # order could have changed. So, change the mask type if + # needed and use astype instead of copy. + if self.dtype == obj.dtype: + _mask_dtype = _mask.dtype + else: + _mask_dtype = make_mask_descr(self.dtype) + + if self.flags.c_contiguous: + order = "C" + elif self.flags.f_contiguous: + order = "F" + else: + order = "K" + + _mask = _mask.astype(_mask_dtype, order) + else: + # Take a view so shape changes, etc., do not propagate back. + _mask = _mask.view() + else: + _mask = nomask + + self._mask = _mask + # Finalize the mask + if self._mask is not nomask: + try: + self._mask.shape = self.shape + except ValueError: + self._mask = nomask + except (TypeError, AttributeError): + # When _mask.shape is not writable (because it's a void) + pass + + # Finalize the fill_value + if self._fill_value is not None: + self._fill_value = _check_fill_value(self._fill_value, self.dtype) + elif self.dtype.names is not None: + # Finalize the default fill_value for structured arrays + self._fill_value = _check_fill_value(None, self.dtype) + + def __array_wrap__(self, obj, context=None): + """ + Special hook for ufuncs. + + Wraps the numpy array and sets the mask according to context. + + """ + if obj is self: # for in-place operations + result = obj + else: + result = obj.view(type(self)) + result._update_from(self) + + if context is not None: + result._mask = result._mask.copy() + func, args, out_i = context + # args sometimes contains outputs (gh-10459), which we don't want + input_args = args[:func.nin] + m = reduce(mask_or, [getmaskarray(arg) for arg in input_args]) + # Get the domain mask + domain = ufunc_domain.get(func, None) + if domain is not None: + # Take the domain, and make sure it's a ndarray + with np.errstate(divide='ignore', invalid='ignore'): + d = filled(domain(*input_args), True) + + if d.any(): + # Fill the result where the domain is wrong + try: + # Binary domain: take the last value + fill_value = ufunc_fills[func][-1] + except TypeError: + # Unary domain: just use this one + fill_value = ufunc_fills[func] + except KeyError: + # Domain not recognized, use fill_value instead + fill_value = self.fill_value + + np.copyto(result, fill_value, where=d) + + # Update the mask + if m is nomask: + m = d + else: + # Don't modify inplace, we risk back-propagation + m = (m | d) + + # Make sure the mask has the proper size + if result is not self and result.shape == () and m: + return masked + else: + result._mask = m + result._sharedmask = False + + return result + + def view(self, dtype=None, type=None, fill_value=None): + """ + Return a view of the MaskedArray data. + + Parameters + ---------- + dtype : data-type or ndarray sub-class, optional + Data-type descriptor of the returned view, e.g., float32 or int16. + The default, None, results in the view having the same data-type + as `a`. As with ``ndarray.view``, dtype can also be specified as + an ndarray sub-class, which then specifies the type of the + returned object (this is equivalent to setting the ``type`` + parameter). + type : Python type, optional + Type of the returned view, either ndarray or a subclass. The + default None results in type preservation. + fill_value : scalar, optional + The value to use for invalid entries (None by default). + If None, then this argument is inferred from the passed `dtype`, or + in its absence the original array, as discussed in the notes below. + + See Also + -------- + numpy.ndarray.view : Equivalent method on ndarray object. + + Notes + ----- + + ``a.view()`` is used two different ways: + + ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view + of the array's memory with a different data-type. This can cause a + reinterpretation of the bytes of memory. + + ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just + returns an instance of `ndarray_subclass` that looks at the same array + (same shape, dtype, etc.) This does not cause a reinterpretation of the + memory. + + If `fill_value` is not specified, but `dtype` is specified (and is not + an ndarray sub-class), the `fill_value` of the MaskedArray will be + reset. If neither `fill_value` nor `dtype` are specified (or if + `dtype` is an ndarray sub-class), then the fill value is preserved. + Finally, if `fill_value` is specified, but `dtype` is not, the fill + value is set to the specified value. + + For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of + bytes per entry than the previous dtype (for example, converting a + regular array to a structured array), then the behavior of the view + cannot be predicted just from the superficial appearance of ``a`` (shown + by ``print(a)``). It also depends on exactly how ``a`` is stored in + memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus + defined as a slice or transpose, etc., the view may give different + results. + """ + + if dtype is None: + if type is None: + output = ndarray.view(self) + else: + output = ndarray.view(self, type) + elif type is None: + try: + if issubclass(dtype, ndarray): + output = ndarray.view(self, dtype) + dtype = None + else: + output = ndarray.view(self, dtype) + except TypeError: + output = ndarray.view(self, dtype) + else: + output = ndarray.view(self, dtype, type) + + # also make the mask be a view (so attr changes to the view's + # mask do no affect original object's mask) + # (especially important to avoid affecting np.masked singleton) + if getmask(output) is not nomask: + output._mask = output._mask.view() + + # Make sure to reset the _fill_value if needed + if getattr(output, '_fill_value', None) is not None: + if fill_value is None: + if dtype is None: + pass # leave _fill_value as is + else: + output._fill_value = None + else: + output.fill_value = fill_value + return output + + def __getitem__(self, indx): + """ + x.__getitem__(y) <==> x[y] + + Return the item described by i, as a masked array. + + """ + # We could directly use ndarray.__getitem__ on self. + # But then we would have to modify __array_finalize__ to prevent the + # mask of being reshaped if it hasn't been set up properly yet + # So it's easier to stick to the current version + dout = self.data[indx] + _mask = self._mask + + def _is_scalar(m): + return not isinstance(m, np.ndarray) + + def _scalar_heuristic(arr, elem): + """ + Return whether `elem` is a scalar result of indexing `arr`, or None + if undecidable without promoting nomask to a full mask + """ + # obviously a scalar + if not isinstance(elem, np.ndarray): + return True + + # object array scalar indexing can return anything + elif arr.dtype.type is np.object_: + if arr.dtype is not elem.dtype: + # elem is an array, but dtypes do not match, so must be + # an element + return True + + # well-behaved subclass that only returns 0d arrays when + # expected - this is not a scalar + elif type(arr).__getitem__ == ndarray.__getitem__: + return False + + return None + + if _mask is not nomask: + # _mask cannot be a subclass, so it tells us whether we should + # expect a scalar. It also cannot be of dtype object. + mout = _mask[indx] + scalar_expected = _is_scalar(mout) + + else: + # attempt to apply the heuristic to avoid constructing a full mask + mout = nomask + scalar_expected = _scalar_heuristic(self.data, dout) + if scalar_expected is None: + # heuristics have failed + # construct a full array, so we can be certain. This is costly. + # we could also fall back on ndarray.__getitem__(self.data, indx) + scalar_expected = _is_scalar(getmaskarray(self)[indx]) + + # Did we extract a single item? + if scalar_expected: + # A record + if isinstance(dout, np.void): + # We should always re-cast to mvoid, otherwise users can + # change masks on rows that already have masked values, but not + # on rows that have no masked values, which is inconsistent. + return mvoid(dout, mask=mout, hardmask=self._hardmask) + + # special case introduced in gh-5962 + elif (self.dtype.type is np.object_ and + isinstance(dout, np.ndarray) and + dout is not masked): + # If masked, turn into a MaskedArray, with everything masked. + if mout: + return MaskedArray(dout, mask=True) + else: + return dout + + # Just a scalar + else: + if mout: + return masked + else: + return dout + else: + # Force dout to MA + dout = dout.view(type(self)) + # Inherit attributes from self + dout._update_from(self) + # Check the fill_value + if is_string_or_list_of_strings(indx): + if self._fill_value is not None: + dout._fill_value = self._fill_value[indx] + + # Something like gh-15895 has happened if this check fails. + # _fill_value should always be an ndarray. + if not isinstance(dout._fill_value, np.ndarray): + raise RuntimeError('Internal NumPy error.') + # If we're indexing a multidimensional field in a + # structured array (such as dtype("(2,)i2,(2,)i1")), + # dimensionality goes up (M[field].ndim == M.ndim + + # M.dtype[field].ndim). That's fine for + # M[field] but problematic for M[field].fill_value + # which should have shape () to avoid breaking several + # methods. There is no great way out, so set to + # first element. See issue #6723. + if dout._fill_value.ndim > 0: + if not (dout._fill_value == + dout._fill_value.flat[0]).all(): + warnings.warn( + "Upon accessing multidimensional field " + f"{indx!s}, need to keep dimensionality " + "of fill_value at 0. Discarding " + "heterogeneous fill_value and setting " + f"all to {dout._fill_value[0]!s}.", + stacklevel=2) + # Need to use `.flat[0:1].squeeze(...)` instead of just + # `.flat[0]` to ensure the result is a 0d array and not + # a scalar. + dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0) + dout._isfield = True + # Update the mask if needed + if mout is not nomask: + # set shape to match that of data; this is needed for matrices + dout._mask = reshape(mout, dout.shape) + dout._sharedmask = True + # Note: Don't try to check for m.any(), that'll take too long + return dout + + # setitem may put NaNs into integer arrays or occasionally overflow a + # float. But this may happen in masked values, so avoid otherwise + # correct warnings (as is typical also in masked calculations). + @np.errstate(over='ignore', invalid='ignore') + def __setitem__(self, indx, value): + """ + x.__setitem__(i, y) <==> x[i]=y + + Set item described by index. If value is masked, masks those + locations. + + """ + if self is masked: + raise MaskError('Cannot alter the masked element.') + _data = self._data + _mask = self._mask + if isinstance(indx, str): + _data[indx] = value + if _mask is nomask: + self._mask = _mask = make_mask_none(self.shape, self.dtype) + _mask[indx] = getmask(value) + return + + _dtype = _data.dtype + + if value is masked: + # The mask wasn't set: create a full version. + if _mask is nomask: + _mask = self._mask = make_mask_none(self.shape, _dtype) + # Now, set the mask to its value. + if _dtype.names is not None: + _mask[indx] = tuple([True] * len(_dtype.names)) + else: + _mask[indx] = True + return + + # Get the _data part of the new value + dval = getattr(value, '_data', value) + # Get the _mask part of the new value + mval = getmask(value) + if _dtype.names is not None and mval is nomask: + mval = tuple([False] * len(_dtype.names)) + if _mask is nomask: + # Set the data, then the mask + _data[indx] = dval + if mval is not nomask: + _mask = self._mask = make_mask_none(self.shape, _dtype) + _mask[indx] = mval + elif not self._hardmask: + # Set the data, then the mask + if (isinstance(indx, masked_array) and + not isinstance(value, masked_array)): + _data[indx.data] = dval + else: + _data[indx] = dval + _mask[indx] = mval + elif hasattr(indx, 'dtype') and (indx.dtype == MaskType): + indx = indx * umath.logical_not(_mask) + _data[indx] = dval + else: + if _dtype.names is not None: + err_msg = "Flexible 'hard' masks are not yet supported." + raise NotImplementedError(err_msg) + mindx = mask_or(_mask[indx], mval, copy=True) + dindx = self._data[indx] + if dindx.size > 1: + np.copyto(dindx, dval, where=~mindx) + elif mindx is nomask: + dindx = dval + _data[indx] = dindx + _mask[indx] = mindx + return + + # Define so that we can overwrite the setter. + @property + def dtype(self): + return super().dtype + + @dtype.setter + def dtype(self, dtype): + super(MaskedArray, type(self)).dtype.__set__(self, dtype) + if self._mask is not nomask: + self._mask = self._mask.view(make_mask_descr(dtype), ndarray) + # Try to reset the shape of the mask (if we don't have a void). + # This raises a ValueError if the dtype change won't work. + try: + self._mask.shape = self.shape + except (AttributeError, TypeError): + pass + + @property + def shape(self): + return super().shape + + @shape.setter + def shape(self, shape): + super(MaskedArray, type(self)).shape.__set__(self, shape) + # Cannot use self._mask, since it may not (yet) exist when a + # masked matrix sets the shape. + if getmask(self) is not nomask: + self._mask.shape = self.shape + + def __setmask__(self, mask, copy=False): + """ + Set the mask. + + """ + idtype = self.dtype + current_mask = self._mask + if mask is masked: + mask = True + + if current_mask is nomask: + # Make sure the mask is set + # Just don't do anything if there's nothing to do. + if mask is nomask: + return + current_mask = self._mask = make_mask_none(self.shape, idtype) + + if idtype.names is None: + # No named fields. + # Hardmask: don't unmask the data + if self._hardmask: + current_mask |= mask + # Softmask: set everything to False + # If it's obviously a compatible scalar, use a quick update + # method. + elif isinstance(mask, (int, float, np.bool_, np.number)): + current_mask[...] = mask + # Otherwise fall back to the slower, general purpose way. + else: + current_mask.flat = mask + else: + # Named fields w/ + mdtype = current_mask.dtype + mask = np.array(mask, copy=False) + # Mask is a singleton + if not mask.ndim: + # It's a boolean : make a record + if mask.dtype.kind == 'b': + mask = np.array(tuple([mask.item()] * len(mdtype)), + dtype=mdtype) + # It's a record: make sure the dtype is correct + else: + mask = mask.astype(mdtype) + # Mask is a sequence + else: + # Make sure the new mask is a ndarray with the proper dtype + try: + mask = np.array(mask, copy=copy, dtype=mdtype) + # Or assume it's a sequence of bool/int + except TypeError: + mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + # Hardmask: don't unmask the data + if self._hardmask: + for n in idtype.names: + current_mask[n] |= mask[n] + # Softmask: set everything to False + # If it's obviously a compatible scalar, use a quick update + # method. + elif isinstance(mask, (int, float, np.bool_, np.number)): + current_mask[...] = mask + # Otherwise fall back to the slower, general purpose way. + else: + current_mask.flat = mask + # Reshape if needed + if current_mask.shape: + current_mask.shape = self.shape + return + + _set_mask = __setmask__ + + @property + def mask(self): + """ Current mask. """ + + # We could try to force a reshape, but that wouldn't work in some + # cases. + # Return a view so that the dtype and shape cannot be changed in place + # This still preserves nomask by identity + return self._mask.view() + + @mask.setter + def mask(self, value): + self.__setmask__(value) + + @property + def recordmask(self): + """ + Get or set the mask of the array if it has no named fields. For + structured arrays, returns a ndarray of booleans where entries are + ``True`` if **all** the fields are masked, ``False`` otherwise: + + >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], + ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)], + ... dtype=[('a', int), ('b', int)]) + >>> x.recordmask + array([False, False, True, False, False]) + """ + + _mask = self._mask.view(ndarray) + if _mask.dtype.names is None: + return _mask + return np.all(flatten_structured_array(_mask), axis=-1) + + @recordmask.setter + def recordmask(self, mask): + raise NotImplementedError("Coming soon: setting the mask per records!") + + def harden_mask(self): + """ + Force the mask to hard, preventing unmasking by assignment. + + Whether the mask of a masked array is hard or soft is determined by + its `~ma.MaskedArray.hardmask` property. `harden_mask` sets + `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified + self). + + See Also + -------- + ma.MaskedArray.hardmask + ma.MaskedArray.soften_mask + + """ + self._hardmask = True + return self + + def soften_mask(self): + """ + Force the mask to soft (default), allowing unmasking by assignment. + + Whether the mask of a masked array is hard or soft is determined by + its `~ma.MaskedArray.hardmask` property. `soften_mask` sets + `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified + self). + + See Also + -------- + ma.MaskedArray.hardmask + ma.MaskedArray.harden_mask + + """ + self._hardmask = False + return self + + @property + def hardmask(self): + """ + Specifies whether values can be unmasked through assignments. + + By default, assigning definite values to masked array entries will + unmask them. When `hardmask` is ``True``, the mask will not change + through assignments. + + See Also + -------- + ma.MaskedArray.harden_mask + ma.MaskedArray.soften_mask + + Examples + -------- + >>> x = np.arange(10) + >>> m = np.ma.masked_array(x, x>5) + >>> assert not m.hardmask + + Since `m` has a soft mask, assigning an element value unmasks that + element: + + >>> m[8] = 42 + >>> m + masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --], + mask=[False, False, False, False, False, False, + True, True, False, True], + fill_value=999999) + + After hardening, the mask is not affected by assignments: + + >>> hardened = np.ma.harden_mask(m) + >>> assert m.hardmask and hardened is m + >>> m[:] = 23 + >>> m + masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --], + mask=[False, False, False, False, False, False, + True, True, False, True], + fill_value=999999) + + """ + return self._hardmask + + def unshare_mask(self): + """ + Copy the mask and set the `sharedmask` flag to ``False``. + + Whether the mask is shared between masked arrays can be seen from + the `sharedmask` property. `unshare_mask` ensures the mask is not + shared. A copy of the mask is only made if it was shared. + + See Also + -------- + sharedmask + + """ + if self._sharedmask: + self._mask = self._mask.copy() + self._sharedmask = False + return self + + @property + def sharedmask(self): + """ Share status of the mask (read-only). """ + return self._sharedmask + + def shrink_mask(self): + """ + Reduce a mask to nomask when possible. + + Parameters + ---------- + None + + Returns + ------- + None + + Examples + -------- + >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4) + >>> x.mask + array([[False, False], + [False, False]]) + >>> x.shrink_mask() + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> x.mask + False + + """ + self._mask = _shrink_mask(self._mask) + return self + + @property + def baseclass(self): + """ Class of the underlying data (read-only). """ + return self._baseclass + + def _get_data(self): + """ + Returns the underlying data, as a view of the masked array. + + If the underlying data is a subclass of :class:`numpy.ndarray`, it is + returned as such. + + >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) + >>> x.data + matrix([[1, 2], + [3, 4]]) + + The type of the data can be accessed through the :attr:`baseclass` + attribute. + """ + return ndarray.view(self, self._baseclass) + + _data = property(fget=_get_data) + data = property(fget=_get_data) + + @property + def flat(self): + """ Return a flat iterator, or set a flattened version of self to value. """ + return MaskedIterator(self) + + @flat.setter + def flat(self, value): + y = self.ravel() + y[:] = value + + @property + def fill_value(self): + """ + The filling value of the masked array is a scalar. When setting, None + will set to a default based on the data type. + + Examples + -------- + >>> for dt in [np.int32, np.int64, np.float64, np.complex128]: + ... np.ma.array([0, 1], dtype=dt).get_fill_value() + ... + 999999 + 999999 + 1e+20 + (1e+20+0j) + + >>> x = np.ma.array([0, 1.], fill_value=-np.inf) + >>> x.fill_value + -inf + >>> x.fill_value = np.pi + >>> x.fill_value + 3.1415926535897931 # may vary + + Reset to default: + + >>> x.fill_value = None + >>> x.fill_value + 1e+20 + + """ + if self._fill_value is None: + self._fill_value = _check_fill_value(None, self.dtype) + + # Temporary workaround to account for the fact that str and bytes + # scalars cannot be indexed with (), whereas all other numpy + # scalars can. See issues #7259 and #7267. + # The if-block can be removed after #7267 has been fixed. + if isinstance(self._fill_value, ndarray): + return self._fill_value[()] + return self._fill_value + + @fill_value.setter + def fill_value(self, value=None): + target = _check_fill_value(value, self.dtype) + if not target.ndim == 0: + # 2019-11-12, 1.18.0 + warnings.warn( + "Non-scalar arrays for the fill value are deprecated. Use " + "arrays with scalar values instead. The filled function " + "still supports any array as `fill_value`.", + DeprecationWarning, stacklevel=2) + + _fill_value = self._fill_value + if _fill_value is None: + # Create the attribute if it was undefined + self._fill_value = target + else: + # Don't overwrite the attribute, just fill it (for propagation) + _fill_value[()] = target + + # kept for compatibility + get_fill_value = fill_value.fget + set_fill_value = fill_value.fset + + def filled(self, fill_value=None): + """ + Return a copy of self, with masked values filled with a given value. + **However**, if there are no masked values to fill, self will be + returned instead as an ndarray. + + Parameters + ---------- + fill_value : array_like, optional + The value to use for invalid entries. Can be scalar or non-scalar. + If non-scalar, the resulting ndarray must be broadcastable over + input array. Default is None, in which case, the `fill_value` + attribute of the array is used instead. + + Returns + ------- + filled_array : ndarray + A copy of ``self`` with invalid entries replaced by *fill_value* + (be it the function argument or the attribute of ``self``), or + ``self`` itself as an ndarray if there are no invalid entries to + be replaced. + + Notes + ----- + The result is **not** a MaskedArray! + + Examples + -------- + >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) + >>> x.filled() + array([ 1, 2, -999, 4, -999]) + >>> x.filled(fill_value=1000) + array([ 1, 2, 1000, 4, 1000]) + >>> type(x.filled()) + + + Subclassing is preserved. This means that if, e.g., the data part of + the masked array is a recarray, `filled` returns a recarray: + + >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray) + >>> m = np.ma.array(x, mask=[(True, False), (False, True)]) + >>> m.filled() + rec.array([(999999, 2), ( -3, 999999)], + dtype=[('f0', '>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3) + >>> x.compressed() + array([0, 1]) + >>> type(x.compressed()) + + + """ + data = ndarray.ravel(self._data) + if self._mask is not nomask: + data = data.compress(np.logical_not(ndarray.ravel(self._mask))) + return data + + def compress(self, condition, axis=None, out=None): + """ + Return `a` where condition is ``True``. + + If condition is a `~ma.MaskedArray`, missing values are considered + as ``False``. + + Parameters + ---------- + condition : var + Boolean 1-d array selecting which entries to return. If len(condition) + is less than the size of a along the axis, then output is truncated + to length of condition array. + axis : {None, int}, optional + Axis along which the operation must be performed. + out : {None, ndarray}, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type will be cast if + necessary. + + Returns + ------- + result : MaskedArray + A :class:`~ma.MaskedArray` object. + + Notes + ----- + Please note the difference with :meth:`compressed` ! + The output of :meth:`compress` has a mask, the output of + :meth:`compressed` does not. + + Examples + -------- + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.compress([1, 0, 1]) + masked_array(data=[1, 3], + mask=[False, False], + fill_value=999999) + + >>> x.compress([1, 0, 1], axis=1) + masked_array( + data=[[1, 3], + [--, --], + [7, 9]], + mask=[[False, False], + [ True, True], + [False, False]], + fill_value=999999) + + """ + # Get the basic components + (_data, _mask) = (self._data, self._mask) + + # Force the condition to a regular ndarray and forget the missing + # values. + condition = np.asarray(condition) + + _new = _data.compress(condition, axis=axis, out=out).view(type(self)) + _new._update_from(self) + if _mask is not nomask: + _new._mask = _mask.compress(condition, axis=axis) + return _new + + def _insert_masked_print(self): + """ + Replace masked values with masked_print_option, casting all innermost + dtypes to object. + """ + if masked_print_option.enabled(): + mask = self._mask + if mask is nomask: + res = self._data + else: + # convert to object array to make filled work + data = self._data + # For big arrays, to avoid a costly conversion to the + # object dtype, extract the corners before the conversion. + print_width = (self._print_width if self.ndim > 1 + else self._print_width_1d) + for axis in range(self.ndim): + if data.shape[axis] > print_width: + ind = print_width // 2 + arr = np.split(data, (ind, -ind), axis=axis) + data = np.concatenate((arr[0], arr[2]), axis=axis) + arr = np.split(mask, (ind, -ind), axis=axis) + mask = np.concatenate((arr[0], arr[2]), axis=axis) + + rdtype = _replace_dtype_fields(self.dtype, "O") + res = data.astype(rdtype) + _recursive_printoption(res, mask, masked_print_option) + else: + res = self.filled(self.fill_value) + return res + + def __str__(self): + return str(self._insert_masked_print()) + + def __repr__(self): + """ + Literal string representation. + + """ + if self._baseclass is np.ndarray: + name = 'array' + else: + name = self._baseclass.__name__ + + + # 2016-11-19: Demoted to legacy format + if np.core.arrayprint._get_legacy_print_mode() <= 113: + is_long = self.ndim > 1 + parameters = dict( + name=name, + nlen=" " * len(name), + data=str(self), + mask=str(self._mask), + fill=str(self.fill_value), + dtype=str(self.dtype) + ) + is_structured = bool(self.dtype.names) + key = '{}_{}'.format( + 'long' if is_long else 'short', + 'flx' if is_structured else 'std' + ) + return _legacy_print_templates[key] % parameters + + prefix = f"masked_{name}(" + + dtype_needed = ( + not np.core.arrayprint.dtype_is_implied(self.dtype) or + np.all(self.mask) or + self.size == 0 + ) + + # determine which keyword args need to be shown + keys = ['data', 'mask', 'fill_value'] + if dtype_needed: + keys.append('dtype') + + # array has only one row (non-column) + is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1]) + + # choose what to indent each keyword with + min_indent = 2 + if is_one_row: + # first key on the same line as the type, remaining keys + # aligned by equals + indents = {} + indents[keys[0]] = prefix + for k in keys[1:]: + n = builtins.max(min_indent, len(prefix + keys[0]) - len(k)) + indents[k] = ' ' * n + prefix = '' # absorbed into the first indent + else: + # each key on its own line, indented by two spaces + indents = {k: ' ' * min_indent for k in keys} + prefix = prefix + '\n' # first key on the next line + + # format the field values + reprs = {} + reprs['data'] = np.array2string( + self._insert_masked_print(), + separator=", ", + prefix=indents['data'] + 'data=', + suffix=',') + reprs['mask'] = np.array2string( + self._mask, + separator=", ", + prefix=indents['mask'] + 'mask=', + suffix=',') + reprs['fill_value'] = repr(self.fill_value) + if dtype_needed: + reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype) + + # join keys with values and indentations + result = ',\n'.join( + '{}{}={}'.format(indents[k], k, reprs[k]) + for k in keys + ) + return prefix + result + ')' + + def _delegate_binop(self, other): + # This emulates the logic in + # private/binop_override.h:forward_binop_should_defer + if isinstance(other, type(self)): + return False + array_ufunc = getattr(other, "__array_ufunc__", False) + if array_ufunc is False: + other_priority = getattr(other, "__array_priority__", -1000000) + return self.__array_priority__ < other_priority + else: + # If array_ufunc is not None, it will be called inside the ufunc; + # None explicitly tells us to not call the ufunc, i.e., defer. + return array_ufunc is None + + def _comparison(self, other, compare): + """Compare self with other using operator.eq or operator.ne. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + omask = getmask(other) + smask = self.mask + mask = mask_or(smask, omask, copy=True) + + odata = getdata(other) + if mask.dtype.names is not None: + # only == and != are reasonably defined for structured dtypes, + # so give up early for all other comparisons: + if compare not in (operator.eq, operator.ne): + return NotImplemented + # For possibly masked structured arrays we need to be careful, + # since the standard structured array comparison will use all + # fields, masked or not. To avoid masked fields influencing the + # outcome, we set all masked fields in self to other, so they'll + # count as equal. To prepare, we ensure we have the right shape. + broadcast_shape = np.broadcast(self, odata).shape + sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True) + sbroadcast._mask = mask + sdata = sbroadcast.filled(odata) + # Now take care of the mask; the merged mask should have an item + # masked if all fields were masked (in one and/or other). + mask = (mask == np.ones((), mask.dtype)) + # Ensure we can compare masks below if other was not masked. + if omask is np.False_: + omask = np.zeros((), smask.dtype) + + else: + # For regular arrays, just use the data as they come. + sdata = self.data + + check = compare(sdata, odata) + + if isinstance(check, (np.bool_, bool)): + return masked if mask else check + + if mask is not nomask: + if compare in (operator.eq, operator.ne): + # Adjust elements that were masked, which should be treated + # as equal if masked in both, unequal if masked in one. + # Note that this works automatically for structured arrays too. + # Ignore this for operations other than `==` and `!=` + check = np.where(mask, compare(smask, omask), check) + + if mask.shape != check.shape: + # Guarantee consistency of the shape, making a copy since the + # the mask may need to get written to later. + mask = np.broadcast_to(mask, check.shape).copy() + + check = check.view(type(self)) + check._update_from(self) + check._mask = mask + + # Cast fill value to bool_ if needed. If it cannot be cast, the + # default boolean fill value is used. + if check._fill_value is not None: + try: + fill = _check_fill_value(check._fill_value, np.bool_) + except (TypeError, ValueError): + fill = _check_fill_value(None, np.bool_) + check._fill_value = fill + + return check + + def __eq__(self, other): + """Check whether other equals self elementwise. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + return self._comparison(other, operator.eq) + + def __ne__(self, other): + """Check whether other does not equal self elementwise. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + return self._comparison(other, operator.ne) + + # All other comparisons: + def __le__(self, other): + return self._comparison(other, operator.le) + + def __lt__(self, other): + return self._comparison(other, operator.lt) + + def __ge__(self, other): + return self._comparison(other, operator.ge) + + def __gt__(self, other): + return self._comparison(other, operator.gt) + + def __add__(self, other): + """ + Add self to other, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return add(self, other) + + def __radd__(self, other): + """ + Add other to self, and return a new masked array. + + """ + # In analogy with __rsub__ and __rdiv__, use original order: + # we get here from `other + self`. + return add(other, self) + + def __sub__(self, other): + """ + Subtract other from self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return subtract(self, other) + + def __rsub__(self, other): + """ + Subtract self from other, and return a new masked array. + + """ + return subtract(other, self) + + def __mul__(self, other): + "Multiply self by other, and return a new masked array." + if self._delegate_binop(other): + return NotImplemented + return multiply(self, other) + + def __rmul__(self, other): + """ + Multiply other by self, and return a new masked array. + + """ + # In analogy with __rsub__ and __rdiv__, use original order: + # we get here from `other * self`. + return multiply(other, self) + + def __div__(self, other): + """ + Divide other into self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return divide(self, other) + + def __truediv__(self, other): + """ + Divide other into self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return true_divide(self, other) + + def __rtruediv__(self, other): + """ + Divide self into other, and return a new masked array. + + """ + return true_divide(other, self) + + def __floordiv__(self, other): + """ + Divide other into self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return floor_divide(self, other) + + def __rfloordiv__(self, other): + """ + Divide self into other, and return a new masked array. + + """ + return floor_divide(other, self) + + def __pow__(self, other): + """ + Raise self to the power other, masking the potential NaNs/Infs + + """ + if self._delegate_binop(other): + return NotImplemented + return power(self, other) + + def __rpow__(self, other): + """ + Raise other to the power self, masking the potential NaNs/Infs + + """ + return power(other, self) + + def __iadd__(self, other): + """ + Add other to self in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + else: + if m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(0), other_data) + self._data.__iadd__(other_data) + return self + + def __isub__(self, other): + """ + Subtract other from self in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + elif m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(0), other_data) + self._data.__isub__(other_data) + return self + + def __imul__(self, other): + """ + Multiply self by other in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + elif m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__imul__(other_data) + return self + + def __idiv__(self, other): + """ + Divide self by other in-place. + + """ + other_data = getdata(other) + dom_mask = _DomainSafeDivide().__call__(self._data, other_data) + other_mask = getmask(other) + new_mask = mask_or(other_mask, dom_mask) + # The following 4 lines control the domain filling + if dom_mask.any(): + (_, fval) = ufunc_fills[np.divide] + other_data = np.where( + dom_mask, other_data.dtype.type(fval), other_data) + self._mask |= new_mask + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__idiv__(other_data) + return self + + def __ifloordiv__(self, other): + """ + Floor divide self by other in-place. + + """ + other_data = getdata(other) + dom_mask = _DomainSafeDivide().__call__(self._data, other_data) + other_mask = getmask(other) + new_mask = mask_or(other_mask, dom_mask) + # The following 3 lines control the domain filling + if dom_mask.any(): + (_, fval) = ufunc_fills[np.floor_divide] + other_data = np.where( + dom_mask, other_data.dtype.type(fval), other_data) + self._mask |= new_mask + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__ifloordiv__(other_data) + return self + + def __itruediv__(self, other): + """ + True divide self by other in-place. + + """ + other_data = getdata(other) + dom_mask = _DomainSafeDivide().__call__(self._data, other_data) + other_mask = getmask(other) + new_mask = mask_or(other_mask, dom_mask) + # The following 3 lines control the domain filling + if dom_mask.any(): + (_, fval) = ufunc_fills[np.true_divide] + other_data = np.where( + dom_mask, other_data.dtype.type(fval), other_data) + self._mask |= new_mask + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__itruediv__(other_data) + return self + + def __ipow__(self, other): + """ + Raise self to the power other, in place. + + """ + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + other_mask = getmask(other) + with np.errstate(divide='ignore', invalid='ignore'): + self._data.__ipow__(other_data) + invalid = np.logical_not(np.isfinite(self._data)) + if invalid.any(): + if self._mask is not nomask: + self._mask |= invalid + else: + self._mask = invalid + np.copyto(self._data, self.fill_value, where=invalid) + new_mask = mask_or(other_mask, invalid) + self._mask = mask_or(self._mask, new_mask) + return self + + def __float__(self): + """ + Convert to float. + + """ + if self.size > 1: + raise TypeError("Only length-1 arrays can be converted " + "to Python scalars") + elif self._mask: + warnings.warn("Warning: converting a masked element to nan.", stacklevel=2) + return np.nan + return float(self.item()) + + def __int__(self): + """ + Convert to int. + + """ + if self.size > 1: + raise TypeError("Only length-1 arrays can be converted " + "to Python scalars") + elif self._mask: + raise MaskError('Cannot convert masked element to a Python int.') + return int(self.item()) + + @property + def imag(self): + """ + The imaginary part of the masked array. + + This property is a view on the imaginary part of this `MaskedArray`. + + See Also + -------- + real + + Examples + -------- + >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) + >>> x.imag + masked_array(data=[1.0, --, 1.6], + mask=[False, True, False], + fill_value=1e+20) + + """ + result = self._data.imag.view(type(self)) + result.__setmask__(self._mask) + return result + + # kept for compatibility + get_imag = imag.fget + + @property + def real(self): + """ + The real part of the masked array. + + This property is a view on the real part of this `MaskedArray`. + + See Also + -------- + imag + + Examples + -------- + >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) + >>> x.real + masked_array(data=[1.0, --, 3.45], + mask=[False, True, False], + fill_value=1e+20) + + """ + result = self._data.real.view(type(self)) + result.__setmask__(self._mask) + return result + + # kept for compatibility + get_real = real.fget + + def count(self, axis=None, keepdims=np._NoValue): + """ + Count the non-masked elements of the array along the given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis or axes along which the count is performed. + The default, None, performs the count over all + the dimensions of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. + + .. versionadded:: 1.10.0 + + If this is a tuple of ints, the count is performed on multiple + axes, instead of a single axis or all the axes as before. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + result : ndarray or scalar + An array with the same shape as the input array, with the specified + axis removed. If the array is a 0-d array, or if `axis` is None, a + scalar is returned. + + See Also + -------- + ma.count_masked : Count masked elements in array or along a given axis. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.arange(6).reshape((2, 3)) + >>> a[1, :] = ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, --, --]], + mask=[[False, False, False], + [ True, True, True]], + fill_value=999999) + >>> a.count() + 3 + + When the `axis` keyword is specified an array of appropriate size is + returned. + + >>> a.count(axis=0) + array([1, 1, 1]) + >>> a.count(axis=1) + array([3, 0]) + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + m = self._mask + # special case for matrices (we assume no other subclasses modify + # their dimensions) + if isinstance(self.data, np.matrix): + if m is nomask: + m = np.zeros(self.shape, dtype=np.bool_) + m = m.view(type(self.data)) + + if m is nomask: + # compare to _count_reduce_items in _methods.py + + if self.shape == (): + if axis not in (None, 0): + raise np.AxisError(axis=axis, ndim=self.ndim) + return 1 + elif axis is None: + if kwargs.get('keepdims', False): + return np.array(self.size, dtype=np.intp, ndmin=self.ndim) + return self.size + + axes = normalize_axis_tuple(axis, self.ndim) + items = 1 + for ax in axes: + items *= self.shape[ax] + + if kwargs.get('keepdims', False): + out_dims = list(self.shape) + for a in axes: + out_dims[a] = 1 + else: + out_dims = [d for n, d in enumerate(self.shape) + if n not in axes] + # make sure to return a 0-d array if axis is supplied + return np.full(out_dims, items, dtype=np.intp) + + # take care of the masked singleton + if self is masked: + return 0 + + return (~m).sum(axis=axis, dtype=np.intp, **kwargs) + + def ravel(self, order='C'): + """ + Returns a 1D version of self, as a view. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + The elements of `a` are read using this index order. 'C' means to + index the elements in C-like order, with the last axis index + changing fastest, back to the first axis index changing slowest. + 'F' means to index the elements in Fortran-like index order, with + the first index changing fastest, and the last index changing + slowest. Note that the 'C' and 'F' options take no account of the + memory layout of the underlying array, and only refer to the order + of axis indexing. 'A' means to read the elements in Fortran-like + index order if `m` is Fortran *contiguous* in memory, C-like order + otherwise. 'K' means to read the elements in the order they occur + in memory, except for reversing the data when strides are negative. + By default, 'C' index order is used. + (Masked arrays currently use 'A' on the data when 'K' is passed.) + + Returns + ------- + MaskedArray + Output view is of shape ``(self.size,)`` (or + ``(np.ma.product(self.shape),)``). + + Examples + -------- + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.ravel() + masked_array(data=[1, --, 3, --, 5, --, 7, --, 9], + mask=[False, True, False, True, False, True, False, True, + False], + fill_value=999999) + + """ + # The order of _data and _mask could be different (it shouldn't be + # normally). Passing order `K` or `A` would be incorrect. + # So we ignore the mask memory order. + # TODO: We don't actually support K, so use A instead. We could + # try to guess this correct by sorting strides or deprecate. + if order in "kKaA": + order = "F" if self._data.flags.fnc else "C" + r = ndarray.ravel(self._data, order=order).view(type(self)) + r._update_from(self) + if self._mask is not nomask: + r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape) + else: + r._mask = nomask + return r + + + def reshape(self, *s, **kwargs): + """ + Give a new shape to the array without changing its data. + + Returns a masked array containing the same data, but with a new shape. + The result is a view on the original array; if this is not possible, a + ValueError is raised. + + Parameters + ---------- + shape : int or tuple of ints + The new shape should be compatible with the original shape. If an + integer is supplied, then the result will be a 1-D array of that + length. + order : {'C', 'F'}, optional + Determines whether the array data should be viewed as in C + (row-major) or FORTRAN (column-major) order. + + Returns + ------- + reshaped_array : array + A new view on the array. + + See Also + -------- + reshape : Equivalent function in the masked array module. + numpy.ndarray.reshape : Equivalent method on ndarray object. + numpy.reshape : Equivalent function in the NumPy module. + + Notes + ----- + The reshaping operation cannot guarantee that a copy will not be made, + to modify the shape in place, use ``a.shape = s`` + + Examples + -------- + >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1]) + >>> x + masked_array( + data=[[--, 2], + [3, --]], + mask=[[ True, False], + [False, True]], + fill_value=999999) + >>> x = x.reshape((4,1)) + >>> x + masked_array( + data=[[--], + [2], + [3], + [--]], + mask=[[ True], + [False], + [False], + [ True]], + fill_value=999999) + + """ + kwargs.update(order=kwargs.get('order', 'C')) + result = self._data.reshape(*s, **kwargs).view(type(self)) + result._update_from(self) + mask = self._mask + if mask is not nomask: + result._mask = mask.reshape(*s, **kwargs) + return result + + def resize(self, newshape, refcheck=True, order=False): + """ + .. warning:: + + This method does nothing, except raise a ValueError exception. A + masked array does not own its data and therefore cannot safely be + resized in place. Use the `numpy.ma.resize` function instead. + + This method is difficult to implement safely and may be deprecated in + future releases of NumPy. + + """ + # Note : the 'order' keyword looks broken, let's just drop it + errmsg = "A masked array does not own its data "\ + "and therefore cannot be resized.\n" \ + "Use the numpy.ma.resize function instead." + raise ValueError(errmsg) + + def put(self, indices, values, mode='raise'): + """ + Set storage-indexed locations to corresponding values. + + Sets self._data.flat[n] = values[n] for each n in indices. + If `values` is shorter than `indices` then it will repeat. + If `values` has some masked values, the initial mask is updated + in consequence, else the corresponding values are unmasked. + + Parameters + ---------- + indices : 1-D array_like + Target indices, interpreted as integers. + values : array_like + Values to place in self._data copy at target indices. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + 'raise' : raise an error. + 'wrap' : wrap around. + 'clip' : clip to the range. + + Notes + ----- + `values` can be a scalar or length 1 array. + + Examples + -------- + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.put([0,4,8],[10,20,30]) + >>> x + masked_array( + data=[[10, --, 3], + [--, 20, --], + [7, --, 30]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + >>> x.put(4,999) + >>> x + masked_array( + data=[[10, --, 3], + [--, 999, --], + [7, --, 30]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + """ + # Hard mask: Get rid of the values/indices that fall on masked data + if self._hardmask and self._mask is not nomask: + mask = self._mask[indices] + indices = narray(indices, copy=False) + values = narray(values, copy=False, subok=True) + values.resize(indices.shape) + indices = indices[~mask] + values = values[~mask] + + self._data.put(indices, values, mode=mode) + + # short circuit if neither self nor values are masked + if self._mask is nomask and getmask(values) is nomask: + return + + m = getmaskarray(self) + + if getmask(values) is nomask: + m.put(indices, False, mode=mode) + else: + m.put(indices, values._mask, mode=mode) + m = make_mask(m, copy=False, shrink=True) + self._mask = m + return + + def ids(self): + """ + Return the addresses of the data and mask areas. + + Parameters + ---------- + None + + Examples + -------- + >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1]) + >>> x.ids() + (166670640, 166659832) # may vary + + If the array has no mask, the address of `nomask` is returned. This address + is typically not close to the data in memory: + + >>> x = np.ma.array([1, 2, 3]) + >>> x.ids() + (166691080, 3083169284) # may vary + + """ + if self._mask is nomask: + return (self.ctypes.data, id(nomask)) + return (self.ctypes.data, self._mask.ctypes.data) + + def iscontiguous(self): + """ + Return a boolean indicating whether the data is contiguous. + + Parameters + ---------- + None + + Examples + -------- + >>> x = np.ma.array([1, 2, 3]) + >>> x.iscontiguous() + True + + `iscontiguous` returns one of the flags of the masked array: + + >>> x.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : True + OWNDATA : False + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + """ + return self.flags['CONTIGUOUS'] + + def all(self, axis=None, out=None, keepdims=np._NoValue): + """ + Returns True if all elements evaluate to True. + + The output array is masked where all the values along the given axis + are masked: if the output would have been a scalar and that all the + values are masked, then the output is `masked`. + + Refer to `numpy.all` for full documentation. + + See Also + -------- + numpy.ndarray.all : corresponding function for ndarrays + numpy.all : equivalent function + + Examples + -------- + >>> np.ma.array([1,2,3]).all() + True + >>> a = np.ma.array([1,2,3], mask=True) + >>> (a.all() is np.ma.masked) + True + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + mask = _check_mask_axis(self._mask, axis, **kwargs) + if out is None: + d = self.filled(True).all(axis=axis, **kwargs).view(type(self)) + if d.ndim: + d.__setmask__(mask) + elif mask: + return masked + return d + self.filled(True).all(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + if out.ndim or mask: + out.__setmask__(mask) + return out + + def any(self, axis=None, out=None, keepdims=np._NoValue): + """ + Returns True if any of the elements of `a` evaluate to True. + + Masked values are considered as False during computation. + + Refer to `numpy.any` for full documentation. + + See Also + -------- + numpy.ndarray.any : corresponding function for ndarrays + numpy.any : equivalent function + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + mask = _check_mask_axis(self._mask, axis, **kwargs) + if out is None: + d = self.filled(False).any(axis=axis, **kwargs).view(type(self)) + if d.ndim: + d.__setmask__(mask) + elif mask: + d = masked + return d + self.filled(False).any(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + if out.ndim or mask: + out.__setmask__(mask) + return out + + def nonzero(self): + """ + Return the indices of unmasked elements that are not zero. + + Returns a tuple of arrays, one for each dimension, containing the + indices of the non-zero elements in that dimension. The corresponding + non-zero values can be obtained with:: + + a[a.nonzero()] + + To group the indices by element, rather than dimension, use + instead:: + + np.transpose(a.nonzero()) + + The result of this is always a 2d array, with a row for each non-zero + element. + + Parameters + ---------- + None + + Returns + ------- + tuple_of_arrays : tuple + Indices of elements that are non-zero. + + See Also + -------- + numpy.nonzero : + Function operating on ndarrays. + flatnonzero : + Return indices that are non-zero in the flattened version of the input + array. + numpy.ndarray.nonzero : + Equivalent ndarray method. + count_nonzero : + Counts the number of non-zero elements in the input array. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = ma.array(np.eye(3)) + >>> x + masked_array( + data=[[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]], + mask=False, + fill_value=1e+20) + >>> x.nonzero() + (array([0, 1, 2]), array([0, 1, 2])) + + Masked elements are ignored. + + >>> x[1, 1] = ma.masked + >>> x + masked_array( + data=[[1.0, 0.0, 0.0], + [0.0, --, 0.0], + [0.0, 0.0, 1.0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1e+20) + >>> x.nonzero() + (array([0, 2]), array([0, 2])) + + Indices can also be grouped by element. + + >>> np.transpose(x.nonzero()) + array([[0, 0], + [2, 2]]) + + A common use for ``nonzero`` is to find the indices of an array, where + a condition is True. Given an array `a`, the condition `a` > 3 is a + boolean array and since False is interpreted as 0, ma.nonzero(a > 3) + yields the indices of the `a` where the condition is true. + + >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]]) + >>> a > 3 + masked_array( + data=[[False, False, False], + [ True, True, True], + [ True, True, True]], + mask=False, + fill_value=True) + >>> ma.nonzero(a > 3) + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + The ``nonzero`` method of the condition array can also be called. + + >>> (a > 3).nonzero() + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + """ + return narray(self.filled(0), copy=False).nonzero() + + def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): + """ + (this docstring should be overwritten) + """ + #!!!: implement out + test! + m = self._mask + if m is nomask: + result = super().trace(offset=offset, axis1=axis1, axis2=axis2, + out=out) + return result.astype(dtype) + else: + D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2) + return D.astype(dtype).filled(0).sum(axis=-1, out=out) + trace.__doc__ = ndarray.trace.__doc__ + + def dot(self, b, out=None, strict=False): + """ + a.dot(b, out=None) + + Masked dot product of two arrays. Note that `out` and `strict` are + located in different positions than in `ma.dot`. In order to + maintain compatibility with the functional version, it is + recommended that the optional arguments be treated as keyword only. + At some point that may be mandatory. + + .. versionadded:: 1.10.0 + + Parameters + ---------- + b : masked_array_like + Inputs array. + out : masked_array, optional + Output argument. This must have the exact kind that would be + returned if it was not used. In particular, it must have the + right type, must be C-contiguous, and its dtype must be the + dtype that would be returned for `ma.dot(a,b)`. This is a + performance feature. Therefore, if these conditions are not + met, an exception is raised, instead of attempting to be + flexible. + strict : bool, optional + Whether masked data are propagated (True) or set to 0 (False) + for the computation. Default is False. Propagating the mask + means that if a masked value appears in a row or column, the + whole row or column is considered masked. + + .. versionadded:: 1.10.2 + + See Also + -------- + numpy.ma.dot : equivalent function + + """ + return dot(self, b, out=out, strict=strict) + + def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Return the sum of the array elements over the given axis. + + Masked elements are set to 0 internally. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.ndarray.sum : corresponding function for ndarrays + numpy.sum : equivalent function + + Examples + -------- + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.sum() + 25 + >>> x.sum(axis=1) + masked_array(data=[4, 5, 16], + mask=[False, False, False], + fill_value=999999) + >>> x.sum(axis=0) + masked_array(data=[8, 5, 12], + mask=[False, False, False], + fill_value=999999) + >>> print(type(x.sum(axis=0, dtype=np.int64)[0])) + + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + # No explicit output + if out is None: + result = self.filled(0).sum(axis, dtype=dtype, **kwargs) + rndim = getattr(result, 'ndim', 0) + if rndim: + result = result.view(type(self)) + result.__setmask__(newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + return out + + def cumsum(self, axis=None, dtype=None, out=None): + """ + Return the cumulative sum of the array elements over the given axis. + + Masked values are set to 0 internally during the computation. + However, their position is saved, and the result will be masked at + the same locations. + + Refer to `numpy.cumsum` for full documentation. + + Notes + ----- + The mask is lost if `out` is not a valid :class:`ma.MaskedArray` ! + + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + See Also + -------- + numpy.ndarray.cumsum : corresponding function for ndarrays + numpy.cumsum : equivalent function + + Examples + -------- + >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]) + >>> marr.cumsum() + masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33], + mask=[False, False, False, True, True, True, False, False, + False, False], + fill_value=999999) + + """ + result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(self.mask) + return out + result = result.view(type(self)) + result.__setmask__(self._mask) + return result + + def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Return the product of the array elements over the given axis. + + Masked elements are set to 1 internally for computation. + + Refer to `numpy.prod` for full documentation. + + Notes + ----- + Arithmetic is modular when using integer types, and no error is raised + on overflow. + + See Also + -------- + numpy.ndarray.prod : corresponding function for ndarrays + numpy.prod : equivalent function + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + # No explicit output + if out is None: + result = self.filled(1).prod(axis, dtype=dtype, **kwargs) + rndim = getattr(result, 'ndim', 0) + if rndim: + result = result.view(type(self)) + result.__setmask__(newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + return out + product = prod + + def cumprod(self, axis=None, dtype=None, out=None): + """ + Return the cumulative product of the array elements over the given axis. + + Masked values are set to 1 internally during the computation. + However, their position is saved, and the result will be masked at + the same locations. + + Refer to `numpy.cumprod` for full documentation. + + Notes + ----- + The mask is lost if `out` is not a valid MaskedArray ! + + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + See Also + -------- + numpy.ndarray.cumprod : corresponding function for ndarrays + numpy.cumprod : equivalent function + """ + result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(self._mask) + return out + result = result.view(type(self)) + result.__setmask__(self._mask) + return result + + def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Returns the average of the array elements along given axis. + + Masked entries are ignored, and result elements which are not + finite will be masked. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.ndarray.mean : corresponding function for ndarrays + numpy.mean : Equivalent function + numpy.ma.average : Weighted average. + + Examples + -------- + >>> a = np.ma.array([1,2,3], mask=[False, False, True]) + >>> a + masked_array(data=[1, 2, --], + mask=[False, False, True], + fill_value=999999) + >>> a.mean() + 1.5 + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + if self._mask is nomask: + result = super().mean(axis=axis, dtype=dtype, **kwargs)[()] + else: + is_float16_result = False + if dtype is None: + if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool_)): + dtype = mu.dtype('f8') + elif issubclass(self.dtype.type, ntypes.float16): + dtype = mu.dtype('f4') + is_float16_result = True + dsum = self.sum(axis=axis, dtype=dtype, **kwargs) + cnt = self.count(axis=axis, **kwargs) + if cnt.shape == () and (cnt == 0): + result = masked + elif is_float16_result: + result = self.dtype.type(dsum * 1. / cnt) + else: + result = dsum * 1. / cnt + if out is not None: + out.flat = result + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = getmask(result) + return out + return result + + def anom(self, axis=None, dtype=None): + """ + Compute the anomalies (deviations from the arithmetic mean) + along the given axis. + + Returns an array of anomalies, with the same shape as the input and + where the arithmetic mean is computed along the given axis. + + Parameters + ---------- + axis : int, optional + Axis over which the anomalies are taken. + The default is to use the mean of the flattened array as reference. + dtype : dtype, optional + Type to use in computing the variance. For arrays of integer type + the default is float32; for arrays of float types it is the same as + the array type. + + See Also + -------- + mean : Compute the mean of the array. + + Examples + -------- + >>> a = np.ma.array([1,2,3]) + >>> a.anom() + masked_array(data=[-1., 0., 1.], + mask=False, + fill_value=1e+20) + + """ + m = self.mean(axis, dtype) + if not axis: + return self - m + else: + return self - expand_dims(m, axis) + + def var(self, axis=None, dtype=None, out=None, ddof=0, + keepdims=np._NoValue): + """ + Returns the variance of the array elements along given axis. + + Masked entries are ignored, and result elements which are not + finite will be masked. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.ndarray.var : corresponding function for ndarrays + numpy.var : Equivalent function + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + # Easy case: nomask, business as usual + if self._mask is nomask: + ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof, + **kwargs)[()] + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(nomask) + return out + return ret + + # Some data are masked, yay! + cnt = self.count(axis=axis, **kwargs) - ddof + danom = self - self.mean(axis, dtype, keepdims=True) + if iscomplexobj(self): + danom = umath.absolute(danom) ** 2 + else: + danom *= danom + dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self)) + # Apply the mask if it's not a scalar + if dvar.ndim: + dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0)) + dvar._update_from(self) + elif getmask(dvar): + # Make sure that masked is returned when the scalar is masked. + dvar = masked + if out is not None: + if isinstance(out, MaskedArray): + out.flat = 0 + out.__setmask__(True) + elif out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or "\ + "more location." + raise MaskError(errmsg) + else: + out.flat = np.nan + return out + # In case with have an explicit output + if out is not None: + # Set the data + out.flat = dvar + # Set the mask if needed + if isinstance(out, MaskedArray): + out.__setmask__(dvar.mask) + return out + return dvar + var.__doc__ = np.var.__doc__ + + def std(self, axis=None, dtype=None, out=None, ddof=0, + keepdims=np._NoValue): + """ + Returns the standard deviation of the array elements along given axis. + + Masked entries are ignored. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.ndarray.std : corresponding function for ndarrays + numpy.std : Equivalent function + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + dvar = self.var(axis, dtype, out, ddof, **kwargs) + if dvar is not masked: + if out is not None: + np.power(out, 0.5, out=out, casting='unsafe') + return out + dvar = sqrt(dvar) + return dvar + + def round(self, decimals=0, out=None): + """ + Return each element rounded to the given number of decimals. + + Refer to `numpy.around` for full documentation. + + See Also + -------- + numpy.ndarray.round : corresponding function for ndarrays + numpy.around : equivalent function + """ + result = self._data.round(decimals=decimals, out=out).view(type(self)) + if result.ndim > 0: + result._mask = self._mask + result._update_from(self) + elif self._mask: + # Return masked when the scalar is masked + result = masked + # No explicit output: we're done + if out is None: + return result + if isinstance(out, MaskedArray): + out.__setmask__(self._mask) + return out + + def argsort(self, axis=np._NoValue, kind=None, order=None, + endwith=True, fill_value=None): + """ + Return an ndarray of indices that sort the array along the + specified axis. Masked values are filled beforehand to + `fill_value`. + + Parameters + ---------- + axis : int, optional + Axis along which to sort. If None, the default, the flattened array + is used. + + .. versionchanged:: 1.13.0 + Previously, the default was documented to be -1, but that was + in error. At some future date, the default will change to -1, as + originally intended. + Until then, the axis should be given explicitly when + ``arr.ndim > 1``, to avoid a FutureWarning. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + The sorting algorithm used. + order : list, optional + When `a` is an array with fields defined, this argument specifies + which fields to compare first, second, etc. Not all fields need be + specified. + endwith : {True, False}, optional + Whether missing values (if any) should be treated as the largest values + (True) or the smallest values (False) + When the array contains unmasked values at the same extremes of the + datatype, the ordering of these values and the masked values is + undefined. + fill_value : scalar or None, optional + Value used internally for the masked values. + If ``fill_value`` is not None, it supersedes ``endwith``. + + Returns + ------- + index_array : ndarray, int + Array of indices that sort `a` along the specified axis. + In other words, ``a[index_array]`` yields a sorted `a`. + + See Also + -------- + ma.MaskedArray.sort : Describes sorting algorithms used. + lexsort : Indirect stable sort with multiple keys. + numpy.ndarray.sort : Inplace sort. + + Notes + ----- + See `sort` for notes on the different sorting algorithms. + + Examples + -------- + >>> a = np.ma.array([3,2,1], mask=[False, False, True]) + >>> a + masked_array(data=[3, 2, --], + mask=[False, False, True], + fill_value=999999) + >>> a.argsort() + array([1, 0, 2]) + + """ + + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + if axis is np._NoValue: + axis = _deprecate_argsort_axis(self) + + if fill_value is None: + if endwith: + # nan > inf + if np.issubdtype(self.dtype, np.floating): + fill_value = np.nan + else: + fill_value = minimum_fill_value(self) + else: + fill_value = maximum_fill_value(self) + + filled = self.filled(fill_value) + return filled.argsort(axis=axis, kind=kind, order=order) + + def argmin(self, axis=None, fill_value=None, out=None, *, + keepdims=np._NoValue): + """ + Return array of indices to the minimum values along the given axis. + + Parameters + ---------- + axis : {None, integer} + If None, the index is into the flattened array, otherwise along + the specified axis + fill_value : scalar or None, optional + Value used to fill in the masked values. If None, the output of + minimum_fill_value(self._data) is used instead. + out : {None, array}, optional + Array into which the result can be placed. Its type is preserved + and it must be of the right shape to hold the output. + + Returns + ------- + ndarray or scalar + If multi-dimension input, returns a new ndarray of indices to the + minimum values along the given axis. Otherwise, returns a scalar + of index to the minimum values along the given axis. + + Examples + -------- + >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0]) + >>> x.shape = (2,2) + >>> x + masked_array( + data=[[--, --], + [2, 3]], + mask=[[ True, True], + [False, False]], + fill_value=999999) + >>> x.argmin(axis=0, fill_value=-1) + array([0, 0]) + >>> x.argmin(axis=0, fill_value=9) + array([1, 1]) + + """ + if fill_value is None: + fill_value = minimum_fill_value(self) + d = self.filled(fill_value).view(ndarray) + keepdims = False if keepdims is np._NoValue else bool(keepdims) + return d.argmin(axis, out=out, keepdims=keepdims) + + def argmax(self, axis=None, fill_value=None, out=None, *, + keepdims=np._NoValue): + """ + Returns array of indices of the maximum values along the given axis. + Masked values are treated as if they had the value fill_value. + + Parameters + ---------- + axis : {None, integer} + If None, the index is into the flattened array, otherwise along + the specified axis + fill_value : scalar or None, optional + Value used to fill in the masked values. If None, the output of + maximum_fill_value(self._data) is used instead. + out : {None, array}, optional + Array into which the result can be placed. Its type is preserved + and it must be of the right shape to hold the output. + + Returns + ------- + index_array : {integer_array} + + Examples + -------- + >>> a = np.arange(6).reshape(2,3) + >>> a.argmax() + 5 + >>> a.argmax(0) + array([1, 1, 1]) + >>> a.argmax(1) + array([2, 2]) + + """ + if fill_value is None: + fill_value = maximum_fill_value(self._data) + d = self.filled(fill_value).view(ndarray) + keepdims = False if keepdims is np._NoValue else bool(keepdims) + return d.argmax(axis, out=out, keepdims=keepdims) + + def sort(self, axis=-1, kind=None, order=None, + endwith=True, fill_value=None): + """ + Sort the array, in-place + + Parameters + ---------- + a : array_like + Array to be sorted. + axis : int, optional + Axis along which to sort. If None, the array is flattened before + sorting. The default is -1, which sorts along the last axis. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + The sorting algorithm used. + order : list, optional + When `a` is a structured array, this argument specifies which fields + to compare first, second, and so on. This list does not need to + include all of the fields. + endwith : {True, False}, optional + Whether missing values (if any) should be treated as the largest values + (True) or the smallest values (False) + When the array contains unmasked values sorting at the same extremes of the + datatype, the ordering of these values and the masked values is + undefined. + fill_value : scalar or None, optional + Value used internally for the masked values. + If ``fill_value`` is not None, it supersedes ``endwith``. + + Returns + ------- + sorted_array : ndarray + Array of the same type and shape as `a`. + + See Also + -------- + numpy.ndarray.sort : Method to sort an array in-place. + argsort : Indirect sort. + lexsort : Indirect stable sort on multiple keys. + searchsorted : Find elements in a sorted array. + + Notes + ----- + See ``sort`` for notes on the different sorting algorithms. + + Examples + -------- + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # Default + >>> a.sort() + >>> a + masked_array(data=[1, 3, 5, --, --], + mask=[False, False, False, True, True], + fill_value=999999) + + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # Put missing values in the front + >>> a.sort(endwith=False) + >>> a + masked_array(data=[--, --, 1, 3, 5], + mask=[ True, True, False, False, False], + fill_value=999999) + + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # fill_value takes over endwith + >>> a.sort(endwith=False, fill_value=3) + >>> a + masked_array(data=[1, --, --, 3, 5], + mask=[False, True, True, False, False], + fill_value=999999) + + """ + if self._mask is nomask: + ndarray.sort(self, axis=axis, kind=kind, order=order) + return + + if self is masked: + return + + sidx = self.argsort(axis=axis, kind=kind, order=order, + fill_value=fill_value, endwith=endwith) + + self[...] = np.take_along_axis(self, sidx, axis=axis) + + def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + """ + Return the minimum along a given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis along which to operate. By default, ``axis`` is None and the + flattened input is used. + .. versionadded:: 1.7.0 + If this is a tuple of ints, the minimum is selected over multiple + axes, instead of a single axis or all the axes as before. + out : array_like, optional + Alternative output array in which to place the result. Must be of + the same shape and buffer length as the expected output. + fill_value : scalar or None, optional + Value used to fill in the masked values. + If None, use the output of `minimum_fill_value`. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + amin : array_like + New array holding the result. + If ``out`` was specified, ``out`` is returned. + + See Also + -------- + ma.minimum_fill_value + Returns the minimum filling value for a given datatype. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]] + >>> mask = [[1, 1, 0], [0, 0, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array( + data=[[--, --, 3.0], + [0.2, -0.7, --]], + mask=[[ True, True, False], + [False, False, True]], + fill_value=1e+20) + >>> ma.min(masked_x) + -0.7 + >>> ma.min(masked_x, axis=-1) + masked_array(data=[3.0, -0.7], + mask=[False, False], + fill_value=1e+20) + >>> ma.min(masked_x, axis=0, keepdims=True) + masked_array(data=[[0.2, -0.7, 3.0]], + mask=[[False, False, False]], + fill_value=1e+20) + >>> mask = [[1, 1, 1,], [1, 1, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> ma.min(masked_x, axis=0) + masked_array(data=[--, --, --], + mask=[ True, True, True], + fill_value=1e+20, + dtype=float64) + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + if fill_value is None: + fill_value = minimum_fill_value(self) + # No explicit output + if out is None: + result = self.filled(fill_value).min( + axis=axis, out=out, **kwargs).view(type(self)) + if result.ndim: + # Set the mask + result.__setmask__(newmask) + # Get rid of Infs + if newmask.ndim: + np.copyto(result, result.fill_value, where=newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(fill_value).min(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + else: + if out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or more"\ + " location." + raise MaskError(errmsg) + np.copyto(out, np.nan, where=newmask) + return out + + def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + """ + Return the maximum along a given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis along which to operate. By default, ``axis`` is None and the + flattened input is used. + .. versionadded:: 1.7.0 + If this is a tuple of ints, the maximum is selected over multiple + axes, instead of a single axis or all the axes as before. + out : array_like, optional + Alternative output array in which to place the result. Must + be of the same shape and buffer length as the expected output. + fill_value : scalar or None, optional + Value used to fill in the masked values. + If None, use the output of maximum_fill_value(). + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + amax : array_like + New array holding the result. + If ``out`` was specified, ``out`` is returned. + + See Also + -------- + ma.maximum_fill_value + Returns the maximum filling value for a given datatype. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [[-1., 2.5], [4., -2.], [3., 0.]] + >>> mask = [[0, 0], [1, 0], [1, 0]] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array( + data=[[-1.0, 2.5], + [--, -2.0], + [--, 0.0]], + mask=[[False, False], + [ True, False], + [ True, False]], + fill_value=1e+20) + >>> ma.max(masked_x) + 2.5 + >>> ma.max(masked_x, axis=0) + masked_array(data=[-1.0, 2.5], + mask=[False, False], + fill_value=1e+20) + >>> ma.max(masked_x, axis=1, keepdims=True) + masked_array( + data=[[2.5], + [-2.0], + [0.0]], + mask=[[False], + [False], + [False]], + fill_value=1e+20) + >>> mask = [[1, 1], [1, 1], [1, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> ma.max(masked_x, axis=1) + masked_array(data=[--, --, --], + mask=[ True, True, True], + fill_value=1e+20, + dtype=float64) + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + if fill_value is None: + fill_value = maximum_fill_value(self) + # No explicit output + if out is None: + result = self.filled(fill_value).max( + axis=axis, out=out, **kwargs).view(type(self)) + if result.ndim: + # Set the mask + result.__setmask__(newmask) + # Get rid of Infs + if newmask.ndim: + np.copyto(result, result.fill_value, where=newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(fill_value).max(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + else: + + if out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or more"\ + " location." + raise MaskError(errmsg) + np.copyto(out, np.nan, where=newmask) + return out + + def ptp(self, axis=None, out=None, fill_value=None, keepdims=False): + """ + Return (maximum - minimum) along the given dimension + (i.e. peak-to-peak value). + + .. warning:: + `ptp` preserves the data type of the array. This means the + return value for an input of signed integers with n bits + (e.g. `np.int8`, `np.int16`, etc) is also a signed integer + with n bits. In that case, peak-to-peak values greater than + ``2**(n-1)-1`` will be returned as negative values. An example + with a work-around is shown below. + + Parameters + ---------- + axis : {None, int}, optional + Axis along which to find the peaks. If None (default) the + flattened array is used. + out : {None, array_like}, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. + fill_value : scalar or None, optional + Value used to fill in the masked values. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + ptp : ndarray. + A new array holding the result, unless ``out`` was + specified, in which case a reference to ``out`` is returned. + + Examples + -------- + >>> x = np.ma.MaskedArray([[4, 9, 2, 10], + ... [6, 9, 7, 12]]) + + >>> x.ptp(axis=1) + masked_array(data=[8, 6], + mask=False, + fill_value=999999) + + >>> x.ptp(axis=0) + masked_array(data=[2, 0, 5, 2], + mask=False, + fill_value=999999) + + >>> x.ptp() + 10 + + This example shows that a negative value can be returned when + the input is an array of signed integers. + + >>> y = np.ma.MaskedArray([[1, 127], + ... [0, 127], + ... [-1, 127], + ... [-2, 127]], dtype=np.int8) + >>> y.ptp(axis=1) + masked_array(data=[ 126, 127, -128, -127], + mask=False, + fill_value=999999, + dtype=int8) + + A work-around is to use the `view()` method to view the result as + unsigned integers with the same bit width: + + >>> y.ptp(axis=1).view(np.uint8) + masked_array(data=[126, 127, 128, 129], + mask=False, + fill_value=999999, + dtype=uint8) + """ + if out is None: + result = self.max(axis=axis, fill_value=fill_value, + keepdims=keepdims) + result -= self.min(axis=axis, fill_value=fill_value, + keepdims=keepdims) + return result + out.flat = self.max(axis=axis, out=out, fill_value=fill_value, + keepdims=keepdims) + min_value = self.min(axis=axis, fill_value=fill_value, + keepdims=keepdims) + np.subtract(out, min_value, out=out, casting='unsafe') + return out + + def partition(self, *args, **kwargs): + warnings.warn("Warning: 'partition' will ignore the 'mask' " + f"of the {self.__class__.__name__}.", + stacklevel=2) + return super().partition(*args, **kwargs) + + def argpartition(self, *args, **kwargs): + warnings.warn("Warning: 'argpartition' will ignore the 'mask' " + f"of the {self.__class__.__name__}.", + stacklevel=2) + return super().argpartition(*args, **kwargs) + + def take(self, indices, axis=None, out=None, mode='raise'): + """ + """ + (_data, _mask) = (self._data, self._mask) + cls = type(self) + # Make sure the indices are not masked + maskindices = getmask(indices) + if maskindices is not nomask: + indices = indices.filled(0) + # Get the data, promoting scalars to 0d arrays with [...] so that + # .view works correctly + if out is None: + out = _data.take(indices, axis=axis, mode=mode)[...].view(cls) + else: + np.take(_data, indices, axis=axis, mode=mode, out=out) + # Get the mask + if isinstance(out, MaskedArray): + if _mask is nomask: + outmask = maskindices + else: + outmask = _mask.take(indices, axis=axis, mode=mode) + outmask |= maskindices + out.__setmask__(outmask) + # demote 0d arrays back to scalars, for consistency with ndarray.take + return out[()] + + # Array methods + copy = _arraymethod('copy') + diagonal = _arraymethod('diagonal') + flatten = _arraymethod('flatten') + repeat = _arraymethod('repeat') + squeeze = _arraymethod('squeeze') + swapaxes = _arraymethod('swapaxes') + T = property(fget=lambda self: self.transpose()) + transpose = _arraymethod('transpose') + + def tolist(self, fill_value=None): + """ + Return the data portion of the masked array as a hierarchical Python list. + + Data items are converted to the nearest compatible Python type. + Masked values are converted to `fill_value`. If `fill_value` is None, + the corresponding entries in the output list will be ``None``. + + Parameters + ---------- + fill_value : scalar, optional + The value to use for invalid entries. Default is None. + + Returns + ------- + result : list + The Python list representation of the masked array. + + Examples + -------- + >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4) + >>> x.tolist() + [[1, None, 3], [None, 5, None], [7, None, 9]] + >>> x.tolist(-999) + [[1, -999, 3], [-999, 5, -999], [7, -999, 9]] + + """ + _mask = self._mask + # No mask ? Just return .data.tolist ? + if _mask is nomask: + return self._data.tolist() + # Explicit fill_value: fill the array and get the list + if fill_value is not None: + return self.filled(fill_value).tolist() + # Structured array. + names = self.dtype.names + if names: + result = self._data.astype([(_, object) for _ in names]) + for n in names: + result[n][_mask[n]] = None + return result.tolist() + # Standard arrays. + if _mask is nomask: + return [None] + # Set temps to save time when dealing w/ marrays. + inishape = self.shape + result = np.array(self._data.ravel(), dtype=object) + result[_mask.ravel()] = None + result.shape = inishape + return result.tolist() + + def tostring(self, fill_value=None, order='C'): + r""" + A compatibility alias for `tobytes`, with exactly the same behavior. + + Despite its name, it returns `bytes` not `str`\ s. + + .. deprecated:: 1.19.0 + """ + # 2020-03-30, Numpy 1.19.0 + warnings.warn( + "tostring() is deprecated. Use tobytes() instead.", + DeprecationWarning, stacklevel=2) + + return self.tobytes(fill_value, order=order) + + def tobytes(self, fill_value=None, order='C'): + """ + Return the array data as a string containing the raw bytes in the array. + + The array is filled with a fill value before the string conversion. + + .. versionadded:: 1.9.0 + + Parameters + ---------- + fill_value : scalar, optional + Value used to fill in the masked values. Default is None, in which + case `MaskedArray.fill_value` is used. + order : {'C','F','A'}, optional + Order of the data item in the copy. Default is 'C'. + + - 'C' -- C order (row major). + - 'F' -- Fortran order (column major). + - 'A' -- Any, current order of array. + - None -- Same as 'A'. + + See Also + -------- + numpy.ndarray.tobytes + tolist, tofile + + Notes + ----- + As for `ndarray.tobytes`, information about the shape, dtype, etc., + but also about `fill_value`, will be lost. + + Examples + -------- + >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) + >>> x.tobytes() + b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00' + + """ + return self.filled(fill_value).tobytes(order=order) + + def tofile(self, fid, sep="", format="%s"): + """ + Save a masked array to a file in binary format. + + .. warning:: + This function is not implemented yet. + + Raises + ------ + NotImplementedError + When `tofile` is called. + + """ + raise NotImplementedError("MaskedArray.tofile() not implemented yet.") + + def toflex(self): + """ + Transforms a masked array into a flexible-type array. + + The flexible type array that is returned will have two fields: + + * the ``_data`` field stores the ``_data`` part of the array. + * the ``_mask`` field stores the ``_mask`` part of the array. + + Parameters + ---------- + None + + Returns + ------- + record : ndarray + A new flexible-type `ndarray` with two fields: the first element + containing a value, the second element containing the corresponding + mask boolean. The returned record shape matches self.shape. + + Notes + ----- + A side-effect of transforming a masked array into a flexible `ndarray` is + that meta information (``fill_value``, ...) will be lost. + + Examples + -------- + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.toflex() + array([[(1, False), (2, True), (3, False)], + [(4, True), (5, False), (6, True)], + [(7, False), (8, True), (9, False)]], + dtype=[('_data', 'i2", (2,))]) + # x = A[0]; y = x["A"]; then y.mask["A"].size==2 + # and we can not say masked/unmasked. + # The result is no longer mvoid! + # See also issue #6724. + return masked_array( + data=self._data[indx], mask=m[indx], + fill_value=self._fill_value[indx], + hard_mask=self._hardmask) + if m is not nomask and m[indx]: + return masked + return self._data[indx] + + def __setitem__(self, indx, value): + self._data[indx] = value + if self._hardmask: + self._mask[indx] |= getattr(value, "_mask", False) + else: + self._mask[indx] = getattr(value, "_mask", False) + + def __str__(self): + m = self._mask + if m is nomask: + return str(self._data) + + rdtype = _replace_dtype_fields(self._data.dtype, "O") + data_arr = super()._data + res = data_arr.astype(rdtype) + _recursive_printoption(res, self._mask, masked_print_option) + return str(res) + + __repr__ = __str__ + + def __iter__(self): + "Defines an iterator for mvoid" + (_data, _mask) = (self._data, self._mask) + if _mask is nomask: + yield from _data + else: + for (d, m) in zip(_data, _mask): + if m: + yield masked + else: + yield d + + def __len__(self): + return self._data.__len__() + + def filled(self, fill_value=None): + """ + Return a copy with masked fields filled with a given value. + + Parameters + ---------- + fill_value : array_like, optional + The value to use for invalid entries. Can be scalar or + non-scalar. If latter is the case, the filled array should + be broadcastable over input array. Default is None, in + which case the `fill_value` attribute is used instead. + + Returns + ------- + filled_void + A `np.void` object + + See Also + -------- + MaskedArray.filled + + """ + return asarray(self).filled(fill_value)[()] + + def tolist(self): + """ + Transforms the mvoid object into a tuple. + + Masked fields are replaced by None. + + Returns + ------- + returned_tuple + Tuple of fields + """ + _mask = self._mask + if _mask is nomask: + return self._data.tolist() + result = [] + for (d, m) in zip(self._data, self._mask): + if m: + result.append(None) + else: + # .item() makes sure we return a standard Python object + result.append(d.item()) + return tuple(result) + + +############################################################################## +# Shortcuts # +############################################################################## + + +def isMaskedArray(x): + """ + Test whether input is an instance of MaskedArray. + + This function returns True if `x` is an instance of MaskedArray + and returns False otherwise. Any object is accepted as input. + + Parameters + ---------- + x : object + Object to test. + + Returns + ------- + result : bool + True if `x` is a MaskedArray. + + See Also + -------- + isMA : Alias to isMaskedArray. + isarray : Alias to isMaskedArray. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.eye(3, 3) + >>> a + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + >>> m = ma.masked_values(a, 0) + >>> m + masked_array( + data=[[1.0, --, --], + [--, 1.0, --], + [--, --, 1.0]], + mask=[[False, True, True], + [ True, False, True], + [ True, True, False]], + fill_value=0.0) + >>> ma.isMaskedArray(a) + False + >>> ma.isMaskedArray(m) + True + >>> ma.isMaskedArray([0, 1, 2]) + False + + """ + return isinstance(x, MaskedArray) + + +isarray = isMaskedArray +isMA = isMaskedArray # backward compatibility + + +class MaskedConstant(MaskedArray): + # the lone np.ma.masked instance + __singleton = None + + @classmethod + def __has_singleton(cls): + # second case ensures `cls.__singleton` is not just a view on the + # superclass singleton + return cls.__singleton is not None and type(cls.__singleton) is cls + + def __new__(cls): + if not cls.__has_singleton(): + # We define the masked singleton as a float for higher precedence. + # Note that it can be tricky sometimes w/ type comparison + data = np.array(0.) + mask = np.array(True) + + # prevent any modifications + data.flags.writeable = False + mask.flags.writeable = False + + # don't fall back on MaskedArray.__new__(MaskedConstant), since + # that might confuse it - this way, the construction is entirely + # within our control + cls.__singleton = MaskedArray(data, mask=mask).view(cls) + + return cls.__singleton + + def __array_finalize__(self, obj): + if not self.__has_singleton(): + # this handles the `.view` in __new__, which we want to copy across + # properties normally + return super().__array_finalize__(obj) + elif self is self.__singleton: + # not clear how this can happen, play it safe + pass + else: + # everywhere else, we want to downcast to MaskedArray, to prevent a + # duplicate maskedconstant. + self.__class__ = MaskedArray + MaskedArray.__array_finalize__(self, obj) + + def __array_prepare__(self, obj, context=None): + return self.view(MaskedArray).__array_prepare__(obj, context) + + def __array_wrap__(self, obj, context=None): + return self.view(MaskedArray).__array_wrap__(obj, context) + + def __str__(self): + return str(masked_print_option._display) + + def __repr__(self): + if self is MaskedConstant.__singleton: + return 'masked' + else: + # it's a subclass, or something is wrong, make it obvious + return object.__repr__(self) + + def __format__(self, format_spec): + # Replace ndarray.__format__ with the default, which supports no format characters. + # Supporting format characters is unwise here, because we do not know what type + # the user was expecting - better to not guess. + try: + return object.__format__(self, format_spec) + except TypeError: + # 2020-03-23, NumPy 1.19.0 + warnings.warn( + "Format strings passed to MaskedConstant are ignored, but in future may " + "error or produce different behavior", + FutureWarning, stacklevel=2 + ) + return object.__format__(self, "") + + def __reduce__(self): + """Override of MaskedArray's __reduce__. + """ + return (self.__class__, ()) + + # inplace operations have no effect. We have to override them to avoid + # trying to modify the readonly data and mask arrays + def __iop__(self, other): + return self + __iadd__ = \ + __isub__ = \ + __imul__ = \ + __ifloordiv__ = \ + __itruediv__ = \ + __ipow__ = \ + __iop__ + del __iop__ # don't leave this around + + def copy(self, *args, **kwargs): + """ Copy is a no-op on the maskedconstant, as it is a scalar """ + # maskedconstant is a scalar, so copy doesn't need to copy. There's + # precedent for this with `np.bool_` scalars. + return self + + def __copy__(self): + return self + + def __deepcopy__(self, memo): + return self + + def __setattr__(self, attr, value): + if not self.__has_singleton(): + # allow the singleton to be initialized + return super().__setattr__(attr, value) + elif self is self.__singleton: + raise AttributeError( + f"attributes of {self!r} are not writeable") + else: + # duplicate instance - we can end up here from __array_finalize__, + # where we set the __class__ attribute + return super().__setattr__(attr, value) + + +masked = masked_singleton = MaskedConstant() +masked_array = MaskedArray + + +def array(data, dtype=None, copy=False, order=None, + mask=nomask, fill_value=None, keep_mask=True, + hard_mask=False, shrink=True, subok=True, ndmin=0): + """ + Shortcut to MaskedArray. + + The options are in a different order for convenience and backwards + compatibility. + + """ + return MaskedArray(data, mask=mask, dtype=dtype, copy=copy, + subok=subok, keep_mask=keep_mask, + hard_mask=hard_mask, fill_value=fill_value, + ndmin=ndmin, shrink=shrink, order=order) +array.__doc__ = masked_array.__doc__ + + +def is_masked(x): + """ + Determine whether input has masked values. + + Accepts any object as input, but always returns False unless the + input is a MaskedArray containing masked values. + + Parameters + ---------- + x : array_like + Array to check for masked values. + + Returns + ------- + result : bool + True if `x` is a MaskedArray with masked values, False otherwise. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0) + >>> x + masked_array(data=[--, 1, --, 2, 3], + mask=[ True, False, True, False, False], + fill_value=0) + >>> ma.is_masked(x) + True + >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42) + >>> x + masked_array(data=[0, 1, 0, 2, 3], + mask=False, + fill_value=42) + >>> ma.is_masked(x) + False + + Always returns False if `x` isn't a MaskedArray. + + >>> x = [False, True, False] + >>> ma.is_masked(x) + False + >>> x = 'a string' + >>> ma.is_masked(x) + False + + """ + m = getmask(x) + if m is nomask: + return False + elif m.any(): + return True + return False + + +############################################################################## +# Extrema functions # +############################################################################## + + +class _extrema_operation(_MaskedUFunc): + """ + Generic class for maximum/minimum functions. + + .. note:: + This is the base class for `_maximum_operation` and + `_minimum_operation`. + + """ + def __init__(self, ufunc, compare, fill_value): + super().__init__(ufunc) + self.compare = compare + self.fill_value_func = fill_value + + def __call__(self, a, b): + "Executes the call behavior." + + return where(self.compare(a, b), a, b) + + def reduce(self, target, axis=np._NoValue): + "Reduce target along the given axis." + target = narray(target, copy=False, subok=True) + m = getmask(target) + + if axis is np._NoValue and target.ndim > 1: + # 2017-05-06, Numpy 1.13.0: warn on axis default + warnings.warn( + f"In the future the default for ma.{self.__name__}.reduce will be axis=0, " + f"not the current None, to match np.{self.__name__}.reduce. " + "Explicitly pass 0 or None to silence this warning.", + MaskedArrayFutureWarning, stacklevel=2) + axis = None + + if axis is not np._NoValue: + kwargs = dict(axis=axis) + else: + kwargs = dict() + + if m is nomask: + t = self.f.reduce(target, **kwargs) + else: + target = target.filled( + self.fill_value_func(target)).view(type(target)) + t = self.f.reduce(target, **kwargs) + m = umath.logical_and.reduce(m, **kwargs) + if hasattr(t, '_mask'): + t._mask = m + elif m: + t = masked + return t + + def outer(self, a, b): + "Return the function applied to the outer product of a and b." + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + m = nomask + else: + ma = getmaskarray(a) + mb = getmaskarray(b) + m = logical_or.outer(ma, mb) + result = self.f.outer(filled(a), filled(b)) + if not isinstance(result, MaskedArray): + result = result.view(MaskedArray) + result._mask = m + return result + +def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + try: + return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a min method, or if the method doesn't accept a + # fill_value argument + return asanyarray(obj).min(axis=axis, fill_value=fill_value, + out=out, **kwargs) +min.__doc__ = MaskedArray.min.__doc__ + +def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + try: + return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a max method, or if the method doesn't accept a + # fill_value argument + return asanyarray(obj).max(axis=axis, fill_value=fill_value, + out=out, **kwargs) +max.__doc__ = MaskedArray.max.__doc__ + + +def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + try: + return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a ptp method or if the method doesn't accept + # a fill_value argument + return asanyarray(obj).ptp(axis=axis, fill_value=fill_value, + out=out, **kwargs) +ptp.__doc__ = MaskedArray.ptp.__doc__ + + +############################################################################## +# Definition of functions from the corresponding methods # +############################################################################## + + +class _frommethod: + """ + Define functions from existing MaskedArray methods. + + Parameters + ---------- + methodname : str + Name of the method to transform. + + """ + + def __init__(self, methodname, reversed=False): + self.__name__ = methodname + self.__doc__ = self.getdoc() + self.reversed = reversed + + def getdoc(self): + "Return the doc of the function (from the doc of the method)." + meth = getattr(MaskedArray, self.__name__, None) or\ + getattr(np, self.__name__, None) + signature = self.__name__ + get_object_signature(meth) + if meth is not None: + doc = """ %s\n%s""" % ( + signature, getattr(meth, '__doc__', None)) + return doc + + def __call__(self, a, *args, **params): + if self.reversed: + args = list(args) + a, args[0] = args[0], a + + marr = asanyarray(a) + method_name = self.__name__ + method = getattr(type(marr), method_name, None) + if method is None: + # use the corresponding np function + method = getattr(np, method_name) + + return method(marr, *args, **params) + + +all = _frommethod('all') +anomalies = anom = _frommethod('anom') +any = _frommethod('any') +compress = _frommethod('compress', reversed=True) +cumprod = _frommethod('cumprod') +cumsum = _frommethod('cumsum') +copy = _frommethod('copy') +diagonal = _frommethod('diagonal') +harden_mask = _frommethod('harden_mask') +ids = _frommethod('ids') +maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value) +mean = _frommethod('mean') +minimum = _extrema_operation(umath.minimum, less, minimum_fill_value) +nonzero = _frommethod('nonzero') +prod = _frommethod('prod') +product = _frommethod('prod') +ravel = _frommethod('ravel') +repeat = _frommethod('repeat') +shrink_mask = _frommethod('shrink_mask') +soften_mask = _frommethod('soften_mask') +std = _frommethod('std') +sum = _frommethod('sum') +swapaxes = _frommethod('swapaxes') +#take = _frommethod('take') +trace = _frommethod('trace') +var = _frommethod('var') + +count = _frommethod('count') + +def take(a, indices, axis=None, out=None, mode='raise'): + """ + """ + a = masked_array(a) + return a.take(indices, axis=axis, out=out, mode=mode) + + +def power(a, b, third=None): + """ + Returns element-wise base array raised to power from second array. + + This is the masked array version of `numpy.power`. For details see + `numpy.power`. + + See Also + -------- + numpy.power + + Notes + ----- + The *out* argument to `numpy.power` is not supported, `third` has to be + None. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.power(masked_x, 2) + masked_array(data=[125.43999999999998, 15.784728999999999, + 0.6416010000000001, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> y = [-0.5, 2, 0, 17] + >>> masked_y = ma.masked_array(y, mask) + >>> masked_y + masked_array(data=[-0.5, 2.0, 0.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.power(masked_x, masked_y) + masked_array(data=[0.29880715233359845, 15.784728999999999, 1.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + + """ + if third is not None: + raise MaskError("3-argument power not supported.") + # Get the masks + ma = getmask(a) + mb = getmask(b) + m = mask_or(ma, mb) + # Get the rawdata + fa = getdata(a) + fb = getdata(b) + # Get the type of the result (so that we preserve subclasses) + if isinstance(a, MaskedArray): + basetype = type(a) + else: + basetype = MaskedArray + # Get the result and view it as a (subclass of) MaskedArray + with np.errstate(divide='ignore', invalid='ignore'): + result = np.where(m, fa, umath.power(fa, fb)).view(basetype) + result._update_from(a) + # Find where we're in trouble w/ NaNs and Infs + invalid = np.logical_not(np.isfinite(result.view(ndarray))) + # Add the initial mask + if m is not nomask: + if not result.ndim: + return masked + result._mask = np.logical_or(m, invalid) + # Fix the invalid parts + if invalid.any(): + if not result.ndim: + return masked + elif result._mask is nomask: + result._mask = invalid + result._data[invalid] = result.fill_value + return result + +argmin = _frommethod('argmin') +argmax = _frommethod('argmax') + +def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None): + "Function version of the eponymous method." + a = np.asanyarray(a) + + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + if axis is np._NoValue: + axis = _deprecate_argsort_axis(a) + + if isinstance(a, MaskedArray): + return a.argsort(axis=axis, kind=kind, order=order, + endwith=endwith, fill_value=fill_value) + else: + return a.argsort(axis=axis, kind=kind, order=order) +argsort.__doc__ = MaskedArray.argsort.__doc__ + +def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None): + """ + Return a sorted copy of the masked array. + + Equivalent to creating a copy of the array + and applying the MaskedArray ``sort()`` method. + + Refer to ``MaskedArray.sort`` for the full documentation + + See Also + -------- + MaskedArray.sort : equivalent method + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.sort(masked_x) + masked_array(data=[-3.973, 0.801, 11.2, --], + mask=[False, False, False, True], + fill_value=1e+20) + """ + a = np.array(a, copy=True, subok=True) + if axis is None: + a = a.flatten() + axis = 0 + + if isinstance(a, MaskedArray): + a.sort(axis=axis, kind=kind, order=order, + endwith=endwith, fill_value=fill_value) + else: + a.sort(axis=axis, kind=kind, order=order) + return a + + +def compressed(x): + """ + Return all the non-masked data as a 1-D array. + + This function is equivalent to calling the "compressed" method of a + `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details. + + See Also + -------- + ma.MaskedArray.compressed : Equivalent method. + + Examples + -------- + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[1, -1, 0], [2, -1, 3], [7, 4, -1]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[1, --, 0], + [2, --, 3], + [7, 4, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=999999) + + Compress the masked array into a 1-D array of non-masked values: + + >>> np.ma.compressed(masked_x) + array([1, 0, 2, 3, 7, 4]) + + """ + return asanyarray(x).compressed() + + +def concatenate(arrays, axis=0): + """ + Concatenate a sequence of arrays along the given axis. + + Parameters + ---------- + arrays : sequence of array_like + The arrays must have the same shape, except in the dimension + corresponding to `axis` (the first, by default). + axis : int, optional + The axis along which the arrays will be joined. Default is 0. + + Returns + ------- + result : MaskedArray + The concatenated array with any masked entries preserved. + + See Also + -------- + numpy.concatenate : Equivalent function in the top-level NumPy module. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.arange(3) + >>> a[1] = ma.masked + >>> b = ma.arange(2, 5) + >>> a + masked_array(data=[0, --, 2], + mask=[False, True, False], + fill_value=999999) + >>> b + masked_array(data=[2, 3, 4], + mask=False, + fill_value=999999) + >>> ma.concatenate([a, b]) + masked_array(data=[0, --, 2, 2, 3, 4], + mask=[False, True, False, False, False, False], + fill_value=999999) + + """ + d = np.concatenate([getdata(a) for a in arrays], axis) + rcls = get_masked_subclass(*arrays) + data = d.view(rcls) + # Check whether one of the arrays has a non-empty mask. + for x in arrays: + if getmask(x) is not nomask: + break + else: + return data + # OK, so we have to concatenate the masks + dm = np.concatenate([getmaskarray(a) for a in arrays], axis) + dm = dm.reshape(d.shape) + + # If we decide to keep a '_shrinkmask' option, we want to check that + # all of them are True, and then check for dm.any() + data._mask = _shrink_mask(dm) + return data + + +def diag(v, k=0): + """ + Extract a diagonal or construct a diagonal array. + + This function is the equivalent of `numpy.diag` that takes masked + values into account, see `numpy.diag` for details. + + See Also + -------- + numpy.diag : Equivalent function for ndarrays. + + Examples + -------- + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[11.2, -3.973, 18], [0.801, -1.41, 12], [7, 33, -12]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[11.2, --, 18.0], + [0.801, --, 12.0], + [7.0, 33.0, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=1e+20) + + Isolate the main diagonal from the masked array: + + >>> np.ma.diag(masked_x) + masked_array(data=[11.2, --, --], + mask=[False, True, True], + fill_value=1e+20) + + Isolate the first diagonal below the main diagonal: + + >>> np.ma.diag(masked_x, -1) + masked_array(data=[0.801, 33.0], + mask=[False, False], + fill_value=1e+20) + + """ + output = np.diag(v, k).view(MaskedArray) + if getmask(v) is not nomask: + output._mask = np.diag(v._mask, k) + return output + + +def left_shift(a, n): + """ + Shift the bits of an integer to the left. + + This is the masked array version of `numpy.left_shift`, for details + see that function. + + See Also + -------- + numpy.left_shift + + """ + m = getmask(a) + if m is nomask: + d = umath.left_shift(filled(a), n) + return masked_array(d) + else: + d = umath.left_shift(filled(a, 0), n) + return masked_array(d, mask=m) + + +def right_shift(a, n): + """ + Shift the bits of an integer to the right. + + This is the masked array version of `numpy.right_shift`, for details + see that function. + + See Also + -------- + numpy.right_shift + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11, 3, 8, 1] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11, 3, 8, --], + mask=[False, False, False, True], + fill_value=999999) + >>> ma.right_shift(masked_x,1) + masked_array(data=[5, 1, 4, --], + mask=[False, False, False, True], + fill_value=999999) + + """ + m = getmask(a) + if m is nomask: + d = umath.right_shift(filled(a), n) + return masked_array(d) + else: + d = umath.right_shift(filled(a, 0), n) + return masked_array(d, mask=m) + + +def put(a, indices, values, mode='raise'): + """ + Set storage-indexed locations to corresponding values. + + This function is equivalent to `MaskedArray.put`, see that method + for details. + + See Also + -------- + MaskedArray.put + + """ + # We can't use 'frommethod', the order of arguments is different + try: + return a.put(indices, values, mode=mode) + except AttributeError: + return narray(a, copy=False).put(indices, values, mode=mode) + + +def putmask(a, mask, values): # , mode='raise'): + """ + Changes elements of an array based on conditional and input values. + + This is the masked array version of `numpy.putmask`, for details see + `numpy.putmask`. + + See Also + -------- + numpy.putmask + + Notes + ----- + Using a masked array as `values` will **not** transform a `ndarray` into + a `MaskedArray`. + + """ + # We can't use 'frommethod', the order of arguments is different + if not isinstance(a, MaskedArray): + a = a.view(MaskedArray) + (valdata, valmask) = (getdata(values), getmask(values)) + if getmask(a) is nomask: + if valmask is not nomask: + a._sharedmask = True + a._mask = make_mask_none(a.shape, a.dtype) + np.copyto(a._mask, valmask, where=mask) + elif a._hardmask: + if valmask is not nomask: + m = a._mask.copy() + np.copyto(m, valmask, where=mask) + a.mask |= m + else: + if valmask is nomask: + valmask = getmaskarray(values) + np.copyto(a._mask, valmask, where=mask) + np.copyto(a._data, valdata, where=mask) + return + + +def transpose(a, axes=None): + """ + Permute the dimensions of an array. + + This function is exactly equivalent to `numpy.transpose`. + + See Also + -------- + numpy.transpose : Equivalent function in top-level NumPy module. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = ma.arange(4).reshape((2,2)) + >>> x[1, 1] = ma.masked + >>> x + masked_array( + data=[[0, 1], + [2, --]], + mask=[[False, False], + [False, True]], + fill_value=999999) + + >>> ma.transpose(x) + masked_array( + data=[[0, 2], + [1, --]], + mask=[[False, False], + [False, True]], + fill_value=999999) + """ + # We can't use 'frommethod', as 'transpose' doesn't take keywords + try: + return a.transpose(axes) + except AttributeError: + return narray(a, copy=False).transpose(axes).view(MaskedArray) + + +def reshape(a, new_shape, order='C'): + """ + Returns an array containing the same data with a new shape. + + Refer to `MaskedArray.reshape` for full documentation. + + See Also + -------- + MaskedArray.reshape : equivalent function + + """ + # We can't use 'frommethod', it whine about some parameters. Dmmit. + try: + return a.reshape(new_shape, order=order) + except AttributeError: + _tmp = narray(a, copy=False).reshape(new_shape, order=order) + return _tmp.view(MaskedArray) + + +def resize(x, new_shape): + """ + Return a new masked array with the specified size and shape. + + This is the masked equivalent of the `numpy.resize` function. The new + array is filled with repeated copies of `x` (in the order that the + data are stored in memory). If `x` is masked, the new array will be + masked, and the new mask will be a repetition of the old one. + + See Also + -------- + numpy.resize : Equivalent function in the top level NumPy module. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.array([[1, 2] ,[3, 4]]) + >>> a[0, 1] = ma.masked + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=999999) + >>> np.resize(a, (3, 3)) + masked_array( + data=[[1, 2, 3], + [4, 1, 2], + [3, 4, 1]], + mask=False, + fill_value=999999) + >>> ma.resize(a, (3, 3)) + masked_array( + data=[[1, --, 3], + [4, 1, --], + [3, 4, 1]], + mask=[[False, True, False], + [False, False, True], + [False, False, False]], + fill_value=999999) + + A MaskedArray is always returned, regardless of the input type. + + >>> a = np.array([[1, 2] ,[3, 4]]) + >>> ma.resize(a, (3, 3)) + masked_array( + data=[[1, 2, 3], + [4, 1, 2], + [3, 4, 1]], + mask=False, + fill_value=999999) + + """ + # We can't use _frommethods here, as N.resize is notoriously whiny. + m = getmask(x) + if m is not nomask: + m = np.resize(m, new_shape) + result = np.resize(x, new_shape).view(get_masked_subclass(x)) + if result.ndim: + result._mask = m + return result + + +def ndim(obj): + """ + maskedarray version of the numpy function. + + """ + return np.ndim(getdata(obj)) + +ndim.__doc__ = np.ndim.__doc__ + + +def shape(obj): + "maskedarray version of the numpy function." + return np.shape(getdata(obj)) +shape.__doc__ = np.shape.__doc__ + + +def size(obj, axis=None): + "maskedarray version of the numpy function." + return np.size(getdata(obj), axis) +size.__doc__ = np.size.__doc__ + + +def diff(a, /, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): + """ + Calculate the n-th discrete difference along the given axis. + The first difference is given by ``out[i] = a[i+1] - a[i]`` along + the given axis, higher differences are calculated by using `diff` + recursively. + Preserves the input mask. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. If zero, the input + is returned as-is. + axis : int, optional + The axis along which the difference is taken, default is the + last axis. + prepend, append : array_like, optional + Values to prepend or append to `a` along axis prior to + performing the difference. Scalar values are expanded to + arrays with length 1 in the direction of axis and the shape + of the input array in along all other axes. Otherwise the + dimension and shape must match `a` except along axis. + + Returns + ------- + diff : MaskedArray + The n-th differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. The + type of the output is the same as the type of the difference + between any two elements of `a`. This is the same as the type of + `a` in most cases. A notable exception is `datetime64`, which + results in a `timedelta64` output array. + + See Also + -------- + numpy.diff : Equivalent function in the top-level NumPy module. + + Notes + ----- + Type is preserved for boolean arrays, so the result will contain + `False` when consecutive elements are the same and `True` when they + differ. + + For unsigned integer arrays, the results will also be unsigned. This + should not be surprising, as the result is consistent with + calculating the difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.ma.diff(u8_arr) + masked_array(data=[255], + mask=False, + fill_value=999999, + dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + 255 + + If this is not desirable, then the array should be cast to a larger + integer type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.ma.diff(i16_arr) + masked_array(data=[-1], + mask=False, + fill_value=999999, + dtype=int16) + + Examples + -------- + >>> a = np.array([1, 2, 3, 4, 7, 0, 2, 3]) + >>> x = np.ma.masked_where(a < 2, a) + >>> np.ma.diff(x) + masked_array(data=[--, 1, 1, 3, --, --, 1], + mask=[ True, False, False, False, True, True, False], + fill_value=999999) + + >>> np.ma.diff(x, n=2) + masked_array(data=[--, 0, 2, --, --, --], + mask=[ True, False, False, True, True, True], + fill_value=999999) + + >>> a = np.array([[1, 3, 1, 5, 10], [0, 1, 5, 6, 8]]) + >>> x = np.ma.masked_equal(a, value=1) + >>> np.ma.diff(x) + masked_array( + data=[[--, --, --, 5], + [--, --, 1, 2]], + mask=[[ True, True, True, False], + [ True, True, False, False]], + fill_value=1) + + >>> np.ma.diff(x, axis=0) + masked_array(data=[[--, --, --, 1, -2]], + mask=[[ True, True, True, False, False]], + fill_value=1) + + """ + if n == 0: + return a + if n < 0: + raise ValueError("order must be non-negative but got " + repr(n)) + + a = np.ma.asanyarray(a) + if a.ndim == 0: + raise ValueError( + "diff requires input that is at least one dimensional" + ) + + combined = [] + if prepend is not np._NoValue: + prepend = np.ma.asanyarray(prepend) + if prepend.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + prepend = np.broadcast_to(prepend, tuple(shape)) + combined.append(prepend) + + combined.append(a) + + if append is not np._NoValue: + append = np.ma.asanyarray(append) + if append.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + append = np.broadcast_to(append, tuple(shape)) + combined.append(append) + + if len(combined) > 1: + a = np.ma.concatenate(combined, axis) + + # GH 22465 np.diff without prepend/append preserves the mask + return np.diff(a, n, axis) + + +############################################################################## +# Extra functions # +############################################################################## + + +def where(condition, x=_NoValue, y=_NoValue): + """ + Return a masked array with elements from `x` or `y`, depending on condition. + + .. note:: + When only `condition` is provided, this function is identical to + `nonzero`. The rest of this documentation covers only the case where + all three arguments are provided. + + Parameters + ---------- + condition : array_like, bool + Where True, yield `x`, otherwise yield `y`. + x, y : array_like, optional + Values from which to choose. `x`, `y` and `condition` need to be + broadcastable to some shape. + + Returns + ------- + out : MaskedArray + An masked array with `masked` elements where the condition is masked, + elements from `x` where `condition` is True, and elements from `y` + elsewhere. + + See Also + -------- + numpy.where : Equivalent function in the top-level NumPy module. + nonzero : The function that is called when x and y are omitted + + Examples + -------- + >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0], + ... [1, 0, 1], + ... [0, 1, 0]]) + >>> x + masked_array( + data=[[0.0, --, 2.0], + [--, 4.0, --], + [6.0, --, 8.0]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=1e+20) + >>> np.ma.where(x > 5, x, -3.1416) + masked_array( + data=[[-3.1416, --, -3.1416], + [--, -3.1416, --], + [6.0, --, 8.0]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=1e+20) + + """ + + # handle the single-argument case + missing = (x is _NoValue, y is _NoValue).count(True) + if missing == 1: + raise ValueError("Must provide both 'x' and 'y' or neither.") + if missing == 2: + return nonzero(condition) + + # we only care if the condition is true - false or masked pick y + cf = filled(condition, False) + xd = getdata(x) + yd = getdata(y) + + # we need the full arrays here for correct final dimensions + cm = getmaskarray(condition) + xm = getmaskarray(x) + ym = getmaskarray(y) + + # deal with the fact that masked.dtype == float64, but we don't actually + # want to treat it as that. + if x is masked and y is not masked: + xd = np.zeros((), dtype=yd.dtype) + xm = np.ones((), dtype=ym.dtype) + elif y is masked and x is not masked: + yd = np.zeros((), dtype=xd.dtype) + ym = np.ones((), dtype=xm.dtype) + + data = np.where(cf, xd, yd) + mask = np.where(cf, xm, ym) + mask = np.where(cm, np.ones((), dtype=mask.dtype), mask) + + # collapse the mask, for backwards compatibility + mask = _shrink_mask(mask) + + return masked_array(data, mask=mask) + + +def choose(indices, choices, out=None, mode='raise'): + """ + Use an index array to construct a new array from a list of choices. + + Given an array of integers and a list of n choice arrays, this method + will create a new array that merges each of the choice arrays. Where a + value in `index` is i, the new array will have the value that choices[i] + contains in the same place. + + Parameters + ---------- + indices : ndarray of ints + This array must contain integers in ``[0, n-1]``, where n is the + number of choices. + choices : sequence of arrays + Choice arrays. The index array and all of the choices should be + broadcastable to the same shape. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and `dtype`. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + + * 'raise' : raise an error + * 'wrap' : wrap around + * 'clip' : clip to the range + + Returns + ------- + merged_array : array + + See Also + -------- + choose : equivalent function + + Examples + -------- + >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]]) + >>> a = np.array([2, 1, 0]) + >>> np.ma.choose(a, choice) + masked_array(data=[3, 2, 1], + mask=False, + fill_value=999999) + + """ + def fmask(x): + "Returns the filled array, or True if masked." + if x is masked: + return True + return filled(x) + + def nmask(x): + "Returns the mask, True if ``masked``, False if ``nomask``." + if x is masked: + return True + return getmask(x) + # Get the indices. + c = filled(indices, 0) + # Get the masks. + masks = [nmask(x) for x in choices] + data = [fmask(x) for x in choices] + # Construct the mask + outputmask = np.choose(c, masks, mode=mode) + outputmask = make_mask(mask_or(outputmask, getmask(indices)), + copy=False, shrink=True) + # Get the choices. + d = np.choose(c, data, mode=mode, out=out).view(MaskedArray) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(outputmask) + return out + d.__setmask__(outputmask) + return d + + +def round_(a, decimals=0, out=None): + """ + Return a copy of a, rounded to 'decimals' places. + + When 'decimals' is negative, it specifies the number of positions + to the left of the decimal point. The real and imaginary parts of + complex numbers are rounded separately. Nothing is done if the + array is not of float type and 'decimals' is greater than or equal + to 0. + + Parameters + ---------- + decimals : int + Number of decimals to round to. May be negative. + out : array_like + Existing array to use for output. + If not given, returns a default copy of a. + + Notes + ----- + If out is given and does not have a mask attribute, the mask of a + is lost! + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round_(masked_x) + masked_array(data=[11.0, -4.0, 1.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round(masked_x, decimals=1) + masked_array(data=[11.2, -4.0, 0.8, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round_(masked_x, decimals=-1) + masked_array(data=[10.0, -0.0, 0.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + """ + if out is None: + return np.round_(a, decimals, out) + else: + np.round_(getdata(a), decimals, out) + if hasattr(out, '_mask'): + out._mask = getmask(a) + return out +round = round_ + + +def _mask_propagate(a, axis): + """ + Mask whole 1-d vectors of an array that contain masked values. + """ + a = array(a, subok=False) + m = getmask(a) + if m is nomask or not m.any() or axis is None: + return a + a._mask = a._mask.copy() + axes = normalize_axis_tuple(axis, a.ndim) + for ax in axes: + a._mask |= m.any(axis=ax, keepdims=True) + return a + + +# Include masked dot here to avoid import problems in getting it from +# extras.py. Note that it is not included in __all__, but rather exported +# from extras in order to avoid backward compatibility problems. +def dot(a, b, strict=False, out=None): + """ + Return the dot product of two arrays. + + This function is the equivalent of `numpy.dot` that takes masked values + into account. Note that `strict` and `out` are in different position + than in the method version. In order to maintain compatibility with the + corresponding method, it is recommended that the optional arguments be + treated as keyword only. At some point that may be mandatory. + + Parameters + ---------- + a, b : masked_array_like + Inputs arrays. + strict : bool, optional + Whether masked data are propagated (True) or set to 0 (False) for + the computation. Default is False. Propagating the mask means that + if a masked value appears in a row or column, the whole row or + column is considered masked. + out : masked_array, optional + Output argument. This must have the exact kind that would be returned + if it was not used. In particular, it must have the right type, must be + C-contiguous, and its dtype must be the dtype that would be returned + for `dot(a,b)`. This is a performance feature. Therefore, if these + conditions are not met, an exception is raised, instead of attempting + to be flexible. + + .. versionadded:: 1.10.2 + + See Also + -------- + numpy.dot : Equivalent function for ndarrays. + + Examples + -------- + >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]]) + >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]]) + >>> np.ma.dot(a, b) + masked_array( + data=[[21, 26], + [45, 64]], + mask=[[False, False], + [False, False]], + fill_value=999999) + >>> np.ma.dot(a, b, strict=True) + masked_array( + data=[[--, --], + [--, 64]], + mask=[[ True, True], + [ True, False]], + fill_value=999999) + + """ + if strict is True: + if np.ndim(a) == 0 or np.ndim(b) == 0: + pass + elif b.ndim == 1: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 1) + else: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 2) + am = ~getmaskarray(a) + bm = ~getmaskarray(b) + + if out is None: + d = np.dot(filled(a, 0), filled(b, 0)) + m = ~np.dot(am, bm) + if np.ndim(d) == 0: + d = np.asarray(d) + r = d.view(get_masked_subclass(a, b)) + r.__setmask__(m) + return r + else: + d = np.dot(filled(a, 0), filled(b, 0), out._data) + if out.mask.shape != d.shape: + out._mask = np.empty(d.shape, MaskType) + np.dot(am, bm, out._mask) + np.logical_not(out._mask, out._mask) + return out + + +def inner(a, b): + """ + Returns the inner product of a and b for arrays of floating point types. + + Like the generic NumPy equivalent the product sum is over the last dimension + of a and b. The first argument is not conjugated. + + """ + fa = filled(a, 0) + fb = filled(b, 0) + if fa.ndim == 0: + fa.shape = (1,) + if fb.ndim == 0: + fb.shape = (1,) + return np.inner(fa, fb).view(MaskedArray) +inner.__doc__ = doc_note(np.inner.__doc__, + "Masked values are replaced by 0.") +innerproduct = inner + + +def outer(a, b): + "maskedarray version of the numpy function." + fa = filled(a, 0).ravel() + fb = filled(b, 0).ravel() + d = np.outer(fa, fb) + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + return masked_array(d) + ma = getmaskarray(a) + mb = getmaskarray(b) + m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False) + return masked_array(d, mask=m) +outer.__doc__ = doc_note(np.outer.__doc__, + "Masked values are replaced by 0.") +outerproduct = outer + + +def _convolve_or_correlate(f, a, v, mode, propagate_mask): + """ + Helper function for ma.correlate and ma.convolve + """ + if propagate_mask: + # results which are contributed to by either item in any pair being invalid + mask = ( + f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode) + | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode) + ) + data = f(getdata(a), getdata(v), mode=mode) + else: + # results which are not contributed to by any pair of valid elements + mask = ~f(~getmaskarray(a), ~getmaskarray(v)) + data = f(filled(a, 0), filled(v, 0), mode=mode) + + return masked_array(data, mask=mask) + + +def correlate(a, v, mode='valid', propagate_mask=True): + """ + Cross-correlation of two 1-dimensional sequences. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `np.convolve` docstring. Note that the default + is 'valid', unlike `convolve`, which uses 'full'. + propagate_mask : bool + If True, then a result element is masked if any masked element contributes towards it. + If False, then a result element is only masked if no non-masked element + contribute towards it + + Returns + ------- + out : MaskedArray + Discrete cross-correlation of `a` and `v`. + + See Also + -------- + numpy.correlate : Equivalent function in the top-level NumPy module. + """ + return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask) + + +def convolve(a, v, mode='full', propagate_mask=True): + """ + Returns the discrete, linear convolution of two one-dimensional sequences. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `np.convolve` docstring. + propagate_mask : bool + If True, then if any masked element is included in the sum for a result + element, then the result is masked. + If False, then the result element is only masked if no non-masked cells + contribute towards it + + Returns + ------- + out : MaskedArray + Discrete, linear convolution of `a` and `v`. + + See Also + -------- + numpy.convolve : Equivalent function in the top-level NumPy module. + """ + return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask) + + +def allequal(a, b, fill_value=True): + """ + Return True if all entries of a and b are equal, using + fill_value as a truth value where either or both are masked. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + fill_value : bool, optional + Whether masked values in a or b are considered equal (True) or not + (False). + + Returns + ------- + y : bool + Returns True if the two arrays are equal within the given + tolerance, False otherwise. If either array contains NaN, + then False is returned. + + See Also + -------- + all, any + numpy.ma.allclose + + Examples + -------- + >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) + >>> a + masked_array(data=[10000000000.0, 1e-07, --], + mask=[False, False, True], + fill_value=1e+20) + + >>> b = np.array([1e10, 1e-7, -42.0]) + >>> b + array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01]) + >>> np.ma.allequal(a, b, fill_value=False) + False + >>> np.ma.allequal(a, b) + True + + """ + m = mask_or(getmask(a), getmask(b)) + if m is nomask: + x = getdata(a) + y = getdata(b) + d = umath.equal(x, y) + return d.all() + elif fill_value: + x = getdata(a) + y = getdata(b) + d = umath.equal(x, y) + dm = array(d, mask=m, copy=False) + return dm.filled(True).all(None) + else: + return False + + +def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8): + """ + Returns True if two arrays are element-wise equal within a tolerance. + + This function is equivalent to `allclose` except that masked values + are treated as equal (default) or unequal, depending on the `masked_equal` + argument. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + masked_equal : bool, optional + Whether masked values in `a` and `b` are considered equal (True) or not + (False). They are considered equal by default. + rtol : float, optional + Relative tolerance. The relative difference is equal to ``rtol * b``. + Default is 1e-5. + atol : float, optional + Absolute tolerance. The absolute difference is equal to `atol`. + Default is 1e-8. + + Returns + ------- + y : bool + Returns True if the two arrays are equal within the given + tolerance, False otherwise. If either array contains NaN, then + False is returned. + + See Also + -------- + all, any + numpy.allclose : the non-masked `allclose`. + + Notes + ----- + If the following equation is element-wise True, then `allclose` returns + True:: + + absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) + + Return True if all elements of `a` and `b` are equal subject to + given tolerances. + + Examples + -------- + >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) + >>> a + masked_array(data=[10000000000.0, 1e-07, --], + mask=[False, False, True], + fill_value=1e+20) + >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + False + + >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) + >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + True + >>> np.ma.allclose(a, b, masked_equal=False) + False + + Masked values are not compared directly. + + >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) + >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + True + >>> np.ma.allclose(a, b, masked_equal=False) + False + + """ + x = masked_array(a, copy=False) + y = masked_array(b, copy=False) + + # make sure y is an inexact type to avoid abs(MIN_INT); will cause + # casting of x later. + # NOTE: We explicitly allow timedelta, which used to work. This could + # possibly be deprecated. See also gh-18286. + # timedelta works if `atol` is an integer or also a timedelta. + # Although, the default tolerances are unlikely to be useful + if y.dtype.kind != "m": + dtype = np.result_type(y, 1.) + if y.dtype != dtype: + y = masked_array(y, dtype=dtype, copy=False) + + m = mask_or(getmask(x), getmask(y)) + xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False) + # If we have some infs, they should fall at the same place. + if not np.all(xinf == filled(np.isinf(y), False)): + return False + # No infs at all + if not np.any(xinf): + d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), + masked_equal) + return np.all(d) + + if not np.all(filled(x[xinf] == y[xinf], masked_equal)): + return False + x = x[~xinf] + y = y[~xinf] + + d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), + masked_equal) + + return np.all(d) + + +def asarray(a, dtype=None, order=None): + """ + Convert the input to a masked array of the given data-type. + + No copy is performed if the input is already an `ndarray`. If `a` is + a subclass of `MaskedArray`, a base class `MaskedArray` is returned. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to a masked array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists, ndarrays and masked arrays. + dtype : dtype, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major ('C') or column-major ('FORTRAN') memory + representation. Default is 'C'. + + Returns + ------- + out : MaskedArray + Masked array interpretation of `a`. + + See Also + -------- + asanyarray : Similar to `asarray`, but conserves subclasses. + + Examples + -------- + >>> x = np.arange(10.).reshape(2, 5) + >>> x + array([[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]]) + >>> np.ma.asarray(x) + masked_array( + data=[[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]], + mask=False, + fill_value=1e+20) + >>> type(np.ma.asarray(x)) + + + """ + order = order or 'C' + return masked_array(a, dtype=dtype, copy=False, keep_mask=True, + subok=False, order=order) + + +def asanyarray(a, dtype=None): + """ + Convert the input to a masked array, conserving subclasses. + + If `a` is a subclass of `MaskedArray`, its class is conserved. + No copy is performed if the input is already an `ndarray`. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. + dtype : dtype, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major ('C') or column-major ('FORTRAN') memory + representation. Default is 'C'. + + Returns + ------- + out : MaskedArray + MaskedArray interpretation of `a`. + + See Also + -------- + asarray : Similar to `asanyarray`, but does not conserve subclass. + + Examples + -------- + >>> x = np.arange(10.).reshape(2, 5) + >>> x + array([[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]]) + >>> np.ma.asanyarray(x) + masked_array( + data=[[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]], + mask=False, + fill_value=1e+20) + >>> type(np.ma.asanyarray(x)) + + + """ + # workaround for #8666, to preserve identity. Ideally the bottom line + # would handle this for us. + if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype): + return a + return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True) + + +############################################################################## +# Pickling # +############################################################################## + + +def fromfile(file, dtype=float, count=-1, sep=''): + raise NotImplementedError( + "fromfile() not yet implemented for a MaskedArray.") + + +def fromflex(fxarray): + """ + Build a masked array from a suitable flexible-type array. + + The input array has to have a data-type with ``_data`` and ``_mask`` + fields. This type of array is output by `MaskedArray.toflex`. + + Parameters + ---------- + fxarray : ndarray + The structured input array, containing ``_data`` and ``_mask`` + fields. If present, other fields are discarded. + + Returns + ------- + result : MaskedArray + The constructed masked array. + + See Also + -------- + MaskedArray.toflex : Build a flexible-type array from a masked array. + + Examples + -------- + >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4) + >>> rec = x.toflex() + >>> rec + array([[(0, False), (1, True), (2, False)], + [(3, True), (4, False), (5, True)], + [(6, False), (7, True), (8, False)]], + dtype=[('_data', '>> x2 = np.ma.fromflex(rec) + >>> x2 + masked_array( + data=[[0, --, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + Extra fields can be present in the structured array but are discarded: + + >>> dt = [('_data', '>> rec2 = np.zeros((2, 2), dtype=dt) + >>> rec2 + array([[(0, False, 0.), (0, False, 0.)], + [(0, False, 0.), (0, False, 0.)]], + dtype=[('_data', '>> y = np.ma.fromflex(rec2) + >>> y + masked_array( + data=[[0, 0], + [0, 0]], + mask=[[False, False], + [False, False]], + fill_value=999999, + dtype=int32) + + """ + return masked_array(fxarray['_data'], mask=fxarray['_mask']) + + +class _convert2ma: + + """ + Convert functions from numpy to numpy.ma. + + Parameters + ---------- + _methodname : string + Name of the method to transform. + + """ + __doc__ = None + + def __init__(self, funcname, np_ret, np_ma_ret, params=None): + self._func = getattr(np, funcname) + self.__doc__ = self.getdoc(np_ret, np_ma_ret) + self._extras = params or {} + + def getdoc(self, np_ret, np_ma_ret): + "Return the doc of the function (from the doc of the method)." + doc = getattr(self._func, '__doc__', None) + sig = get_object_signature(self._func) + if doc: + doc = self._replace_return_type(doc, np_ret, np_ma_ret) + # Add the signature of the function at the beginning of the doc + if sig: + sig = "%s%s\n" % (self._func.__name__, sig) + doc = sig + doc + return doc + + def _replace_return_type(self, doc, np_ret, np_ma_ret): + """ + Replace documentation of ``np`` function's return type. + + Replaces it with the proper type for the ``np.ma`` function. + + Parameters + ---------- + doc : str + The documentation of the ``np`` method. + np_ret : str + The return type string of the ``np`` method that we want to + replace. (e.g. "out : ndarray") + np_ma_ret : str + The return type string of the ``np.ma`` method. + (e.g. "out : MaskedArray") + """ + if np_ret not in doc: + raise RuntimeError( + f"Failed to replace `{np_ret}` with `{np_ma_ret}`. " + f"The documentation string for return type, {np_ret}, is not " + f"found in the docstring for `np.{self._func.__name__}`. " + f"Fix the docstring for `np.{self._func.__name__}` or " + "update the expected string for return type." + ) + + return doc.replace(np_ret, np_ma_ret) + + def __call__(self, *args, **params): + # Find the common parameters to the call and the definition + _extras = self._extras + common_params = set(params).intersection(_extras) + # Drop the common parameters from the call + for p in common_params: + _extras[p] = params.pop(p) + # Get the result + result = self._func.__call__(*args, **params).view(MaskedArray) + if "fill_value" in common_params: + result.fill_value = _extras.get("fill_value", None) + if "hardmask" in common_params: + result._hardmask = bool(_extras.get("hard_mask", False)) + return result + + +arange = _convert2ma( + 'arange', + params=dict(fill_value=None, hardmask=False), + np_ret='arange : ndarray', + np_ma_ret='arange : MaskedArray', +) +clip = _convert2ma( + 'clip', + params=dict(fill_value=None, hardmask=False), + np_ret='clipped_array : ndarray', + np_ma_ret='clipped_array : MaskedArray', +) +empty = _convert2ma( + 'empty', + params=dict(fill_value=None, hardmask=False), + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +empty_like = _convert2ma( + 'empty_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +frombuffer = _convert2ma( + 'frombuffer', + np_ret='out : ndarray', + np_ma_ret='out: MaskedArray', +) +fromfunction = _convert2ma( + 'fromfunction', + np_ret='fromfunction : any', + np_ma_ret='fromfunction: MaskedArray', +) +identity = _convert2ma( + 'identity', + params=dict(fill_value=None, hardmask=False), + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +indices = _convert2ma( + 'indices', + params=dict(fill_value=None, hardmask=False), + np_ret='grid : one ndarray or tuple of ndarrays', + np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays', +) +ones = _convert2ma( + 'ones', + params=dict(fill_value=None, hardmask=False), + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +ones_like = _convert2ma( + 'ones_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +squeeze = _convert2ma( + 'squeeze', + params=dict(fill_value=None, hardmask=False), + np_ret='squeezed : ndarray', + np_ma_ret='squeezed : MaskedArray', +) +zeros = _convert2ma( + 'zeros', + params=dict(fill_value=None, hardmask=False), + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +zeros_like = _convert2ma( + 'zeros_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) + + +def append(a, b, axis=None): + """Append values to the end of an array. + + .. versionadded:: 1.9.0 + + Parameters + ---------- + a : array_like + Values are appended to a copy of this array. + b : array_like + These values are appended to a copy of `a`. It must be of the + correct shape (the same shape as `a`, excluding `axis`). If `axis` + is not specified, `b` can be any shape and will be flattened + before use. + axis : int, optional + The axis along which `v` are appended. If `axis` is not given, + both `a` and `b` are flattened before use. + + Returns + ------- + append : MaskedArray + A copy of `a` with `b` appended to `axis`. Note that `append` + does not occur in-place: a new array is allocated and filled. If + `axis` is None, the result is a flattened array. + + See Also + -------- + numpy.append : Equivalent function in the top-level NumPy module. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.masked_values([1, 2, 3], 2) + >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) + >>> ma.append(a, b) + masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9], + mask=[False, True, False, False, False, False, True, False, + False], + fill_value=999999) + """ + return concatenate([a, b], axis) diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/core.pyi b/.venv/lib/python3.11/site-packages/numpy/ma/core.pyi new file mode 100644 index 0000000000000000000000000000000000000000..e94ebce3c31a00094f4a04953f1716f46c13d8d0 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/core.pyi @@ -0,0 +1,471 @@ +from collections.abc import Callable +from typing import Any, TypeVar +from numpy import ndarray, dtype, float64 + +from numpy import ( + amax as amax, + amin as amin, + bool_ as bool_, + expand_dims as expand_dims, + clip as clip, + indices as indices, + ones_like as ones_like, + squeeze as squeeze, + zeros_like as zeros_like, +) + +from numpy.lib.function_base import ( + angle as angle, +) + +# TODO: Set the `bound` to something more suitable once we +# have proper shape support +_ShapeType = TypeVar("_ShapeType", bound=Any) +_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True) + +__all__: list[str] + +MaskType = bool_ +nomask: bool_ + +class MaskedArrayFutureWarning(FutureWarning): ... +class MAError(Exception): ... +class MaskError(MAError): ... + +def default_fill_value(obj): ... +def minimum_fill_value(obj): ... +def maximum_fill_value(obj): ... +def set_fill_value(a, fill_value): ... +def common_fill_value(a, b): ... +def filled(a, fill_value=...): ... +def getdata(a, subok=...): ... +get_data = getdata + +def fix_invalid(a, mask=..., copy=..., fill_value=...): ... + +class _MaskedUFunc: + f: Any + __doc__: Any + __name__: Any + def __init__(self, ufunc): ... + +class _MaskedUnaryOperation(_MaskedUFunc): + fill: Any + domain: Any + def __init__(self, mufunc, fill=..., domain=...): ... + def __call__(self, a, *args, **kwargs): ... + +class _MaskedBinaryOperation(_MaskedUFunc): + fillx: Any + filly: Any + def __init__(self, mbfunc, fillx=..., filly=...): ... + def __call__(self, a, b, *args, **kwargs): ... + def reduce(self, target, axis=..., dtype=...): ... + def outer(self, a, b): ... + def accumulate(self, target, axis=...): ... + +class _DomainedBinaryOperation(_MaskedUFunc): + domain: Any + fillx: Any + filly: Any + def __init__(self, dbfunc, domain, fillx=..., filly=...): ... + def __call__(self, a, b, *args, **kwargs): ... + +exp: _MaskedUnaryOperation +conjugate: _MaskedUnaryOperation +sin: _MaskedUnaryOperation +cos: _MaskedUnaryOperation +arctan: _MaskedUnaryOperation +arcsinh: _MaskedUnaryOperation +sinh: _MaskedUnaryOperation +cosh: _MaskedUnaryOperation +tanh: _MaskedUnaryOperation +abs: _MaskedUnaryOperation +absolute: _MaskedUnaryOperation +fabs: _MaskedUnaryOperation +negative: _MaskedUnaryOperation +floor: _MaskedUnaryOperation +ceil: _MaskedUnaryOperation +around: _MaskedUnaryOperation +logical_not: _MaskedUnaryOperation +sqrt: _MaskedUnaryOperation +log: _MaskedUnaryOperation +log2: _MaskedUnaryOperation +log10: _MaskedUnaryOperation +tan: _MaskedUnaryOperation +arcsin: _MaskedUnaryOperation +arccos: _MaskedUnaryOperation +arccosh: _MaskedUnaryOperation +arctanh: _MaskedUnaryOperation + +add: _MaskedBinaryOperation +subtract: _MaskedBinaryOperation +multiply: _MaskedBinaryOperation +arctan2: _MaskedBinaryOperation +equal: _MaskedBinaryOperation +not_equal: _MaskedBinaryOperation +less_equal: _MaskedBinaryOperation +greater_equal: _MaskedBinaryOperation +less: _MaskedBinaryOperation +greater: _MaskedBinaryOperation +logical_and: _MaskedBinaryOperation +alltrue: _MaskedBinaryOperation +logical_or: _MaskedBinaryOperation +sometrue: Callable[..., Any] +logical_xor: _MaskedBinaryOperation +bitwise_and: _MaskedBinaryOperation +bitwise_or: _MaskedBinaryOperation +bitwise_xor: _MaskedBinaryOperation +hypot: _MaskedBinaryOperation +divide: _MaskedBinaryOperation +true_divide: _MaskedBinaryOperation +floor_divide: _MaskedBinaryOperation +remainder: _MaskedBinaryOperation +fmod: _MaskedBinaryOperation +mod: _MaskedBinaryOperation + +def make_mask_descr(ndtype): ... +def getmask(a): ... +get_mask = getmask + +def getmaskarray(arr): ... +def is_mask(m): ... +def make_mask(m, copy=..., shrink=..., dtype=...): ... +def make_mask_none(newshape, dtype=...): ... +def mask_or(m1, m2, copy=..., shrink=...): ... +def flatten_mask(mask): ... +def masked_where(condition, a, copy=...): ... +def masked_greater(x, value, copy=...): ... +def masked_greater_equal(x, value, copy=...): ... +def masked_less(x, value, copy=...): ... +def masked_less_equal(x, value, copy=...): ... +def masked_not_equal(x, value, copy=...): ... +def masked_equal(x, value, copy=...): ... +def masked_inside(x, v1, v2, copy=...): ... +def masked_outside(x, v1, v2, copy=...): ... +def masked_object(x, value, copy=..., shrink=...): ... +def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ... +def masked_invalid(a, copy=...): ... + +class _MaskedPrintOption: + def __init__(self, display): ... + def display(self): ... + def set_display(self, s): ... + def enabled(self): ... + def enable(self, shrink=...): ... + +masked_print_option: _MaskedPrintOption + +def flatten_structured_array(a): ... + +class MaskedIterator: + ma: Any + dataiter: Any + maskiter: Any + def __init__(self, ma): ... + def __iter__(self): ... + def __getitem__(self, indx): ... + def __setitem__(self, index, value): ... + def __next__(self): ... + +class MaskedArray(ndarray[_ShapeType, _DType_co]): + __array_priority__: Any + def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ... + def __array_finalize__(self, obj): ... + def __array_wrap__(self, obj, context=...): ... + def view(self, dtype=..., type=..., fill_value=...): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + @property + def dtype(self): ... + @dtype.setter + def dtype(self, dtype): ... + @property + def shape(self): ... + @shape.setter + def shape(self, shape): ... + def __setmask__(self, mask, copy=...): ... + @property + def mask(self): ... + @mask.setter + def mask(self, value): ... + @property + def recordmask(self): ... + @recordmask.setter + def recordmask(self, mask): ... + def harden_mask(self): ... + def soften_mask(self): ... + @property + def hardmask(self): ... + def unshare_mask(self): ... + @property + def sharedmask(self): ... + def shrink_mask(self): ... + @property + def baseclass(self): ... + data: Any + @property + def flat(self): ... + @flat.setter + def flat(self, value): ... + @property + def fill_value(self): ... + @fill_value.setter + def fill_value(self, value=...): ... + get_fill_value: Any + set_fill_value: Any + def filled(self, fill_value=...): ... + def compressed(self): ... + def compress(self, condition, axis=..., out=...): ... + def __eq__(self, other): ... + def __ne__(self, other): ... + def __ge__(self, other): ... + def __gt__(self, other): ... + def __le__(self, other): ... + def __lt__(self, other): ... + def __add__(self, other): ... + def __radd__(self, other): ... + def __sub__(self, other): ... + def __rsub__(self, other): ... + def __mul__(self, other): ... + def __rmul__(self, other): ... + def __div__(self, other): ... + def __truediv__(self, other): ... + def __rtruediv__(self, other): ... + def __floordiv__(self, other): ... + def __rfloordiv__(self, other): ... + def __pow__(self, other): ... + def __rpow__(self, other): ... + def __iadd__(self, other): ... + def __isub__(self, other): ... + def __imul__(self, other): ... + def __idiv__(self, other): ... + def __ifloordiv__(self, other): ... + def __itruediv__(self, other): ... + def __ipow__(self, other): ... + def __float__(self): ... + def __int__(self): ... + @property # type: ignore[misc] + def imag(self): ... + get_imag: Any + @property # type: ignore[misc] + def real(self): ... + get_real: Any + def count(self, axis=..., keepdims=...): ... + def ravel(self, order=...): ... + def reshape(self, *s, **kwargs): ... + def resize(self, newshape, refcheck=..., order=...): ... + def put(self, indices, values, mode=...): ... + def ids(self): ... + def iscontiguous(self): ... + def all(self, axis=..., out=..., keepdims=...): ... + def any(self, axis=..., out=..., keepdims=...): ... + def nonzero(self): ... + def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ... + def dot(self, b, out=..., strict=...): ... + def sum(self, axis=..., dtype=..., out=..., keepdims=...): ... + def cumsum(self, axis=..., dtype=..., out=...): ... + def prod(self, axis=..., dtype=..., out=..., keepdims=...): ... + product: Any + def cumprod(self, axis=..., dtype=..., out=...): ... + def mean(self, axis=..., dtype=..., out=..., keepdims=...): ... + def anom(self, axis=..., dtype=...): ... + def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... + def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... + def round(self, decimals=..., out=...): ... + def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... + def argmin(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... + def argmax(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... + def sort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... + def min(self, axis=..., out=..., fill_value=..., keepdims=...): ... + # NOTE: deprecated + # def tostring(self, fill_value=..., order=...): ... + def max(self, axis=..., out=..., fill_value=..., keepdims=...): ... + def ptp(self, axis=..., out=..., fill_value=..., keepdims=...): ... + def partition(self, *args, **kwargs): ... + def argpartition(self, *args, **kwargs): ... + def take(self, indices, axis=..., out=..., mode=...): ... + copy: Any + diagonal: Any + flatten: Any + repeat: Any + squeeze: Any + swapaxes: Any + T: Any + transpose: Any + def tolist(self, fill_value=...): ... + def tobytes(self, fill_value=..., order=...): ... + def tofile(self, fid, sep=..., format=...): ... + def toflex(self): ... + torecords: Any + def __reduce__(self): ... + def __deepcopy__(self, memo=...): ... + +class mvoid(MaskedArray[_ShapeType, _DType_co]): + def __new__( + self, + data, + mask=..., + dtype=..., + fill_value=..., + hardmask=..., + copy=..., + subok=..., + ): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + def __iter__(self): ... + def __len__(self): ... + def filled(self, fill_value=...): ... + def tolist(self): ... + +def isMaskedArray(x): ... +isarray = isMaskedArray +isMA = isMaskedArray + +# 0D float64 array +class MaskedConstant(MaskedArray[Any, dtype[float64]]): + def __new__(cls): ... + __class__: Any + def __array_finalize__(self, obj): ... + def __array_prepare__(self, obj, context=...): ... + def __array_wrap__(self, obj, context=...): ... + def __format__(self, format_spec): ... + def __reduce__(self): ... + def __iop__(self, other): ... + __iadd__: Any + __isub__: Any + __imul__: Any + __ifloordiv__: Any + __itruediv__: Any + __ipow__: Any + def copy(self, *args, **kwargs): ... + def __copy__(self): ... + def __deepcopy__(self, memo): ... + def __setattr__(self, attr, value): ... + +masked: MaskedConstant +masked_singleton: MaskedConstant +masked_array = MaskedArray + +def array( + data, + dtype=..., + copy=..., + order=..., + mask=..., + fill_value=..., + keep_mask=..., + hard_mask=..., + shrink=..., + subok=..., + ndmin=..., +): ... +def is_masked(x): ... + +class _extrema_operation(_MaskedUFunc): + compare: Any + fill_value_func: Any + def __init__(self, ufunc, compare, fill_value): ... + # NOTE: in practice `b` has a default value, but users should + # explicitly provide a value here as the default is deprecated + def __call__(self, a, b): ... + def reduce(self, target, axis=...): ... + def outer(self, a, b): ... + +def min(obj, axis=..., out=..., fill_value=..., keepdims=...): ... +def max(obj, axis=..., out=..., fill_value=..., keepdims=...): ... +def ptp(obj, axis=..., out=..., fill_value=..., keepdims=...): ... + +class _frommethod: + __name__: Any + __doc__: Any + reversed: Any + def __init__(self, methodname, reversed=...): ... + def getdoc(self): ... + def __call__(self, a, *args, **params): ... + +all: _frommethod +anomalies: _frommethod +anom: _frommethod +any: _frommethod +compress: _frommethod +cumprod: _frommethod +cumsum: _frommethod +copy: _frommethod +diagonal: _frommethod +harden_mask: _frommethod +ids: _frommethod +mean: _frommethod +nonzero: _frommethod +prod: _frommethod +product: _frommethod +ravel: _frommethod +repeat: _frommethod +soften_mask: _frommethod +std: _frommethod +sum: _frommethod +swapaxes: _frommethod +trace: _frommethod +var: _frommethod +count: _frommethod +argmin: _frommethod +argmax: _frommethod + +minimum: _extrema_operation +maximum: _extrema_operation + +def take(a, indices, axis=..., out=..., mode=...): ... +def power(a, b, third=...): ... +def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... +def sort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... +def compressed(x): ... +def concatenate(arrays, axis=...): ... +def diag(v, k=...): ... +def left_shift(a, n): ... +def right_shift(a, n): ... +def put(a, indices, values, mode=...): ... +def putmask(a, mask, values): ... +def transpose(a, axes=...): ... +def reshape(a, new_shape, order=...): ... +def resize(x, new_shape): ... +def ndim(obj): ... +def shape(obj): ... +def size(obj, axis=...): ... +def diff(a, /, n=..., axis=..., prepend=..., append=...): ... +def where(condition, x=..., y=...): ... +def choose(indices, choices, out=..., mode=...): ... +def round(a, decimals=..., out=...): ... + +def inner(a, b): ... +innerproduct = inner + +def outer(a, b): ... +outerproduct = outer + +def correlate(a, v, mode=..., propagate_mask=...): ... +def convolve(a, v, mode=..., propagate_mask=...): ... +def allequal(a, b, fill_value=...): ... +def allclose(a, b, masked_equal=..., rtol=..., atol=...): ... +def asarray(a, dtype=..., order=...): ... +def asanyarray(a, dtype=...): ... +def fromflex(fxarray): ... + +class _convert2ma: + __doc__: Any + def __init__(self, funcname, params=...): ... + def getdoc(self): ... + def __call__(self, *args, **params): ... + +arange: _convert2ma +empty: _convert2ma +empty_like: _convert2ma +frombuffer: _convert2ma +fromfunction: _convert2ma +identity: _convert2ma +ones: _convert2ma +zeros: _convert2ma + +def append(a, b, axis=...): ... +def dot(a, b, strict=..., out=...): ... +def mask_rowcols(a, axis=...): ... diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/extras.py b/.venv/lib/python3.11/site-packages/numpy/ma/extras.py new file mode 100644 index 0000000000000000000000000000000000000000..8a6246c3666c8475be5b63261692e0718f2095e9 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/extras.py @@ -0,0 +1,2133 @@ +""" +Masked arrays add-ons. + +A collection of utilities for `numpy.ma`. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ + +""" +__all__ = [ + 'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d', + 'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack', + 'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows', + 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d', + 'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack', + 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows', + 'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate', + 'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack', + 'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack', + ] + +import itertools +import warnings + +from . import core as ma +from .core import ( + MaskedArray, MAError, add, array, asarray, concatenate, filled, count, + getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or, + nomask, ones, sort, zeros, getdata, get_masked_subclass, dot + ) + +import numpy as np +from numpy import ndarray, array as nxarray +from numpy.core.multiarray import normalize_axis_index +from numpy.core.numeric import normalize_axis_tuple +from numpy.lib.function_base import _ureduce +from numpy.lib.index_tricks import AxisConcatenator + + +def issequence(seq): + """ + Is seq a sequence (ndarray, list or tuple)? + + """ + return isinstance(seq, (ndarray, tuple, list)) + + +def count_masked(arr, axis=None): + """ + Count the number of masked elements along the given axis. + + Parameters + ---------- + arr : array_like + An array with (possibly) masked elements. + axis : int, optional + Axis along which to count. If None (default), a flattened + version of the array is used. + + Returns + ------- + count : int, ndarray + The total number of masked elements (axis=None) or the number + of masked elements along each slice of the given axis. + + See Also + -------- + MaskedArray.count : Count non-masked elements. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.arange(9).reshape((3,3)) + >>> a = ma.array(a) + >>> a[1, 0] = ma.masked + >>> a[1, 2] = ma.masked + >>> a[2, 1] = ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, False, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> ma.count_masked(a) + 3 + + When the `axis` keyword is used an array is returned. + + >>> ma.count_masked(a, axis=0) + array([1, 1, 1]) + >>> ma.count_masked(a, axis=1) + array([0, 2, 1]) + + """ + m = getmaskarray(arr) + return m.sum(axis) + + +def masked_all(shape, dtype=float): + """ + Empty masked array with all elements masked. + + Return an empty masked array of the given shape and dtype, where all the + data are masked. + + Parameters + ---------- + shape : int or tuple of ints + Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. + dtype : dtype, optional + Data type of the output. + + Returns + ------- + a : MaskedArray + A masked array with all data masked. + + See Also + -------- + masked_all_like : Empty masked array modelled on an existing array. + + Examples + -------- + >>> import numpy.ma as ma + >>> ma.masked_all((3, 3)) + masked_array( + data=[[--, --, --], + [--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True], + [ True, True, True]], + fill_value=1e+20, + dtype=float64) + + The `dtype` parameter defines the underlying data type. + + >>> a = ma.masked_all((3, 3)) + >>> a.dtype + dtype('float64') + >>> a = ma.masked_all((3, 3), dtype=np.int32) + >>> a.dtype + dtype('int32') + + """ + a = masked_array(np.empty(shape, dtype), + mask=np.ones(shape, make_mask_descr(dtype))) + return a + + +def masked_all_like(arr): + """ + Empty masked array with the properties of an existing array. + + Return an empty masked array of the same shape and dtype as + the array `arr`, where all the data are masked. + + Parameters + ---------- + arr : ndarray + An array describing the shape and dtype of the required MaskedArray. + + Returns + ------- + a : MaskedArray + A masked array with all data masked. + + Raises + ------ + AttributeError + If `arr` doesn't have a shape attribute (i.e. not an ndarray) + + See Also + -------- + masked_all : Empty masked array with all elements masked. + + Examples + -------- + >>> import numpy.ma as ma + >>> arr = np.zeros((2, 3), dtype=np.float32) + >>> arr + array([[0., 0., 0.], + [0., 0., 0.]], dtype=float32) + >>> ma.masked_all_like(arr) + masked_array( + data=[[--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True]], + fill_value=1e+20, + dtype=float32) + + The dtype of the masked array matches the dtype of `arr`. + + >>> arr.dtype + dtype('float32') + >>> ma.masked_all_like(arr).dtype + dtype('float32') + + """ + a = np.empty_like(arr).view(MaskedArray) + a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype)) + return a + + +#####-------------------------------------------------------------------------- +#---- --- Standard functions --- +#####-------------------------------------------------------------------------- +class _fromnxfunction: + """ + Defines a wrapper to adapt NumPy functions to masked arrays. + + + An instance of `_fromnxfunction` can be called with the same parameters + as the wrapped NumPy function. The docstring of `newfunc` is adapted from + the wrapped function as well, see `getdoc`. + + This class should not be used directly. Instead, one of its extensions that + provides support for a specific type of input should be used. + + Parameters + ---------- + funcname : str + The name of the function to be adapted. The function should be + in the NumPy namespace (i.e. ``np.funcname``). + + """ + + def __init__(self, funcname): + self.__name__ = funcname + self.__doc__ = self.getdoc() + + def getdoc(self): + """ + Retrieve the docstring and signature from the function. + + The ``__doc__`` attribute of the function is used as the docstring for + the new masked array version of the function. A note on application + of the function to the mask is appended. + + Parameters + ---------- + None + + """ + npfunc = getattr(np, self.__name__, None) + doc = getattr(npfunc, '__doc__', None) + if doc: + sig = self.__name__ + ma.get_object_signature(npfunc) + doc = ma.doc_note(doc, "The function is applied to both the _data " + "and the _mask, if any.") + return '\n\n'.join((sig, doc)) + return + + def __call__(self, *args, **params): + pass + + +class _fromnxfunction_single(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with a single array + argument followed by auxiliary args that are passed verbatim for + both the data and mask calls. + """ + def __call__(self, x, *args, **params): + func = getattr(np, self.__name__) + if isinstance(x, ndarray): + _d = func(x.__array__(), *args, **params) + _m = func(getmaskarray(x), *args, **params) + return masked_array(_d, mask=_m) + else: + _d = func(np.asarray(x), *args, **params) + _m = func(getmaskarray(x), *args, **params) + return masked_array(_d, mask=_m) + + +class _fromnxfunction_seq(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with a single sequence + of arrays followed by auxiliary args that are passed verbatim for + both the data and mask calls. + """ + def __call__(self, x, *args, **params): + func = getattr(np, self.__name__) + _d = func(tuple([np.asarray(a) for a in x]), *args, **params) + _m = func(tuple([getmaskarray(a) for a in x]), *args, **params) + return masked_array(_d, mask=_m) + + +class _fromnxfunction_args(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with multiple array + arguments. The first non-array-like input marks the beginning of the + arguments that are passed verbatim for both the data and mask calls. + Array arguments are processed independently and the results are + returned in a list. If only one array is found, the return value is + just the processed array instead of a list. + """ + def __call__(self, *args, **params): + func = getattr(np, self.__name__) + arrays = [] + args = list(args) + while len(args) > 0 and issequence(args[0]): + arrays.append(args.pop(0)) + res = [] + for x in arrays: + _d = func(np.asarray(x), *args, **params) + _m = func(getmaskarray(x), *args, **params) + res.append(masked_array(_d, mask=_m)) + if len(arrays) == 1: + return res[0] + return res + + +class _fromnxfunction_allargs(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with multiple array + arguments. Similar to `_fromnxfunction_args` except that all args + are converted to arrays even if they are not so already. This makes + it possible to process scalars as 1-D arrays. Only keyword arguments + are passed through verbatim for the data and mask calls. Arrays + arguments are processed independently and the results are returned + in a list. If only one arg is present, the return value is just the + processed array instead of a list. + """ + def __call__(self, *args, **params): + func = getattr(np, self.__name__) + res = [] + for x in args: + _d = func(np.asarray(x), **params) + _m = func(getmaskarray(x), **params) + res.append(masked_array(_d, mask=_m)) + if len(args) == 1: + return res[0] + return res + + +atleast_1d = _fromnxfunction_allargs('atleast_1d') +atleast_2d = _fromnxfunction_allargs('atleast_2d') +atleast_3d = _fromnxfunction_allargs('atleast_3d') + +vstack = row_stack = _fromnxfunction_seq('vstack') +hstack = _fromnxfunction_seq('hstack') +column_stack = _fromnxfunction_seq('column_stack') +dstack = _fromnxfunction_seq('dstack') +stack = _fromnxfunction_seq('stack') + +hsplit = _fromnxfunction_single('hsplit') + +diagflat = _fromnxfunction_single('diagflat') + + +#####-------------------------------------------------------------------------- +#---- +#####-------------------------------------------------------------------------- +def flatten_inplace(seq): + """Flatten a sequence in place.""" + k = 0 + while (k != len(seq)): + while hasattr(seq[k], '__iter__'): + seq[k:(k + 1)] = seq[k] + k += 1 + return seq + + +def apply_along_axis(func1d, axis, arr, *args, **kwargs): + """ + (This docstring should be overwritten) + """ + arr = array(arr, copy=False, subok=True) + nd = arr.ndim + axis = normalize_axis_index(axis, nd) + ind = [0] * (nd - 1) + i = np.zeros(nd, 'O') + indlist = list(range(nd)) + indlist.remove(axis) + i[axis] = slice(None, None) + outshape = np.asarray(arr.shape).take(indlist) + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + # if res is a number, then we have a smaller output array + asscalar = np.isscalar(res) + if not asscalar: + try: + len(res) + except TypeError: + asscalar = True + # Note: we shouldn't set the dtype of the output from the first result + # so we force the type to object, and build a list of dtypes. We'll + # just take the largest, to avoid some downcasting + dtypes = [] + if asscalar: + dtypes.append(np.asarray(res).dtype) + outarr = zeros(outshape, object) + outarr[tuple(ind)] = res + Ntot = np.prod(outshape) + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= outshape[n]) and (n > (1 - nd)): + ind[n - 1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(ind)] = res + dtypes.append(asarray(res).dtype) + k += 1 + else: + res = array(res, copy=False, subok=True) + j = i.copy() + j[axis] = ([slice(None, None)] * res.ndim) + j.put(indlist, ind) + Ntot = np.prod(outshape) + holdshape = outshape + outshape = list(arr.shape) + outshape[axis] = res.shape + dtypes.append(asarray(res).dtype) + outshape = flatten_inplace(outshape) + outarr = zeros(outshape, object) + outarr[tuple(flatten_inplace(j.tolist()))] = res + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= holdshape[n]) and (n > (1 - nd)): + ind[n - 1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + j.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(flatten_inplace(j.tolist()))] = res + dtypes.append(asarray(res).dtype) + k += 1 + max_dtypes = np.dtype(np.asarray(dtypes).max()) + if not hasattr(arr, '_mask'): + result = np.asarray(outarr, dtype=max_dtypes) + else: + result = asarray(outarr, dtype=max_dtypes) + result.fill_value = ma.default_fill_value(result) + return result +apply_along_axis.__doc__ = np.apply_along_axis.__doc__ + + +def apply_over_axes(func, a, axes): + """ + (This docstring will be overwritten) + """ + val = asarray(a) + N = a.ndim + if array(axes).ndim == 0: + axes = (axes,) + for axis in axes: + if axis < 0: + axis = N + axis + args = (val, axis) + res = func(*args) + if res.ndim == val.ndim: + val = res + else: + res = ma.expand_dims(res, axis) + if res.ndim == val.ndim: + val = res + else: + raise ValueError("function is not returning " + "an array of the correct shape") + return val + + +if apply_over_axes.__doc__ is not None: + apply_over_axes.__doc__ = np.apply_over_axes.__doc__[ + :np.apply_over_axes.__doc__.find('Notes')].rstrip() + \ + """ + + Examples + -------- + >>> a = np.ma.arange(24).reshape(2,3,4) + >>> a[:,0,1] = np.ma.masked + >>> a[:,1,:] = np.ma.masked + >>> a + masked_array( + data=[[[0, --, 2, 3], + [--, --, --, --], + [8, 9, 10, 11]], + [[12, --, 14, 15], + [--, --, --, --], + [20, 21, 22, 23]]], + mask=[[[False, True, False, False], + [ True, True, True, True], + [False, False, False, False]], + [[False, True, False, False], + [ True, True, True, True], + [False, False, False, False]]], + fill_value=999999) + >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2]) + masked_array( + data=[[[46], + [--], + [124]]], + mask=[[[False], + [ True], + [False]]], + fill_value=999999) + + Tuple axis arguments to ufuncs are equivalent: + + >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1)) + masked_array( + data=[[[46], + [--], + [124]]], + mask=[[[False], + [ True], + [False]]], + fill_value=999999) + """ + + +def average(a, axis=None, weights=None, returned=False, *, + keepdims=np._NoValue): + """ + Return the weighted average of array over the given axis. + + Parameters + ---------- + a : array_like + Data to be averaged. + Masked entries are not taken into account in the computation. + axis : int, optional + Axis along which to average `a`. If None, averaging is done over + the flattened array. + weights : array_like, optional + The importance that each element has in the computation of the average. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If ``weights=None``, then all data in `a` are assumed to have a + weight equal to one. The 1-D calculation is:: + + avg = sum(a * weights) / sum(weights) + + The only constraint on `weights` is that `sum(weights)` must not be 0. + returned : bool, optional + Flag indicating whether a tuple ``(result, sum of weights)`` + should be returned as output (True), or just the result (False). + Default is False. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + *Note:* `keepdims` will not work with instances of `numpy.matrix` + or other classes whose methods do not support `keepdims`. + + .. versionadded:: 1.23.0 + + Returns + ------- + average, [sum_of_weights] : (tuple of) scalar or MaskedArray + The average along the specified axis. When returned is `True`, + return a tuple with the average as the first element and the sum + of the weights as the second element. The return type is `np.float64` + if `a` is of integer type and floats smaller than `float64`, or the + input data-type, otherwise. If returned, `sum_of_weights` is always + `float64`. + + Examples + -------- + >>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True]) + >>> np.ma.average(a, weights=[3, 1, 0, 0]) + 1.25 + + >>> x = np.ma.arange(6.).reshape(3, 2) + >>> x + masked_array( + data=[[0., 1.], + [2., 3.], + [4., 5.]], + mask=False, + fill_value=1e+20) + >>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3], + ... returned=True) + >>> avg + masked_array(data=[2.6666666666666665, 3.6666666666666665], + mask=[False, False], + fill_value=1e+20) + + With ``keepdims=True``, the following result has shape (3, 1). + + >>> np.ma.average(x, axis=1, keepdims=True) + masked_array( + data=[[0.5], + [2.5], + [4.5]], + mask=False, + fill_value=1e+20) + """ + a = asarray(a) + m = getmask(a) + + # inspired by 'average' in numpy/lib/function_base.py + + if keepdims is np._NoValue: + # Don't pass on the keepdims argument if one wasn't given. + keepdims_kw = {} + else: + keepdims_kw = {'keepdims': keepdims} + + if weights is None: + avg = a.mean(axis, **keepdims_kw) + scl = avg.dtype.type(a.count(axis)) + else: + wgt = asarray(weights) + + if issubclass(a.dtype.type, (np.integer, np.bool_)): + result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') + else: + result_dtype = np.result_type(a.dtype, wgt.dtype) + + # Sanity checks + if a.shape != wgt.shape: + if axis is None: + raise TypeError( + "Axis must be specified when shapes of a and weights " + "differ.") + if wgt.ndim != 1: + raise TypeError( + "1D weights expected when shapes of a and weights differ.") + if wgt.shape[0] != a.shape[axis]: + raise ValueError( + "Length of weights not compatible with specified axis.") + + # setup wgt to broadcast along axis + wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape, subok=True) + wgt = wgt.swapaxes(-1, axis) + + if m is not nomask: + wgt = wgt*(~a.mask) + wgt.mask |= a.mask + + scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw) + avg = np.multiply(a, wgt, + dtype=result_dtype).sum(axis, **keepdims_kw) / scl + + if returned: + if scl.shape != avg.shape: + scl = np.broadcast_to(scl, avg.shape).copy() + return avg, scl + else: + return avg + + +def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): + """ + Compute the median along the specified axis. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : int, optional + Axis along which the medians are computed. The default (None) is + to compute the median along a flattened version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array (a) for + calculations. The input array will be modified by the call to + median. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. Note that, if `overwrite_input` is True, and the input + is not already an `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + .. versionadded:: 1.10.0 + + Returns + ------- + median : ndarray + A new array holding the result is returned unless out is + specified, in which case a reference to out is returned. + Return data-type is `float64` for integers and floats smaller than + `float64`, or the input data-type, otherwise. + + See Also + -------- + mean + + Notes + ----- + Given a vector ``V`` with ``N`` non masked values, the median of ``V`` + is the middle value of a sorted copy of ``V`` (``Vs``) - i.e. + ``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2`` + when ``N`` is even. + + Examples + -------- + >>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4) + >>> np.ma.median(x) + 1.5 + + >>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) + >>> np.ma.median(x) + 2.5 + >>> np.ma.median(x, axis=-1, overwrite_input=True) + masked_array(data=[2.0, 5.0], + mask=[False, False], + fill_value=1e+20) + + """ + if not hasattr(a, 'mask'): + m = np.median(getdata(a, subok=True), axis=axis, + out=out, overwrite_input=overwrite_input, + keepdims=keepdims) + if isinstance(m, np.ndarray) and 1 <= m.ndim: + return masked_array(m, copy=False) + else: + return m + + return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _median(a, axis=None, out=None, overwrite_input=False): + # when an unmasked NaN is present return it, so we need to sort the NaN + # values behind the mask + if np.issubdtype(a.dtype, np.inexact): + fill_value = np.inf + else: + fill_value = None + if overwrite_input: + if axis is None: + asorted = a.ravel() + asorted.sort(fill_value=fill_value) + else: + a.sort(axis=axis, fill_value=fill_value) + asorted = a + else: + asorted = sort(a, axis=axis, fill_value=fill_value) + + if axis is None: + axis = 0 + else: + axis = normalize_axis_index(axis, asorted.ndim) + + if asorted.shape[axis] == 0: + # for empty axis integer indices fail so use slicing to get same result + # as median (which is mean of empty slice = nan) + indexer = [slice(None)] * asorted.ndim + indexer[axis] = slice(0, 0) + indexer = tuple(indexer) + return np.ma.mean(asorted[indexer], axis=axis, out=out) + + if asorted.ndim == 1: + idx, odd = divmod(count(asorted), 2) + mid = asorted[idx + odd - 1:idx + 1] + if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0: + # avoid inf / x = masked + s = mid.sum(out=out) + if not odd: + s = np.true_divide(s, 2., casting='safe', out=out) + s = np.lib.utils._median_nancheck(asorted, s, axis) + else: + s = mid.mean(out=out) + + # if result is masked either the input contained enough + # minimum_fill_value so that it would be the median or all values + # masked + if np.ma.is_masked(s) and not np.all(asorted.mask): + return np.ma.minimum_fill_value(asorted) + return s + + counts = count(asorted, axis=axis, keepdims=True) + h = counts // 2 + + # duplicate high if odd number of elements so mean does nothing + odd = counts % 2 == 1 + l = np.where(odd, h, h-1) + + lh = np.concatenate([l,h], axis=axis) + + # get low and high median + low_high = np.take_along_axis(asorted, lh, axis=axis) + + def replace_masked(s): + # Replace masked entries with minimum_full_value unless it all values + # are masked. This is required as the sort order of values equal or + # larger than the fill value is undefined and a valid value placed + # elsewhere, e.g. [4, --, inf]. + if np.ma.is_masked(s): + rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask + s.data[rep] = np.ma.minimum_fill_value(asorted) + s.mask[rep] = False + + replace_masked(low_high) + + if np.issubdtype(asorted.dtype, np.inexact): + # avoid inf / x = masked + s = np.ma.sum(low_high, axis=axis, out=out) + np.true_divide(s.data, 2., casting='unsafe', out=s.data) + + s = np.lib.utils._median_nancheck(asorted, s, axis) + else: + s = np.ma.mean(low_high, axis=axis, out=out) + + return s + + +def compress_nd(x, axis=None): + """Suppress slices from multiple dimensions which contain masked values. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with `mask` + set to `nomask`. + axis : tuple of ints or int, optional + Which dimensions to suppress slices from can be configured with this + parameter. + - If axis is a tuple of ints, those are the axes to suppress slices from. + - If axis is an int, then that is the only axis to suppress slices from. + - If axis is None, all axis are selected. + + Returns + ------- + compress_array : ndarray + The compressed array. + """ + x = asarray(x) + m = getmask(x) + # Set axis to tuple of ints + if axis is None: + axis = tuple(range(x.ndim)) + else: + axis = normalize_axis_tuple(axis, x.ndim) + + # Nothing is masked: return x + if m is nomask or not m.any(): + return x._data + # All is masked: return empty + if m.all(): + return nxarray([]) + # Filter elements through boolean indexing + data = x._data + for ax in axis: + axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim))) + data = data[(slice(None),)*ax + (~m.any(axis=axes),)] + return data + + +def compress_rowcols(x, axis=None): + """ + Suppress the rows and/or columns of a 2-D array that contain + masked values. + + The suppression behavior is selected with the `axis` parameter. + + - If axis is None, both rows and columns are suppressed. + - If axis is 0, only rows are suppressed. + - If axis is 1 or -1, only columns are suppressed. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with + `mask` set to `nomask`. Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. Default is None. + + Returns + ------- + compressed_array : ndarray + The compressed array. + + Examples + -------- + >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> x + masked_array( + data=[[--, 1, 2], + [--, 4, 5], + [6, 7, 8]], + mask=[[ True, False, False], + [ True, False, False], + [False, False, False]], + fill_value=999999) + + >>> np.ma.compress_rowcols(x) + array([[7, 8]]) + >>> np.ma.compress_rowcols(x, 0) + array([[6, 7, 8]]) + >>> np.ma.compress_rowcols(x, 1) + array([[1, 2], + [4, 5], + [7, 8]]) + + """ + if asarray(x).ndim != 2: + raise NotImplementedError("compress_rowcols works for 2D arrays only.") + return compress_nd(x, axis=axis) + + +def compress_rows(a): + """ + Suppress whole rows of a 2-D array that contain masked values. + + This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see + `compress_rowcols` for details. + + See Also + -------- + compress_rowcols + + """ + a = asarray(a) + if a.ndim != 2: + raise NotImplementedError("compress_rows works for 2D arrays only.") + return compress_rowcols(a, 0) + + +def compress_cols(a): + """ + Suppress whole columns of a 2-D array that contain masked values. + + This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see + `compress_rowcols` for details. + + See Also + -------- + compress_rowcols + + """ + a = asarray(a) + if a.ndim != 2: + raise NotImplementedError("compress_cols works for 2D arrays only.") + return compress_rowcols(a, 1) + + +def mask_rowcols(a, axis=None): + """ + Mask rows and/or columns of a 2D array that contain masked values. + + Mask whole rows and/or columns of a 2D array that contain + masked values. The masking behavior is selected using the + `axis` parameter. + + - If `axis` is None, rows *and* columns are masked. + - If `axis` is 0, only rows are masked. + - If `axis` is 1 or -1, only columns are masked. + + Parameters + ---------- + a : array_like, MaskedArray + The array to mask. If not a MaskedArray instance (or if no array + elements are masked), the result is a MaskedArray with `mask` set + to `nomask` (False). Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. If None, applies to a + flattened version of the array. + + Returns + ------- + a : MaskedArray + A modified version of the input array, masked depending on the value + of the `axis` parameter. + + Raises + ------ + NotImplementedError + If input array `a` is not 2D. + + See Also + -------- + mask_rows : Mask rows of a 2D array that contain masked values. + mask_cols : Mask cols of a 2D array that contain masked values. + masked_where : Mask where a condition is met. + + Notes + ----- + The input array's mask is modified by this function. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> ma.mask_rowcols(a) + masked_array( + data=[[0, --, 0], + [--, --, --], + [0, --, 0]], + mask=[[False, True, False], + [ True, True, True], + [False, True, False]], + fill_value=1) + + """ + a = array(a, subok=False) + if a.ndim != 2: + raise NotImplementedError("mask_rowcols works for 2D arrays only.") + m = getmask(a) + # Nothing is masked: return a + if m is nomask or not m.any(): + return a + maskedval = m.nonzero() + a._mask = a._mask.copy() + if not axis: + a[np.unique(maskedval[0])] = masked + if axis in [None, 1, -1]: + a[:, np.unique(maskedval[1])] = masked + return a + + +def mask_rows(a, axis=np._NoValue): + """ + Mask rows of a 2D array that contain masked values. + + This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. + + See Also + -------- + mask_rowcols : Mask rows and/or columns of a 2D array. + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + + >>> ma.mask_rows(a) + masked_array( + data=[[0, 0, 0], + [--, --, --], + [0, 0, 0]], + mask=[[False, False, False], + [ True, True, True], + [False, False, False]], + fill_value=1) + + """ + if axis is not np._NoValue: + # remove the axis argument when this deprecation expires + # NumPy 1.18.0, 2019-11-28 + warnings.warn( + "The axis argument has always been ignored, in future passing it " + "will raise TypeError", DeprecationWarning, stacklevel=2) + return mask_rowcols(a, 0) + + +def mask_cols(a, axis=np._NoValue): + """ + Mask columns of a 2D array that contain masked values. + + This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1. + + See Also + -------- + mask_rowcols : Mask rows and/or columns of a 2D array. + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> ma.mask_cols(a) + masked_array( + data=[[0, --, 0], + [0, --, 0], + [0, --, 0]], + mask=[[False, True, False], + [False, True, False], + [False, True, False]], + fill_value=1) + + """ + if axis is not np._NoValue: + # remove the axis argument when this deprecation expires + # NumPy 1.18.0, 2019-11-28 + warnings.warn( + "The axis argument has always been ignored, in future passing it " + "will raise TypeError", DeprecationWarning, stacklevel=2) + return mask_rowcols(a, 1) + + +#####-------------------------------------------------------------------------- +#---- --- arraysetops --- +#####-------------------------------------------------------------------------- + +def ediff1d(arr, to_end=None, to_begin=None): + """ + Compute the differences between consecutive elements of an array. + + This function is the equivalent of `numpy.ediff1d` that takes masked + values into account, see `numpy.ediff1d` for details. + + See Also + -------- + numpy.ediff1d : Equivalent function for ndarrays. + + """ + arr = ma.asanyarray(arr).flat + ed = arr[1:] - arr[:-1] + arrays = [ed] + # + if to_begin is not None: + arrays.insert(0, to_begin) + if to_end is not None: + arrays.append(to_end) + # + if len(arrays) != 1: + # We'll save ourselves a copy of a potentially large array in the common + # case where neither to_begin or to_end was given. + ed = hstack(arrays) + # + return ed + + +def unique(ar1, return_index=False, return_inverse=False): + """ + Finds the unique elements of an array. + + Masked values are considered the same element (masked). The output array + is always a masked array. See `numpy.unique` for more details. + + See Also + -------- + numpy.unique : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = [1, 2, 1000, 2, 3] + >>> mask = [0, 0, 1, 0, 0] + >>> masked_a = ma.masked_array(a, mask) + >>> masked_a + masked_array(data=[1, 2, --, 2, 3], + mask=[False, False, True, False, False], + fill_value=999999) + >>> ma.unique(masked_a) + masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999) + >>> ma.unique(masked_a, return_index=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 4, 2])) + >>> ma.unique(masked_a, return_inverse=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 3, 1, 2])) + >>> ma.unique(masked_a, return_index=True, return_inverse=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2])) + """ + output = np.unique(ar1, + return_index=return_index, + return_inverse=return_inverse) + if isinstance(output, tuple): + output = list(output) + output[0] = output[0].view(MaskedArray) + output = tuple(output) + else: + output = output.view(MaskedArray) + return output + + +def intersect1d(ar1, ar2, assume_unique=False): + """ + Returns the unique elements common to both arrays. + + Masked values are considered equal one to the other. + The output is always a masked array. + + See `numpy.intersect1d` for more details. + + See Also + -------- + numpy.intersect1d : Equivalent function for ndarrays. + + Examples + -------- + >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1]) + >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1]) + >>> np.ma.intersect1d(x, y) + masked_array(data=[1, 3, --], + mask=[False, False, True], + fill_value=999999) + + """ + if assume_unique: + aux = ma.concatenate((ar1, ar2)) + else: + # Might be faster than unique( intersect1d( ar1, ar2 ) )? + aux = ma.concatenate((unique(ar1), unique(ar2))) + aux.sort() + return aux[:-1][aux[1:] == aux[:-1]] + + +def setxor1d(ar1, ar2, assume_unique=False): + """ + Set exclusive-or of 1-D arrays with unique elements. + + The output is always a masked array. See `numpy.setxor1d` for more details. + + See Also + -------- + numpy.setxor1d : Equivalent function for ndarrays. + + """ + if not assume_unique: + ar1 = unique(ar1) + ar2 = unique(ar2) + + aux = ma.concatenate((ar1, ar2)) + if aux.size == 0: + return aux + aux.sort() + auxf = aux.filled() +# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 + flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True])) +# flag2 = ediff1d( flag ) == 0 + flag2 = (flag[1:] == flag[:-1]) + return aux[flag2] + + +def in1d(ar1, ar2, assume_unique=False, invert=False): + """ + Test whether each element of an array is also present in a second + array. + + The output is always a masked array. See `numpy.in1d` for more details. + + We recommend using :func:`isin` instead of `in1d` for new code. + + See Also + -------- + isin : Version of this function that preserves the shape of ar1. + numpy.in1d : Equivalent function for ndarrays. + + Notes + ----- + .. versionadded:: 1.4.0 + + """ + if not assume_unique: + ar1, rev_idx = unique(ar1, return_inverse=True) + ar2 = unique(ar2) + + ar = ma.concatenate((ar1, ar2)) + # We need this to be a stable sort, so always use 'mergesort' + # here. The values from the first array should always come before + # the values from the second array. + order = ar.argsort(kind='mergesort') + sar = ar[order] + if invert: + bool_ar = (sar[1:] != sar[:-1]) + else: + bool_ar = (sar[1:] == sar[:-1]) + flag = ma.concatenate((bool_ar, [invert])) + indx = order.argsort(kind='mergesort')[:len(ar1)] + + if assume_unique: + return flag[indx] + else: + return flag[indx][rev_idx] + + +def isin(element, test_elements, assume_unique=False, invert=False): + """ + Calculates `element in test_elements`, broadcasting over + `element` only. + + The output is always a masked array of the same shape as `element`. + See `numpy.isin` for more details. + + See Also + -------- + in1d : Flattened version of this function. + numpy.isin : Equivalent function for ndarrays. + + Notes + ----- + .. versionadded:: 1.13.0 + + """ + element = ma.asarray(element) + return in1d(element, test_elements, assume_unique=assume_unique, + invert=invert).reshape(element.shape) + + +def union1d(ar1, ar2): + """ + Union of two arrays. + + The output is always a masked array. See `numpy.union1d` for more details. + + See Also + -------- + numpy.union1d : Equivalent function for ndarrays. + + """ + return unique(ma.concatenate((ar1, ar2), axis=None)) + + +def setdiff1d(ar1, ar2, assume_unique=False): + """ + Set difference of 1D arrays with unique elements. + + The output is always a masked array. See `numpy.setdiff1d` for more + details. + + See Also + -------- + numpy.setdiff1d : Equivalent function for ndarrays. + + Examples + -------- + >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) + >>> np.ma.setdiff1d(x, [1, 2]) + masked_array(data=[3, --], + mask=[False, True], + fill_value=999999) + + """ + if assume_unique: + ar1 = ma.asarray(ar1).ravel() + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] + + +############################################################################### +# Covariance # +############################################################################### + + +def _covhelper(x, y=None, rowvar=True, allow_masked=True): + """ + Private function for the computation of covariance and correlation + coefficients. + + """ + x = ma.array(x, ndmin=2, copy=True, dtype=float) + xmask = ma.getmaskarray(x) + # Quick exit if we can't process masked data + if not allow_masked and xmask.any(): + raise ValueError("Cannot process masked data.") + # + if x.shape[0] == 1: + rowvar = True + # Make sure that rowvar is either 0 or 1 + rowvar = int(bool(rowvar)) + axis = 1 - rowvar + if rowvar: + tup = (slice(None), None) + else: + tup = (None, slice(None)) + # + if y is None: + xnotmask = np.logical_not(xmask).astype(int) + else: + y = array(y, copy=False, ndmin=2, dtype=float) + ymask = ma.getmaskarray(y) + if not allow_masked and ymask.any(): + raise ValueError("Cannot process masked data.") + if xmask.any() or ymask.any(): + if y.shape == x.shape: + # Define some common mask + common_mask = np.logical_or(xmask, ymask) + if common_mask is not nomask: + xmask = x._mask = y._mask = ymask = common_mask + x._sharedmask = False + y._sharedmask = False + x = ma.concatenate((x, y), axis) + xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int) + x -= x.mean(axis=rowvar)[tup] + return (x, xnotmask, rowvar) + + +def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None): + """ + Estimate the covariance matrix. + + Except for the handling of missing data this function does the same as + `numpy.cov`. For more details and examples, see `numpy.cov`. + + By default, masked values are recognized as such. If `x` and `y` have the + same shape, a common mask is allocated: if ``x[i,j]`` is masked, then + ``y[i,j]`` will also be masked. + Setting `allow_masked` to False will raise an exception if values are + missing in either of the input arrays. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : bool, optional + Default normalization (False) is by ``(N-1)``, where ``N`` is the + number of observations given (unbiased estimate). If `bias` is True, + then normalization is by ``N``. This keyword can be overridden by + the keyword ``ddof`` in numpy versions >= 1.5. + allow_masked : bool, optional + If True, masked values are propagated pair-wise: if a value is masked + in `x`, the corresponding value is masked in `y`. + If False, raises a `ValueError` exception when some values are missing. + ddof : {None, int}, optional + If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is + the number of observations; this overrides the value implied by + ``bias``. The default value is ``None``. + + .. versionadded:: 1.5 + + Raises + ------ + ValueError + Raised if some values are missing and `allow_masked` is False. + + See Also + -------- + numpy.cov + + """ + # Check inputs + if ddof is not None and ddof != int(ddof): + raise ValueError("ddof must be an integer") + # Set up ddof + if ddof is None: + if bias: + ddof = 0 + else: + ddof = 1 + + (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) + if not rowvar: + fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof + result = (dot(x.T, x.conj(), strict=False) / fact).squeeze() + else: + fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof + result = (dot(x, x.T.conj(), strict=False) / fact).squeeze() + return result + + +def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True, + ddof=np._NoValue): + """ + Return Pearson product-moment correlation coefficients. + + Except for the handling of missing data this function does the same as + `numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + allow_masked : bool, optional + If True, masked values are propagated pair-wise: if a value is masked + in `x`, the corresponding value is masked in `y`. + If False, raises an exception. Because `bias` is deprecated, this + argument needs to be treated as keyword only to avoid a warning. + ddof : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + + See Also + -------- + numpy.corrcoef : Equivalent function in top-level NumPy module. + cov : Estimate the covariance matrix. + + Notes + ----- + This function accepts but discards arguments `bias` and `ddof`. This is + for backwards compatibility with previous versions of this function. These + arguments had no effect on the return values of the function and can be + safely ignored in this and previous versions of numpy. + """ + msg = 'bias and ddof have no effect and are deprecated' + if bias is not np._NoValue or ddof is not np._NoValue: + # 2015-03-15, 1.10 + warnings.warn(msg, DeprecationWarning, stacklevel=2) + # Get the data + (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) + # Compute the covariance matrix + if not rowvar: + fact = np.dot(xnotmask.T, xnotmask) * 1. + c = (dot(x.T, x.conj(), strict=False) / fact).squeeze() + else: + fact = np.dot(xnotmask, xnotmask.T) * 1. + c = (dot(x, x.T.conj(), strict=False) / fact).squeeze() + # Check whether we have a scalar + try: + diag = ma.diagonal(c) + except ValueError: + return 1 + # + if xnotmask.all(): + _denom = ma.sqrt(ma.multiply.outer(diag, diag)) + else: + _denom = diagflat(diag) + _denom._sharedmask = False # We know return is always a copy + n = x.shape[1 - rowvar] + if rowvar: + for i in range(n - 1): + for j in range(i + 1, n): + _x = mask_cols(vstack((x[i], x[j]))).var(axis=1) + _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) + else: + for i in range(n - 1): + for j in range(i + 1, n): + _x = mask_cols( + vstack((x[:, i], x[:, j]))).var(axis=1) + _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) + return c / _denom + +#####-------------------------------------------------------------------------- +#---- --- Concatenation helpers --- +#####-------------------------------------------------------------------------- + +class MAxisConcatenator(AxisConcatenator): + """ + Translate slice objects to concatenation along an axis. + + For documentation on usage, see `mr_class`. + + See Also + -------- + mr_class + + """ + concatenate = staticmethod(concatenate) + + @classmethod + def makemat(cls, arr): + # There used to be a view as np.matrix here, but we may eventually + # deprecate that class. In preparation, we use the unmasked version + # to construct the matrix (with copy=False for backwards compatibility + # with the .view) + data = super().makemat(arr.data, copy=False) + return array(data, mask=arr.mask) + + def __getitem__(self, key): + # matrix builder syntax, like 'a, b; c, d' + if isinstance(key, str): + raise MAError("Unavailable for masked array.") + + return super().__getitem__(key) + + +class mr_class(MAxisConcatenator): + """ + Translate slice objects to concatenation along the first axis. + + This is the masked array version of `lib.index_tricks.RClass`. + + See Also + -------- + lib.index_tricks.RClass + + Examples + -------- + >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])] + masked_array(data=[1, 2, 3, ..., 4, 5, 6], + mask=False, + fill_value=999999) + + """ + def __init__(self): + MAxisConcatenator.__init__(self, 0) + +mr_ = mr_class() + + +#####-------------------------------------------------------------------------- +#---- Find unmasked data --- +#####-------------------------------------------------------------------------- + +def ndenumerate(a, compressed=True): + """ + Multidimensional index iterator. + + Return an iterator yielding pairs of array coordinates and values, + skipping elements that are masked. With `compressed=False`, + `ma.masked` is yielded as the value of masked elements. This + behavior differs from that of `numpy.ndenumerate`, which yields the + value of the underlying data array. + + Notes + ----- + .. versionadded:: 1.23.0 + + Parameters + ---------- + a : array_like + An array with (possibly) masked elements. + compressed : bool, optional + If True (default), masked elements are skipped. + + See Also + -------- + numpy.ndenumerate : Equivalent function ignoring any mask. + + Examples + -------- + >>> a = np.ma.arange(9).reshape((3, 3)) + >>> a[1, 0] = np.ma.masked + >>> a[1, 2] = np.ma.masked + >>> a[2, 1] = np.ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, False, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> for index, x in np.ma.ndenumerate(a): + ... print(index, x) + (0, 0) 0 + (0, 1) 1 + (0, 2) 2 + (1, 1) 4 + (2, 0) 6 + (2, 2) 8 + + >>> for index, x in np.ma.ndenumerate(a, compressed=False): + ... print(index, x) + (0, 0) 0 + (0, 1) 1 + (0, 2) 2 + (1, 0) -- + (1, 1) 4 + (1, 2) -- + (2, 0) 6 + (2, 1) -- + (2, 2) 8 + """ + for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat): + if not mask: + yield it + elif not compressed: + yield it[0], masked + + +def flatnotmasked_edges(a): + """ + Find the indices of the first and last unmasked values. + + Expects a 1-D `MaskedArray`, returns None if all values are masked. + + Parameters + ---------- + a : array_like + Input 1-D `MaskedArray` + + Returns + ------- + edges : ndarray or None + The indices of first and last non-masked value in the array. + Returns None if all values are masked. + + See Also + -------- + flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 1-D arrays. + + Examples + -------- + >>> a = np.ma.arange(10) + >>> np.ma.flatnotmasked_edges(a) + array([0, 9]) + + >>> mask = (a < 3) | (a > 8) | (a == 5) + >>> a[mask] = np.ma.masked + >>> np.array(a[~a.mask]) + array([3, 4, 6, 7, 8]) + + >>> np.ma.flatnotmasked_edges(a) + array([3, 8]) + + >>> a[:] = np.ma.masked + >>> print(np.ma.flatnotmasked_edges(a)) + None + + """ + m = getmask(a) + if m is nomask or not np.any(m): + return np.array([0, a.size - 1]) + unmasked = np.flatnonzero(~m) + if len(unmasked) > 0: + return unmasked[[0, -1]] + else: + return None + + +def notmasked_edges(a, axis=None): + """ + Find the indices of the first and last unmasked values along an axis. + + If all values are masked, return None. Otherwise, return a list + of two tuples, corresponding to the indices of the first and last + unmasked values respectively. + + Parameters + ---------- + a : array_like + The input array. + axis : int, optional + Axis along which to perform the operation. + If None (default), applies to a flattened version of the array. + + Returns + ------- + edges : ndarray or list + An array of start and end indexes if there are any masked data in + the array. If there are no masked data in the array, `edges` is a + list of the first and last index. + + See Also + -------- + flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous + clump_masked, clump_unmasked + + Examples + -------- + >>> a = np.arange(9).reshape((3, 3)) + >>> m = np.zeros_like(a) + >>> m[1:, 1:] = 1 + + >>> am = np.ma.array(a, mask=m) + >>> np.array(am[~am.mask]) + array([0, 1, 2, 3, 6]) + + >>> np.ma.notmasked_edges(am) + array([0, 6]) + + """ + a = asarray(a) + if axis is None or a.ndim == 1: + return flatnotmasked_edges(a) + m = getmaskarray(a) + idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim)) + return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]), + tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ] + + +def flatnotmasked_contiguous(a): + """ + Find contiguous unmasked data in a masked array. + + Parameters + ---------- + a : array_like + The input array. + + Returns + ------- + slice_list : list + A sorted sequence of `slice` objects (start index, end index). + + .. versionchanged:: 1.15.0 + Now returns an empty list instead of None for a fully masked array + + See Also + -------- + flatnotmasked_edges, notmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 2-D arrays at most. + + Examples + -------- + >>> a = np.ma.arange(10) + >>> np.ma.flatnotmasked_contiguous(a) + [slice(0, 10, None)] + + >>> mask = (a < 3) | (a > 8) | (a == 5) + >>> a[mask] = np.ma.masked + >>> np.array(a[~a.mask]) + array([3, 4, 6, 7, 8]) + + >>> np.ma.flatnotmasked_contiguous(a) + [slice(3, 5, None), slice(6, 9, None)] + >>> a[:] = np.ma.masked + >>> np.ma.flatnotmasked_contiguous(a) + [] + + """ + m = getmask(a) + if m is nomask: + return [slice(0, a.size)] + i = 0 + result = [] + for (k, g) in itertools.groupby(m.ravel()): + n = len(list(g)) + if not k: + result.append(slice(i, i + n)) + i += n + return result + + +def notmasked_contiguous(a, axis=None): + """ + Find contiguous unmasked data in a masked array along the given axis. + + Parameters + ---------- + a : array_like + The input array. + axis : int, optional + Axis along which to perform the operation. + If None (default), applies to a flattened version of the array, and this + is the same as `flatnotmasked_contiguous`. + + Returns + ------- + endpoints : list + A list of slices (start and end indexes) of unmasked indexes + in the array. + + If the input is 2d and axis is specified, the result is a list of lists. + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 2-D arrays at most. + + Examples + -------- + >>> a = np.arange(12).reshape((3, 4)) + >>> mask = np.zeros_like(a) + >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0 + >>> ma = np.ma.array(a, mask=mask) + >>> ma + masked_array( + data=[[0, --, 2, 3], + [--, --, --, 7], + [8, --, --, 11]], + mask=[[False, True, False, False], + [ True, True, True, False], + [False, True, True, False]], + fill_value=999999) + >>> np.array(ma[~ma.mask]) + array([ 0, 2, 3, 7, 8, 11]) + + >>> np.ma.notmasked_contiguous(ma) + [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)] + + >>> np.ma.notmasked_contiguous(ma, axis=0) + [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]] + + >>> np.ma.notmasked_contiguous(ma, axis=1) + [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]] + + """ + a = asarray(a) + nd = a.ndim + if nd > 2: + raise NotImplementedError("Currently limited to at most 2D array.") + if axis is None or nd == 1: + return flatnotmasked_contiguous(a) + # + result = [] + # + other = (axis + 1) % 2 + idx = [0, 0] + idx[axis] = slice(None, None) + # + for i in range(a.shape[other]): + idx[other] = i + result.append(flatnotmasked_contiguous(a[tuple(idx)])) + return result + + +def _ezclump(mask): + """ + Finds the clumps (groups of data with the same values) for a 1D bool array. + + Returns a series of slices. + """ + if mask.ndim > 1: + mask = mask.ravel() + idx = (mask[1:] ^ mask[:-1]).nonzero() + idx = idx[0] + 1 + + if mask[0]: + if len(idx) == 0: + return [slice(0, mask.size)] + + r = [slice(0, idx[0])] + r.extend((slice(left, right) + for left, right in zip(idx[1:-1:2], idx[2::2]))) + else: + if len(idx) == 0: + return [] + + r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])] + + if mask[-1]: + r.append(slice(idx[-1], mask.size)) + return r + + +def clump_unmasked(a): + """ + Return list of slices corresponding to the unmasked clumps of a 1-D array. + (A "clump" is defined as a contiguous region of the array). + + Parameters + ---------- + a : ndarray + A one-dimensional masked array. + + Returns + ------- + slices : list of slice + The list of slices, one for each continuous region of unmasked + elements in `a`. + + Notes + ----- + .. versionadded:: 1.4.0 + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + notmasked_contiguous, clump_masked + + Examples + -------- + >>> a = np.ma.masked_array(np.arange(10)) + >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked + >>> np.ma.clump_unmasked(a) + [slice(3, 6, None), slice(7, 8, None)] + + """ + mask = getattr(a, '_mask', nomask) + if mask is nomask: + return [slice(0, a.size)] + return _ezclump(~mask) + + +def clump_masked(a): + """ + Returns a list of slices corresponding to the masked clumps of a 1-D array. + (A "clump" is defined as a contiguous region of the array). + + Parameters + ---------- + a : ndarray + A one-dimensional masked array. + + Returns + ------- + slices : list of slice + The list of slices, one for each continuous region of masked elements + in `a`. + + Notes + ----- + .. versionadded:: 1.4.0 + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + notmasked_contiguous, clump_unmasked + + Examples + -------- + >>> a = np.ma.masked_array(np.arange(10)) + >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked + >>> np.ma.clump_masked(a) + [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)] + + """ + mask = ma.getmask(a) + if mask is nomask: + return [] + return _ezclump(mask) + + +############################################################################### +# Polynomial fit # +############################################################################### + + +def vander(x, n=None): + """ + Masked values in the input array result in rows of zeros. + + """ + _vander = np.vander(x, n) + m = getmask(x) + if m is not nomask: + _vander[m] = 0 + return _vander + +vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__) + + +def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): + """ + Any masked values in x is propagated in y, and vice-versa. + + """ + x = asarray(x) + y = asarray(y) + + m = getmask(x) + if y.ndim == 1: + m = mask_or(m, getmask(y)) + elif y.ndim == 2: + my = getmask(mask_rows(y)) + if my is not nomask: + m = mask_or(m, my[:, 0]) + else: + raise TypeError("Expected a 1D or 2D array for y!") + + if w is not None: + w = asarray(w) + if w.ndim != 1: + raise TypeError("expected a 1-d array for weights") + if w.shape[0] != y.shape[0]: + raise TypeError("expected w and y to have the same length") + m = mask_or(m, getmask(w)) + + if m is not nomask: + not_m = ~m + if w is not None: + w = w[not_m] + return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov) + else: + return np.polyfit(x, y, deg, rcond, full, w, cov) + +polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__) diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/extras.pyi b/.venv/lib/python3.11/site-packages/numpy/ma/extras.pyi new file mode 100644 index 0000000000000000000000000000000000000000..56228b927080a3963159206a9afc830d6d7335cc --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/extras.pyi @@ -0,0 +1,85 @@ +from typing import Any +from numpy.lib.index_tricks import AxisConcatenator + +from numpy.ma.core import ( + dot as dot, + mask_rowcols as mask_rowcols, +) + +__all__: list[str] + +def count_masked(arr, axis=...): ... +def masked_all(shape, dtype = ...): ... +def masked_all_like(arr): ... + +class _fromnxfunction: + __name__: Any + __doc__: Any + def __init__(self, funcname): ... + def getdoc(self): ... + def __call__(self, *args, **params): ... + +class _fromnxfunction_single(_fromnxfunction): + def __call__(self, x, *args, **params): ... + +class _fromnxfunction_seq(_fromnxfunction): + def __call__(self, x, *args, **params): ... + +class _fromnxfunction_allargs(_fromnxfunction): + def __call__(self, *args, **params): ... + +atleast_1d: _fromnxfunction_allargs +atleast_2d: _fromnxfunction_allargs +atleast_3d: _fromnxfunction_allargs + +vstack: _fromnxfunction_seq +row_stack: _fromnxfunction_seq +hstack: _fromnxfunction_seq +column_stack: _fromnxfunction_seq +dstack: _fromnxfunction_seq +stack: _fromnxfunction_seq + +hsplit: _fromnxfunction_single +diagflat: _fromnxfunction_single + +def apply_along_axis(func1d, axis, arr, *args, **kwargs): ... +def apply_over_axes(func, a, axes): ... +def average(a, axis=..., weights=..., returned=..., keepdims=...): ... +def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ... +def compress_nd(x, axis=...): ... +def compress_rowcols(x, axis=...): ... +def compress_rows(a): ... +def compress_cols(a): ... +def mask_rows(a, axis = ...): ... +def mask_cols(a, axis = ...): ... +def ediff1d(arr, to_end=..., to_begin=...): ... +def unique(ar1, return_index=..., return_inverse=...): ... +def intersect1d(ar1, ar2, assume_unique=...): ... +def setxor1d(ar1, ar2, assume_unique=...): ... +def in1d(ar1, ar2, assume_unique=..., invert=...): ... +def isin(element, test_elements, assume_unique=..., invert=...): ... +def union1d(ar1, ar2): ... +def setdiff1d(ar1, ar2, assume_unique=...): ... +def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ... +def corrcoef(x, y=..., rowvar=..., bias = ..., allow_masked=..., ddof = ...): ... + +class MAxisConcatenator(AxisConcatenator): + concatenate: Any + @classmethod + def makemat(cls, arr): ... + def __getitem__(self, key): ... + +class mr_class(MAxisConcatenator): + def __init__(self): ... + +mr_: mr_class + +def ndenumerate(a, compressed=...): ... +def flatnotmasked_edges(a): ... +def notmasked_edges(a, axis=...): ... +def flatnotmasked_contiguous(a): ... +def notmasked_contiguous(a, axis=...): ... +def clump_unmasked(a): ... +def clump_masked(a): ... +def vander(x, n=...): ... +def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ... diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.py b/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.py new file mode 100644 index 0000000000000000000000000000000000000000..1e8103bcf63271a51122dd90fd1ba6f4c722502c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.py @@ -0,0 +1,783 @@ +""":mod:`numpy.ma..mrecords` + +Defines the equivalent of :class:`numpy.recarrays` for masked arrays, +where fields can be accessed as attributes. +Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes +and the masking of individual fields. + +.. moduleauthor:: Pierre Gerard-Marchant + +""" +# We should make sure that no field is called '_mask','mask','_fieldmask', +# or whatever restricted keywords. An idea would be to no bother in the +# first place, and then rename the invalid fields with a trailing +# underscore. Maybe we could just overload the parser function ? + +from numpy.ma import ( + MAError, MaskedArray, masked, nomask, masked_array, getdata, + getmaskarray, filled +) +import numpy.ma as ma +import warnings + +import numpy as np +from numpy import ( + bool_, dtype, ndarray, recarray, array as narray +) +from numpy.core.records import ( + fromarrays as recfromarrays, fromrecords as recfromrecords +) + +_byteorderconv = np.core.records._byteorderconv + + +_check_fill_value = ma.core._check_fill_value + + +__all__ = [ + 'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords', + 'fromtextfile', 'addfield', +] + +reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype'] + + +def _checknames(descr, names=None): + """ + Checks that field names ``descr`` are not reserved keywords. + + If this is the case, a default 'f%i' is substituted. If the argument + `names` is not None, updates the field names to valid names. + + """ + ndescr = len(descr) + default_names = ['f%i' % i for i in range(ndescr)] + if names is None: + new_names = default_names + else: + if isinstance(names, (tuple, list)): + new_names = names + elif isinstance(names, str): + new_names = names.split(',') + else: + raise NameError(f'illegal input names {names!r}') + nnames = len(new_names) + if nnames < ndescr: + new_names += default_names[nnames:] + ndescr = [] + for (n, d, t) in zip(new_names, default_names, descr.descr): + if n in reserved_fields: + if t[0] in reserved_fields: + ndescr.append((d, t[1])) + else: + ndescr.append(t) + else: + ndescr.append((n, t[1])) + return np.dtype(ndescr) + + +def _get_fieldmask(self): + mdescr = [(n, '|b1') for n in self.dtype.names] + fdmask = np.empty(self.shape, dtype=mdescr) + fdmask.flat = tuple([False] * len(mdescr)) + return fdmask + + +class MaskedRecords(MaskedArray): + """ + + Attributes + ---------- + _data : recarray + Underlying data, as a record array. + _mask : boolean array + Mask of the records. A record is masked when all its fields are + masked. + _fieldmask : boolean recarray + Record array of booleans, setting the mask of each individual field + of each record. + _fill_value : record + Filling values for each field. + + """ + + def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None, + formats=None, names=None, titles=None, + byteorder=None, aligned=False, + mask=nomask, hard_mask=False, fill_value=None, keep_mask=True, + copy=False, + **options): + + self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset, + strides=strides, formats=formats, names=names, + titles=titles, byteorder=byteorder, + aligned=aligned,) + + mdtype = ma.make_mask_descr(self.dtype) + if mask is nomask or not np.size(mask): + if not keep_mask: + self._mask = tuple([False] * len(mdtype)) + else: + mask = np.array(mask, copy=copy) + if mask.shape != self.shape: + (nd, nm) = (self.size, mask.size) + if nm == 1: + mask = np.resize(mask, self.shape) + elif nm == nd: + mask = np.reshape(mask, self.shape) + else: + msg = "Mask and data not compatible: data size is %i, " + \ + "mask size is %i." + raise MAError(msg % (nd, nm)) + if not keep_mask: + self.__setmask__(mask) + self._sharedmask = True + else: + if mask.dtype == mdtype: + _mask = mask + else: + _mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + self._mask = _mask + return self + + def __array_finalize__(self, obj): + # Make sure we have a _fieldmask by default + _mask = getattr(obj, '_mask', None) + if _mask is None: + objmask = getattr(obj, '_mask', nomask) + _dtype = ndarray.__getattribute__(self, 'dtype') + if objmask is nomask: + _mask = ma.make_mask_none(self.shape, dtype=_dtype) + else: + mdescr = ma.make_mask_descr(_dtype) + _mask = narray([tuple([m] * len(mdescr)) for m in objmask], + dtype=mdescr).view(recarray) + # Update some of the attributes + _dict = self.__dict__ + _dict.update(_mask=_mask) + self._update_from(obj) + if _dict['_baseclass'] == ndarray: + _dict['_baseclass'] = recarray + return + + @property + def _data(self): + """ + Returns the data as a recarray. + + """ + return ndarray.view(self, recarray) + + @property + def _fieldmask(self): + """ + Alias to mask. + + """ + return self._mask + + def __len__(self): + """ + Returns the length + + """ + # We have more than one record + if self.ndim: + return len(self._data) + # We have only one record: return the nb of fields + return len(self.dtype) + + def __getattribute__(self, attr): + try: + return object.__getattribute__(self, attr) + except AttributeError: + # attr must be a fieldname + pass + fielddict = ndarray.__getattribute__(self, 'dtype').fields + try: + res = fielddict[attr][:2] + except (TypeError, KeyError) as e: + raise AttributeError( + f'record array has no attribute {attr}') from e + # So far, so good + _localdict = ndarray.__getattribute__(self, '__dict__') + _data = ndarray.view(self, _localdict['_baseclass']) + obj = _data.getfield(*res) + if obj.dtype.names is not None: + raise NotImplementedError("MaskedRecords is currently limited to" + "simple records.") + # Get some special attributes + # Reset the object's mask + hasmasked = False + _mask = _localdict.get('_mask', None) + if _mask is not None: + try: + _mask = _mask[attr] + except IndexError: + # Couldn't find a mask: use the default (nomask) + pass + tp_len = len(_mask.dtype) + hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any() + if (obj.shape or hasmasked): + obj = obj.view(MaskedArray) + obj._baseclass = ndarray + obj._isfield = True + obj._mask = _mask + # Reset the field values + _fill_value = _localdict.get('_fill_value', None) + if _fill_value is not None: + try: + obj._fill_value = _fill_value[attr] + except ValueError: + obj._fill_value = None + else: + obj = obj.item() + return obj + + def __setattr__(self, attr, val): + """ + Sets the attribute attr to the value val. + + """ + # Should we call __setmask__ first ? + if attr in ['mask', 'fieldmask']: + self.__setmask__(val) + return + # Create a shortcut (so that we don't have to call getattr all the time) + _localdict = object.__getattribute__(self, '__dict__') + # Check whether we're creating a new field + newattr = attr not in _localdict + try: + # Is attr a generic attribute ? + ret = object.__setattr__(self, attr, val) + except Exception: + # Not a generic attribute: exit if it's not a valid field + fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} + optinfo = ndarray.__getattribute__(self, '_optinfo') or {} + if not (attr in fielddict or attr in optinfo): + raise + else: + # Get the list of names + fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} + # Check the attribute + if attr not in fielddict: + return ret + if newattr: + # We just added this one or this setattr worked on an + # internal attribute. + try: + object.__delattr__(self, attr) + except Exception: + return ret + # Let's try to set the field + try: + res = fielddict[attr][:2] + except (TypeError, KeyError) as e: + raise AttributeError( + f'record array has no attribute {attr}') from e + + if val is masked: + _fill_value = _localdict['_fill_value'] + if _fill_value is not None: + dval = _localdict['_fill_value'][attr] + else: + dval = val + mval = True + else: + dval = filled(val) + mval = getmaskarray(val) + obj = ndarray.__getattribute__(self, '_data').setfield(dval, *res) + _localdict['_mask'].__setitem__(attr, mval) + return obj + + def __getitem__(self, indx): + """ + Returns all the fields sharing the same fieldname base. + + The fieldname base is either `_data` or `_mask`. + + """ + _localdict = self.__dict__ + _mask = ndarray.__getattribute__(self, '_mask') + _data = ndarray.view(self, _localdict['_baseclass']) + # We want a field + if isinstance(indx, str): + # Make sure _sharedmask is True to propagate back to _fieldmask + # Don't use _set_mask, there are some copies being made that + # break propagation Don't force the mask to nomask, that wreaks + # easy masking + obj = _data[indx].view(MaskedArray) + obj._mask = _mask[indx] + obj._sharedmask = True + fval = _localdict['_fill_value'] + if fval is not None: + obj._fill_value = fval[indx] + # Force to masked if the mask is True + if not obj.ndim and obj._mask: + return masked + return obj + # We want some elements. + # First, the data. + obj = np.array(_data[indx], copy=False).view(mrecarray) + obj._mask = np.array(_mask[indx], copy=False).view(recarray) + return obj + + def __setitem__(self, indx, value): + """ + Sets the given record to value. + + """ + MaskedArray.__setitem__(self, indx, value) + if isinstance(indx, str): + self._mask[indx] = ma.getmaskarray(value) + + def __str__(self): + """ + Calculates the string representation. + + """ + if self.size > 1: + mstr = [f"({','.join([str(i) for i in s])})" + for s in zip(*[getattr(self, f) for f in self.dtype.names])] + return f"[{', '.join(mstr)}]" + else: + mstr = [f"{','.join([str(i) for i in s])}" + for s in zip([getattr(self, f) for f in self.dtype.names])] + return f"({', '.join(mstr)})" + + def __repr__(self): + """ + Calculates the repr representation. + + """ + _names = self.dtype.names + fmt = "%%%is : %%s" % (max([len(n) for n in _names]) + 4,) + reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names] + reprstr.insert(0, 'masked_records(') + reprstr.extend([fmt % (' fill_value', self.fill_value), + ' )']) + return str("\n".join(reprstr)) + + def view(self, dtype=None, type=None): + """ + Returns a view of the mrecarray. + + """ + # OK, basic copy-paste from MaskedArray.view. + if dtype is None: + if type is None: + output = ndarray.view(self) + else: + output = ndarray.view(self, type) + # Here again. + elif type is None: + try: + if issubclass(dtype, ndarray): + output = ndarray.view(self, dtype) + else: + output = ndarray.view(self, dtype) + # OK, there's the change + except TypeError: + dtype = np.dtype(dtype) + # we need to revert to MaskedArray, but keeping the possibility + # of subclasses (eg, TimeSeriesRecords), so we'll force a type + # set to the first parent + if dtype.fields is None: + basetype = self.__class__.__bases__[0] + output = self.__array__().view(dtype, basetype) + output._update_from(self) + else: + output = ndarray.view(self, dtype) + output._fill_value = None + else: + output = ndarray.view(self, dtype, type) + # Update the mask, just like in MaskedArray.view + if (getattr(output, '_mask', nomask) is not nomask): + mdtype = ma.make_mask_descr(output.dtype) + output._mask = self._mask.view(mdtype, ndarray) + output._mask.shape = output.shape + return output + + def harden_mask(self): + """ + Forces the mask to hard. + + """ + self._hardmask = True + + def soften_mask(self): + """ + Forces the mask to soft + + """ + self._hardmask = False + + def copy(self): + """ + Returns a copy of the masked record. + + """ + copied = self._data.copy().view(type(self)) + copied._mask = self._mask.copy() + return copied + + def tolist(self, fill_value=None): + """ + Return the data portion of the array as a list. + + Data items are converted to the nearest compatible Python type. + Masked values are converted to fill_value. If fill_value is None, + the corresponding entries in the output list will be ``None``. + + """ + if fill_value is not None: + return self.filled(fill_value).tolist() + result = narray(self.filled().tolist(), dtype=object) + mask = narray(self._mask.tolist()) + result[mask] = None + return result.tolist() + + def __getstate__(self): + """Return the internal state of the masked array. + + This is for pickling. + + """ + state = (1, + self.shape, + self.dtype, + self.flags.fnc, + self._data.tobytes(), + self._mask.tobytes(), + self._fill_value, + ) + return state + + def __setstate__(self, state): + """ + Restore the internal state of the masked array. + + This is for pickling. ``state`` is typically the output of the + ``__getstate__`` output, and is a 5-tuple: + + - class name + - a tuple giving the shape of the data + - a typecode for the data + - a binary string for the data + - a binary string for the mask. + + """ + (ver, shp, typ, isf, raw, msk, flv) = state + ndarray.__setstate__(self, (shp, typ, isf, raw)) + mdtype = dtype([(k, bool_) for (k, _) in self.dtype.descr]) + self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk)) + self.fill_value = flv + + def __reduce__(self): + """ + Return a 3-tuple for pickling a MaskedArray. + + """ + return (_mrreconstruct, + (self.__class__, self._baseclass, (0,), 'b',), + self.__getstate__()) + + +def _mrreconstruct(subtype, baseclass, baseshape, basetype,): + """ + Build a new MaskedArray from the information stored in a pickle. + + """ + _data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype) + _mask = ndarray.__new__(ndarray, baseshape, 'b1') + return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) + +mrecarray = MaskedRecords + + +############################################################################### +# Constructors # +############################################################################### + + +def fromarrays(arraylist, dtype=None, shape=None, formats=None, + names=None, titles=None, aligned=False, byteorder=None, + fill_value=None): + """ + Creates a mrecarray from a (flat) list of masked arrays. + + Parameters + ---------- + arraylist : sequence + A list of (masked) arrays. Each element of the sequence is first converted + to a masked array if needed. If a 2D array is passed as argument, it is + processed line by line + dtype : {None, dtype}, optional + Data type descriptor. + shape : {None, integer}, optional + Number of records. If None, shape is defined from the shape of the + first array in the list. + formats : {None, sequence}, optional + Sequence of formats for each individual field. If None, the formats will + be autodetected by inspecting the fields and selecting the highest dtype + possible. + names : {None, sequence}, optional + Sequence of the names of each field. + fill_value : {None, sequence}, optional + Sequence of data to be used as filling values. + + Notes + ----- + Lists of tuples should be preferred over lists of lists for faster processing. + + """ + datalist = [getdata(x) for x in arraylist] + masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] + _array = recfromarrays(datalist, + dtype=dtype, shape=shape, formats=formats, + names=names, titles=titles, aligned=aligned, + byteorder=byteorder).view(mrecarray) + _array._mask.flat = list(zip(*masklist)) + if fill_value is not None: + _array.fill_value = fill_value + return _array + + +def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None, + titles=None, aligned=False, byteorder=None, + fill_value=None, mask=nomask): + """ + Creates a MaskedRecords from a list of records. + + Parameters + ---------- + reclist : sequence + A list of records. Each element of the sequence is first converted + to a masked array if needed. If a 2D array is passed as argument, it is + processed line by line + dtype : {None, dtype}, optional + Data type descriptor. + shape : {None,int}, optional + Number of records. If None, ``shape`` is defined from the shape of the + first array in the list. + formats : {None, sequence}, optional + Sequence of formats for each individual field. If None, the formats will + be autodetected by inspecting the fields and selecting the highest dtype + possible. + names : {None, sequence}, optional + Sequence of the names of each field. + fill_value : {None, sequence}, optional + Sequence of data to be used as filling values. + mask : {nomask, sequence}, optional. + External mask to apply on the data. + + Notes + ----- + Lists of tuples should be preferred over lists of lists for faster processing. + + """ + # Grab the initial _fieldmask, if needed: + _mask = getattr(reclist, '_mask', None) + # Get the list of records. + if isinstance(reclist, ndarray): + # Make sure we don't have some hidden mask + if isinstance(reclist, MaskedArray): + reclist = reclist.filled().view(ndarray) + # Grab the initial dtype, just in case + if dtype is None: + dtype = reclist.dtype + reclist = reclist.tolist() + mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats, + names=names, titles=titles, + aligned=aligned, byteorder=byteorder).view(mrecarray) + # Set the fill_value if needed + if fill_value is not None: + mrec.fill_value = fill_value + # Now, let's deal w/ the mask + if mask is not nomask: + mask = np.array(mask, copy=False) + maskrecordlength = len(mask.dtype) + if maskrecordlength: + mrec._mask.flat = mask + elif mask.ndim == 2: + mrec._mask.flat = [tuple(m) for m in mask] + else: + mrec.__setmask__(mask) + if _mask is not None: + mrec._mask[:] = _mask + return mrec + + +def _guessvartypes(arr): + """ + Tries to guess the dtypes of the str_ ndarray `arr`. + + Guesses by testing element-wise conversion. Returns a list of dtypes. + The array is first converted to ndarray. If the array is 2D, the test + is performed on the first line. An exception is raised if the file is + 3D or more. + + """ + vartypes = [] + arr = np.asarray(arr) + if arr.ndim == 2: + arr = arr[0] + elif arr.ndim > 2: + raise ValueError("The array should be 2D at most!") + # Start the conversion loop. + for f in arr: + try: + int(f) + except (ValueError, TypeError): + try: + float(f) + except (ValueError, TypeError): + try: + complex(f) + except (ValueError, TypeError): + vartypes.append(arr.dtype) + else: + vartypes.append(np.dtype(complex)) + else: + vartypes.append(np.dtype(float)) + else: + vartypes.append(np.dtype(int)) + return vartypes + + +def openfile(fname): + """ + Opens the file handle of file `fname`. + + """ + # A file handle + if hasattr(fname, 'readline'): + return fname + # Try to open the file and guess its type + try: + f = open(fname) + except FileNotFoundError as e: + raise FileNotFoundError(f"No such file: '{fname}'") from e + if f.readline()[:2] != "\\x": + f.seek(0, 0) + return f + f.close() + raise NotImplementedError("Wow, binary file") + + +def fromtextfile(fname, delimiter=None, commentchar='#', missingchar='', + varnames=None, vartypes=None, + *, delimitor=np._NoValue): # backwards compatibility + """ + Creates a mrecarray from data stored in the file `filename`. + + Parameters + ---------- + fname : {file name/handle} + Handle of an opened file. + delimiter : {None, string}, optional + Alphanumeric character used to separate columns in the file. + If None, any (group of) white spacestring(s) will be used. + commentchar : {'#', string}, optional + Alphanumeric character used to mark the start of a comment. + missingchar : {'', string}, optional + String indicating missing data, and used to create the masks. + varnames : {None, sequence}, optional + Sequence of the variable names. If None, a list will be created from + the first non empty line of the file. + vartypes : {None, sequence}, optional + Sequence of the variables dtypes. If None, it will be estimated from + the first non-commented line. + + + Ultra simple: the varnames are in the header, one line""" + if delimitor is not np._NoValue: + if delimiter is not None: + raise TypeError("fromtextfile() got multiple values for argument " + "'delimiter'") + # NumPy 1.22.0, 2021-09-23 + warnings.warn("The 'delimitor' keyword argument of " + "numpy.ma.mrecords.fromtextfile() is deprecated " + "since NumPy 1.22.0, use 'delimiter' instead.", + DeprecationWarning, stacklevel=2) + delimiter = delimitor + + # Try to open the file. + ftext = openfile(fname) + + # Get the first non-empty line as the varnames + while True: + line = ftext.readline() + firstline = line[:line.find(commentchar)].strip() + _varnames = firstline.split(delimiter) + if len(_varnames) > 1: + break + if varnames is None: + varnames = _varnames + + # Get the data. + _variables = masked_array([line.strip().split(delimiter) for line in ftext + if line[0] != commentchar and len(line) > 1]) + (_, nfields) = _variables.shape + ftext.close() + + # Try to guess the dtype. + if vartypes is None: + vartypes = _guessvartypes(_variables[0]) + else: + vartypes = [np.dtype(v) for v in vartypes] + if len(vartypes) != nfields: + msg = "Attempting to %i dtypes for %i fields!" + msg += " Reverting to default." + warnings.warn(msg % (len(vartypes), nfields), stacklevel=2) + vartypes = _guessvartypes(_variables[0]) + + # Construct the descriptor. + mdescr = [(n, f) for (n, f) in zip(varnames, vartypes)] + mfillv = [ma.default_fill_value(f) for f in vartypes] + + # Get the data and the mask. + # We just need a list of masked_arrays. It's easier to create it like that: + _mask = (_variables.T == missingchar) + _datalist = [masked_array(a, mask=m, dtype=t, fill_value=f) + for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)] + + return fromarrays(_datalist, dtype=mdescr) + + +def addfield(mrecord, newfield, newfieldname=None): + """Adds a new field to the masked record array + + Uses `newfield` as data and `newfieldname` as name. If `newfieldname` + is None, the new field name is set to 'fi', where `i` is the number of + existing fields. + + """ + _data = mrecord._data + _mask = mrecord._mask + if newfieldname is None or newfieldname in reserved_fields: + newfieldname = 'f%i' % len(_data.dtype) + newfield = ma.array(newfield) + # Get the new data. + # Create a new empty recarray + newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) + newdata = recarray(_data.shape, newdtype) + # Add the existing field + [newdata.setfield(_data.getfield(*f), *f) + for f in _data.dtype.fields.values()] + # Add the new field + newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) + newdata = newdata.view(MaskedRecords) + # Get the new mask + # Create a new empty recarray + newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) + newmask = recarray(_data.shape, newmdtype) + # Add the old masks + [newmask.setfield(_mask.getfield(*f), *f) + for f in _mask.dtype.fields.values()] + # Add the mask of the new field + newmask.setfield(getmaskarray(newfield), + *newmask.dtype.fields[newfieldname]) + newdata._mask = newmask + return newdata diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.pyi b/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.pyi new file mode 100644 index 0000000000000000000000000000000000000000..264807e05d57e03e2f8b71d2db2677d8a68ab17e --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/mrecords.pyi @@ -0,0 +1,90 @@ +from typing import Any, TypeVar + +from numpy import dtype +from numpy.ma import MaskedArray + +__all__: list[str] + +# TODO: Set the `bound` to something more suitable once we +# have proper shape support +_ShapeType = TypeVar("_ShapeType", bound=Any) +_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True) + +class MaskedRecords(MaskedArray[_ShapeType, _DType_co]): + def __new__( + cls, + shape, + dtype=..., + buf=..., + offset=..., + strides=..., + formats=..., + names=..., + titles=..., + byteorder=..., + aligned=..., + mask=..., + hard_mask=..., + fill_value=..., + keep_mask=..., + copy=..., + **options, + ): ... + _mask: Any + _fill_value: Any + @property + def _data(self): ... + @property + def _fieldmask(self): ... + def __array_finalize__(self, obj): ... + def __len__(self): ... + def __getattribute__(self, attr): ... + def __setattr__(self, attr, val): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + def view(self, dtype=..., type=...): ... + def harden_mask(self): ... + def soften_mask(self): ... + def copy(self): ... + def tolist(self, fill_value=...): ... + def __reduce__(self): ... + +mrecarray = MaskedRecords + +def fromarrays( + arraylist, + dtype=..., + shape=..., + formats=..., + names=..., + titles=..., + aligned=..., + byteorder=..., + fill_value=..., +): ... + +def fromrecords( + reclist, + dtype=..., + shape=..., + formats=..., + names=..., + titles=..., + aligned=..., + byteorder=..., + fill_value=..., + mask=..., +): ... + +def fromtextfile( + fname, + delimiter=..., + commentchar=..., + missingchar=..., + varnames=..., + vartypes=..., + # NOTE: deprecated: NumPy 1.22.0, 2021-09-23 + # delimitor=..., +): ... + +def addfield(mrecord, newfield, newfieldname=...): ... diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/setup.py b/.venv/lib/python3.11/site-packages/numpy/ma/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..018d38cdd5003103adec60cbfd844f49ca18c932 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/setup.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python3 +def configuration(parent_package='',top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration('ma', parent_package, top_path) + config.add_subpackage('tests') + config.add_data_files('*.pyi') + return config + +if __name__ == "__main__": + from numpy.distutils.core import setup + config = configuration(top_path='').todict() + setup(**config) diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/tests/test_old_ma.py b/.venv/lib/python3.11/site-packages/numpy/ma/tests/test_old_ma.py new file mode 100644 index 0000000000000000000000000000000000000000..7b892ad2375f707a6732d6913fe352adef547589 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/tests/test_old_ma.py @@ -0,0 +1,874 @@ +from functools import reduce + +import pytest + +import numpy as np +import numpy.core.umath as umath +import numpy.core.fromnumeric as fromnumeric +from numpy.testing import ( + assert_, assert_raises, assert_equal, + ) +from numpy.ma import ( + MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue, + arange, arccos, arcsin, arctan, arctan2, array, average, choose, + concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled, + getmask, greater, greater_equal, inner, isMaskedArray, less, + less_equal, log, log10, make_mask, masked, masked_array, masked_equal, + masked_greater, masked_greater_equal, masked_inside, masked_less, + masked_less_equal, masked_not_equal, masked_outside, + masked_print_option, masked_values, masked_where, maximum, minimum, + multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel, + repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, + take, tan, tanh, transpose, where, zeros, + ) +from numpy.compat import pickle + +pi = np.pi + + +def eq(v, w, msg=''): + result = allclose(v, w) + if not result: + print(f'Not eq:{msg}\n{v}\n----{w}') + return result + + +class TestMa: + + def setup_method(self): + x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + a10 = 10. + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = array(x, mask=m1) + ym = array(y, mask=m2) + z = np.array([-.5, 0., .5, .8]) + zm = array(z, mask=[0, 1, 0, 0]) + xf = np.where(m1, 1e+20, x) + s = x.shape + xm.set_fill_value(1e+20) + self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) + + def test_testBasic1d(self): + # Test of basic array creation and properties in 1 dimension. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + assert_(not isMaskedArray(x)) + assert_(isMaskedArray(xm)) + assert_equal(shape(xm), s) + assert_equal(xm.shape, s) + assert_equal(xm.dtype, x.dtype) + assert_equal(xm.size, reduce(lambda x, y:x * y, s)) + assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) + assert_(eq(xm, xf)) + assert_(eq(filled(xm, 1.e20), xf)) + assert_(eq(x, xm)) + + @pytest.mark.parametrize("s", [(4, 3), (6, 2)]) + def test_testBasic2d(self, s): + # Test of basic array creation and properties in 2 dimensions. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + x.shape = s + y.shape = s + xm.shape = s + ym.shape = s + xf.shape = s + + assert_(not isMaskedArray(x)) + assert_(isMaskedArray(xm)) + assert_equal(shape(xm), s) + assert_equal(xm.shape, s) + assert_equal(xm.size, reduce(lambda x, y: x * y, s)) + assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1)) + assert_(eq(xm, xf)) + assert_(eq(filled(xm, 1.e20), xf)) + assert_(eq(x, xm)) + + def test_testArithmetic(self): + # Test of basic arithmetic. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + a2d = array([[1, 2], [0, 4]]) + a2dm = masked_array(a2d, [[0, 0], [1, 0]]) + assert_(eq(a2d * a2d, a2d * a2dm)) + assert_(eq(a2d + a2d, a2d + a2dm)) + assert_(eq(a2d - a2d, a2d - a2dm)) + for s in [(12,), (4, 3), (2, 6)]: + x = x.reshape(s) + y = y.reshape(s) + xm = xm.reshape(s) + ym = ym.reshape(s) + xf = xf.reshape(s) + assert_(eq(-x, -xm)) + assert_(eq(x + y, xm + ym)) + assert_(eq(x - y, xm - ym)) + assert_(eq(x * y, xm * ym)) + with np.errstate(divide='ignore', invalid='ignore'): + assert_(eq(x / y, xm / ym)) + assert_(eq(a10 + y, a10 + ym)) + assert_(eq(a10 - y, a10 - ym)) + assert_(eq(a10 * y, a10 * ym)) + with np.errstate(divide='ignore', invalid='ignore'): + assert_(eq(a10 / y, a10 / ym)) + assert_(eq(x + a10, xm + a10)) + assert_(eq(x - a10, xm - a10)) + assert_(eq(x * a10, xm * a10)) + assert_(eq(x / a10, xm / a10)) + assert_(eq(x ** 2, xm ** 2)) + assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5)) + assert_(eq(x ** y, xm ** ym)) + assert_(eq(np.add(x, y), add(xm, ym))) + assert_(eq(np.subtract(x, y), subtract(xm, ym))) + assert_(eq(np.multiply(x, y), multiply(xm, ym))) + with np.errstate(divide='ignore', invalid='ignore'): + assert_(eq(np.divide(x, y), divide(xm, ym))) + + def test_testMixedArithmetic(self): + na = np.array([1]) + ma = array([1]) + assert_(isinstance(na + ma, MaskedArray)) + assert_(isinstance(ma + na, MaskedArray)) + + def test_testUfuncs1(self): + # Test various functions such as sin, cos. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + assert_(eq(np.cos(x), cos(xm))) + assert_(eq(np.cosh(x), cosh(xm))) + assert_(eq(np.sin(x), sin(xm))) + assert_(eq(np.sinh(x), sinh(xm))) + assert_(eq(np.tan(x), tan(xm))) + assert_(eq(np.tanh(x), tanh(xm))) + with np.errstate(divide='ignore', invalid='ignore'): + assert_(eq(np.sqrt(abs(x)), sqrt(xm))) + assert_(eq(np.log(abs(x)), log(xm))) + assert_(eq(np.log10(abs(x)), log10(xm))) + assert_(eq(np.exp(x), exp(xm))) + assert_(eq(np.arcsin(z), arcsin(zm))) + assert_(eq(np.arccos(z), arccos(zm))) + assert_(eq(np.arctan(z), arctan(zm))) + assert_(eq(np.arctan2(x, y), arctan2(xm, ym))) + assert_(eq(np.absolute(x), absolute(xm))) + assert_(eq(np.equal(x, y), equal(xm, ym))) + assert_(eq(np.not_equal(x, y), not_equal(xm, ym))) + assert_(eq(np.less(x, y), less(xm, ym))) + assert_(eq(np.greater(x, y), greater(xm, ym))) + assert_(eq(np.less_equal(x, y), less_equal(xm, ym))) + assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym))) + assert_(eq(np.conjugate(x), conjugate(xm))) + assert_(eq(np.concatenate((x, y)), concatenate((xm, ym)))) + assert_(eq(np.concatenate((x, y)), concatenate((x, y)))) + assert_(eq(np.concatenate((x, y)), concatenate((xm, y)))) + assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) + + def test_xtestCount(self): + # Test count + ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + assert_(count(ott).dtype.type is np.intp) + assert_equal(3, count(ott)) + assert_equal(1, count(1)) + assert_(eq(0, array(1, mask=[1]))) + ott = ott.reshape((2, 2)) + assert_(count(ott).dtype.type is np.intp) + assert_(isinstance(count(ott, 0), np.ndarray)) + assert_(count(ott).dtype.type is np.intp) + assert_(eq(3, count(ott))) + assert_(getmask(count(ott, 0)) is nomask) + assert_(eq([1, 2], count(ott, 0))) + + def test_testMinMax(self): + # Test minimum and maximum. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + xr = np.ravel(x) # max doesn't work if shaped + xmr = ravel(xm) + + # true because of careful selection of data + assert_(eq(max(xr), maximum.reduce(xmr))) + assert_(eq(min(xr), minimum.reduce(xmr))) + + def test_testAddSumProd(self): + # Test add, sum, product. + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + assert_(eq(np.add.reduce(x), add.reduce(x))) + assert_(eq(np.add.accumulate(x), add.accumulate(x))) + assert_(eq(4, sum(array(4), axis=0))) + assert_(eq(4, sum(array(4), axis=0))) + assert_(eq(np.sum(x, axis=0), sum(x, axis=0))) + assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))) + assert_(eq(np.sum(x, 0), sum(x, 0))) + assert_(eq(np.prod(x, axis=0), product(x, axis=0))) + assert_(eq(np.prod(x, 0), product(x, 0))) + assert_(eq(np.prod(filled(xm, 1), axis=0), + product(xm, axis=0))) + if len(s) > 1: + assert_(eq(np.concatenate((x, y), 1), + concatenate((xm, ym), 1))) + assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1))) + assert_(eq(np.sum(x, 1), sum(x, 1))) + assert_(eq(np.prod(x, 1), product(x, 1))) + + def test_testCI(self): + # Test of conversions and indexing + x1 = np.array([1, 2, 4, 3]) + x2 = array(x1, mask=[1, 0, 0, 0]) + x3 = array(x1, mask=[0, 1, 0, 1]) + x4 = array(x1) + # test conversion to strings + str(x2) # raises? + repr(x2) # raises? + assert_(eq(np.sort(x1), sort(x2, fill_value=0))) + # tests of indexing + assert_(type(x2[1]) is type(x1[1])) + assert_(x1[1] == x2[1]) + assert_(x2[0] is masked) + assert_(eq(x1[2], x2[2])) + assert_(eq(x1[2:5], x2[2:5])) + assert_(eq(x1[:], x2[:])) + assert_(eq(x1[1:], x3[1:])) + x1[2] = 9 + x2[2] = 9 + assert_(eq(x1, x2)) + x1[1:3] = 99 + x2[1:3] = 99 + assert_(eq(x1, x2)) + x2[1] = masked + assert_(eq(x1, x2)) + x2[1:3] = masked + assert_(eq(x1, x2)) + x2[:] = x1 + x2[1] = masked + assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) + x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) + x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) + assert_(allequal(x4, array([1, 2, 3, 4]))) + x1 = np.arange(5) * 1.0 + x2 = masked_values(x1, 3.0) + assert_(eq(x1, x2)) + assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) + assert_(eq(3.0, x2.fill_value)) + x1 = array([1, 'hello', 2, 3], object) + x2 = np.array([1, 'hello', 2, 3], object) + s1 = x1[1] + s2 = x2[1] + assert_equal(type(s2), str) + assert_equal(type(s1), str) + assert_equal(s1, s2) + assert_(x1[1:1].shape == (0,)) + + def test_testCopySize(self): + # Tests of some subtle points of copying and sizing. + n = [0, 0, 1, 0, 0] + m = make_mask(n) + m2 = make_mask(m) + assert_(m is m2) + m3 = make_mask(m, copy=True) + assert_(m is not m3) + + x1 = np.arange(5) + y1 = array(x1, mask=m) + assert_(y1._data is not x1) + assert_(allequal(x1, y1._data)) + assert_(y1._mask is m) + + y1a = array(y1, copy=0) + # For copy=False, one might expect that the array would just + # passed on, i.e., that it would be "is" instead of "==". + # See gh-4043 for discussion. + assert_(y1a._mask.__array_interface__ == + y1._mask.__array_interface__) + + y2 = array(x1, mask=m3, copy=0) + assert_(y2._mask is m3) + assert_(y2[2] is masked) + y2[2] = 9 + assert_(y2[2] is not masked) + assert_(y2._mask is m3) + assert_(allequal(y2.mask, 0)) + + y2a = array(x1, mask=m, copy=1) + assert_(y2a._mask is not m) + assert_(y2a[2] is masked) + y2a[2] = 9 + assert_(y2a[2] is not masked) + assert_(y2a._mask is not m) + assert_(allequal(y2a.mask, 0)) + + y3 = array(x1 * 1.0, mask=m) + assert_(filled(y3).dtype is (x1 * 1.0).dtype) + + x4 = arange(4) + x4[2] = masked + y4 = resize(x4, (8,)) + assert_(eq(concatenate([x4, x4]), y4)) + assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])) + y5 = repeat(x4, (2, 2, 2, 2), axis=0) + assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3])) + y6 = repeat(x4, 2, axis=0) + assert_(eq(y5, y6)) + + def test_testPut(self): + # Test of put + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + m2 = m.copy() + x = array(d, mask=m) + assert_(x[3] is masked) + assert_(x[4] is masked) + x[[1, 4]] = [10, 40] + assert_(x._mask is m) + assert_(x[3] is masked) + assert_(x[4] is not masked) + assert_(eq(x, [0, 10, 2, -1, 40])) + + x = array(d, mask=m2, copy=True) + x.put([0, 1, 2], [-1, 100, 200]) + assert_(x._mask is not m2) + assert_(x[3] is masked) + assert_(x[4] is masked) + assert_(eq(x, [-1, 100, 200, 0, 0])) + + def test_testPut2(self): + # Test of put + d = arange(5) + x = array(d, mask=[0, 0, 0, 0, 0]) + z = array([10, 40], mask=[1, 0]) + assert_(x[2] is not masked) + assert_(x[3] is not masked) + x[2:4] = z + assert_(x[2] is masked) + assert_(x[3] is not masked) + assert_(eq(x, [0, 1, 10, 40, 4])) + + d = arange(5) + x = array(d, mask=[0, 0, 0, 0, 0]) + y = x[2:4] + z = array([10, 40], mask=[1, 0]) + assert_(x[2] is not masked) + assert_(x[3] is not masked) + y[:] = z + assert_(y[0] is masked) + assert_(y[1] is not masked) + assert_(eq(y, [10, 40])) + assert_(x[2] is masked) + assert_(x[3] is not masked) + assert_(eq(x, [0, 1, 10, 40, 4])) + + def test_testMaPut(self): + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] + i = np.nonzero(m)[0] + put(ym, i, zm) + assert_(all(take(ym, i, axis=0) == zm)) + + def test_testOddFeatures(self): + # Test of other odd features + x = arange(20) + x = x.reshape(4, 5) + x.flat[5] = 12 + assert_(x[1, 0] == 12) + z = x + 10j * x + assert_(eq(z.real, x)) + assert_(eq(z.imag, 10 * x)) + assert_(eq((z * conjugate(z)).real, 101 * x * x)) + z.imag[...] = 0.0 + + x = arange(10) + x[3] = masked + assert_(str(x[3]) == str(masked)) + c = x >= 8 + assert_(count(where(c, masked, masked)) == 0) + assert_(shape(where(c, masked, masked)) == c.shape) + z = where(c, x, masked) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is masked) + assert_(z[7] is masked) + assert_(z[8] is not masked) + assert_(z[9] is not masked) + assert_(eq(x, z)) + z = where(c, masked, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + z = masked_where(c, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + assert_(eq(x, z)) + x = array([1., 2., 3., 4., 5.]) + c = array([1, 1, 1, 0, 0]) + x[2] = masked + z = where(c, x, -x) + assert_(eq(z, [1., 2., 0., -4., -5])) + c[0] = masked + z = where(c, x, -x) + assert_(eq(z, [1., 2., 0., -4., -5])) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2))) + assert_(eq(masked_where(greater_equal(x, 2), x), + masked_greater_equal(x, 2))) + assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2))) + assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2))) + assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) + assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2))) + assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) + assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4])) + assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])) + assert_(eq(masked_inside(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 1, 3).mask, + [1, 1, 1, 1, 0])) + assert_(eq(masked_outside(array(list(range(5)), + mask=[0, 1, 0, 0, 0]), 1, 3).mask, + [1, 1, 0, 0, 1])) + assert_(eq(masked_equal(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 0])) + assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1], + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 1])) + assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), + [99, 99, 3, 4, 5])) + atest = ones((10, 10, 10), dtype=np.float32) + btest = zeros(atest.shape, MaskType) + ctest = masked_where(btest, atest) + assert_(eq(atest, ctest)) + z = choose(c, (-x, x)) + assert_(eq(z, [1., 2., 0., -4., -5])) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + x = arange(6) + x[5] = masked + y = arange(6) * 10 + y[2] = masked + c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0]) + cm = c.filled(1) + z = where(c, x, y) + zm = where(cm, x, y) + assert_(eq(z, zm)) + assert_(getmask(zm) is nomask) + assert_(eq(zm, [0, 1, 2, 30, 40, 50])) + z = where(c, masked, 1) + assert_(eq(z, [99, 99, 99, 1, 1, 1])) + z = where(c, 1, masked) + assert_(eq(z, [99, 1, 1, 99, 99, 99])) + + def test_testMinMax2(self): + # Test of minimum, maximum. + assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])) + assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])) + x = arange(5) + y = arange(5) - 2 + x[3] = masked + y[0] = masked + assert_(eq(minimum(x, y), where(less(x, y), x, y))) + assert_(eq(maximum(x, y), where(greater(x, y), x, y))) + assert_(minimum.reduce(x) == 0) + assert_(maximum.reduce(x) == 4) + + def test_testTakeTransposeInnerOuter(self): + # Test of take, transpose, inner, outer products + x = arange(24) + y = np.arange(24) + x[5:6] = masked + x = x.reshape(2, 3, 4) + y = y.reshape(2, 3, 4) + assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))) + assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))) + assert_(eq(np.inner(filled(x, 0), filled(y, 0)), + inner(x, y))) + assert_(eq(np.outer(filled(x, 0), filled(y, 0)), + outer(x, y))) + y = array(['abc', 1, 'def', 2, 3], object) + y[2] = masked + t = take(y, [0, 3, 4]) + assert_(t[0] == 'abc') + assert_(t[1] == 2) + assert_(t[2] == 3) + + def test_testInplace(self): + # Test of inplace operations and rich comparisons + y = arange(10) + + x = arange(10) + xm = arange(10) + xm[2] = masked + x += 1 + assert_(eq(x, y + 1)) + xm += 1 + assert_(eq(x, y + 1)) + + x = arange(10) + xm = arange(10) + xm[2] = masked + x -= 1 + assert_(eq(x, y - 1)) + xm -= 1 + assert_(eq(xm, y - 1)) + + x = arange(10) * 1.0 + xm = arange(10) * 1.0 + xm[2] = masked + x *= 2.0 + assert_(eq(x, y * 2)) + xm *= 2.0 + assert_(eq(xm, y * 2)) + + x = arange(10) * 2 + xm = arange(10) + xm[2] = masked + x //= 2 + assert_(eq(x, y)) + xm //= 2 + assert_(eq(x, y)) + + x = arange(10) * 1.0 + xm = arange(10) * 1.0 + xm[2] = masked + x /= 2.0 + assert_(eq(x, y / 2.0)) + xm /= arange(10) + assert_(eq(xm, ones((10,)))) + + x = arange(10).astype(np.float32) + xm = arange(10) + xm[2] = masked + x += 1. + assert_(eq(x, y + 1.)) + + def test_testPickle(self): + # Test of pickling + x = arange(12) + x[4:10:2] = masked + x = x.reshape(4, 3) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + s = pickle.dumps(x, protocol=proto) + y = pickle.loads(s) + assert_(eq(x, y)) + + def test_testMasked(self): + # Test of masked element + xx = arange(6) + xx[1] = masked + assert_(str(masked) == '--') + assert_(xx[1] is masked) + assert_equal(filled(xx[1], 0), 0) + + def test_testAverage1(self): + # Test of average. + ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + assert_(eq(2.0, average(ott, axis=0))) + assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.]))) + result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) + assert_(eq(2.0, result)) + assert_(wts == 4.0) + ott[:] = masked + assert_(average(ott, axis=0) is masked) + ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + ott = ott.reshape(2, 2) + ott[:, 1] = masked + assert_(eq(average(ott, axis=0), [2.0, 0.0])) + assert_(average(ott, axis=1)[0] is masked) + assert_(eq([2., 0.], average(ott, axis=0))) + result, wts = average(ott, axis=0, returned=True) + assert_(eq(wts, [1., 0.])) + + def test_testAverage2(self): + # More tests of average. + w1 = [0, 1, 1, 1, 1, 0] + w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] + x = arange(6) + assert_(allclose(average(x, axis=0), 2.5)) + assert_(allclose(average(x, axis=0, weights=w1), 2.5)) + y = array([arange(6), 2.0 * arange(6)]) + assert_(allclose(average(y, None), + np.add.reduce(np.arange(6)) * 3. / 12.)) + assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.)) + assert_(allclose(average(y, axis=1), + [average(x, axis=0), average(x, axis=0)*2.0])) + assert_(allclose(average(y, None, weights=w2), 20. / 6.)) + assert_(allclose(average(y, axis=0, weights=w2), + [0., 1., 2., 3., 4., 10.])) + assert_(allclose(average(y, axis=1), + [average(x, axis=0), average(x, axis=0)*2.0])) + m1 = zeros(6) + m2 = [0, 0, 1, 1, 0, 0] + m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] + m4 = ones(6) + m5 = [0, 1, 1, 1, 1, 1] + assert_(allclose(average(masked_array(x, m1), axis=0), 2.5)) + assert_(allclose(average(masked_array(x, m2), axis=0), 2.5)) + assert_(average(masked_array(x, m4), axis=0) is masked) + assert_equal(average(masked_array(x, m5), axis=0), 0.0) + assert_equal(count(average(masked_array(x, m4), axis=0)), 0) + z = masked_array(y, m3) + assert_(allclose(average(z, None), 20. / 6.)) + assert_(allclose(average(z, axis=0), + [0., 1., 99., 99., 4.0, 7.5])) + assert_(allclose(average(z, axis=1), [2.5, 5.0])) + assert_(allclose(average(z, axis=0, weights=w2), + [0., 1., 99., 99., 4.0, 10.0])) + + a = arange(6) + b = arange(6) * 3 + r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) + assert_equal(shape(r1), shape(w1)) + assert_equal(r1.shape, w1.shape) + r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) + assert_(shape(w2) == shape(r2)) + a2d = array([[1, 2], [0, 4]], float) + a2dm = masked_array(a2d, [[0, 0], [1, 0]]) + a2da = average(a2d, axis=0) + assert_(eq(a2da, [0.5, 3.0])) + a2dma = average(a2dm, axis=0) + assert_(eq(a2dma, [1.0, 3.0])) + a2dma = average(a2dm, axis=None) + assert_(eq(a2dma, 7. / 3.)) + a2dma = average(a2dm, axis=1) + assert_(eq(a2dma, [1.5, 4.0])) + + def test_testToPython(self): + assert_equal(1, int(array(1))) + assert_equal(1.0, float(array(1))) + assert_equal(1, int(array([[[1]]]))) + assert_equal(1.0, float(array([[1]]))) + assert_raises(TypeError, float, array([1, 1])) + assert_raises(ValueError, bool, array([0, 1])) + assert_raises(ValueError, bool, array([0, 0], mask=[0, 1])) + + def test_testScalarArithmetic(self): + xm = array(0, mask=1) + #TODO FIXME: Find out what the following raises a warning in r8247 + with np.errstate(divide='ignore'): + assert_((1 / array(0)).mask) + assert_((1 + xm).mask) + assert_((-xm).mask) + assert_((-xm).mask) + assert_(maximum(xm, xm).mask) + assert_(minimum(xm, xm).mask) + assert_(xm.filled().dtype is xm._data.dtype) + x = array(0, mask=0) + assert_(x.filled() == x._data) + assert_equal(str(xm), str(masked_print_option)) + + def test_testArrayMethods(self): + a = array([1, 3, 2]) + assert_(eq(a.any(), a._data.any())) + assert_(eq(a.all(), a._data.all())) + assert_(eq(a.argmax(), a._data.argmax())) + assert_(eq(a.argmin(), a._data.argmin())) + assert_(eq(a.choose(0, 1, 2, 3, 4), + a._data.choose(0, 1, 2, 3, 4))) + assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) + assert_(eq(a.conj(), a._data.conj())) + assert_(eq(a.conjugate(), a._data.conjugate())) + m = array([[1, 2], [3, 4]]) + assert_(eq(m.diagonal(), m._data.diagonal())) + assert_(eq(a.sum(), a._data.sum())) + assert_(eq(a.take([1, 2]), a._data.take([1, 2]))) + assert_(eq(m.transpose(), m._data.transpose())) + + def test_testArrayAttributes(self): + a = array([1, 3, 2]) + assert_equal(a.ndim, 1) + + def test_testAPI(self): + assert_(not [m for m in dir(np.ndarray) + if m not in dir(MaskedArray) and + not m.startswith('_')]) + + def test_testSingleElementSubscript(self): + a = array([1, 3, 2]) + b = array([1, 3, 2], mask=[1, 0, 1]) + assert_equal(a[0].shape, ()) + assert_equal(b[0].shape, ()) + assert_equal(b[1].shape, ()) + + def test_assignment_by_condition(self): + # Test for gh-18951 + a = array([1, 2, 3, 4], mask=[1, 0, 1, 0]) + c = a >= 3 + a[c] = 5 + assert_(a[2] is masked) + + def test_assignment_by_condition_2(self): + # gh-19721 + a = masked_array([0, 1], mask=[False, False]) + b = masked_array([0, 1], mask=[True, True]) + mask = a < 1 + b[mask] = a[mask] + expected_mask = [False, True] + assert_equal(b.mask, expected_mask) + + +class TestUfuncs: + def setup_method(self): + self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), + array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) + + def test_testUfuncRegression(self): + f_invalid_ignore = [ + 'sqrt', 'arctanh', 'arcsin', 'arccos', + 'arccosh', 'arctanh', 'log', 'log10', 'divide', + 'true_divide', 'floor_divide', 'remainder', 'fmod'] + for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', + 'sin', 'cos', 'tan', + 'arcsin', 'arccos', 'arctan', + 'sinh', 'cosh', 'tanh', + 'arcsinh', + 'arccosh', + 'arctanh', + 'absolute', 'fabs', 'negative', + 'floor', 'ceil', + 'logical_not', + 'add', 'subtract', 'multiply', + 'divide', 'true_divide', 'floor_divide', + 'remainder', 'fmod', 'hypot', 'arctan2', + 'equal', 'not_equal', 'less_equal', 'greater_equal', + 'less', 'greater', + 'logical_and', 'logical_or', 'logical_xor']: + try: + uf = getattr(umath, f) + except AttributeError: + uf = getattr(fromnumeric, f) + mf = getattr(np.ma, f) + args = self.d[:uf.nin] + with np.errstate(): + if f in f_invalid_ignore: + np.seterr(invalid='ignore') + if f in ['arctanh', 'log', 'log10']: + np.seterr(divide='ignore') + ur = uf(*args) + mr = mf(*args) + assert_(eq(ur.filled(0), mr.filled(0), f)) + assert_(eqmask(ur.mask, mr.mask)) + + def test_reduce(self): + a = self.d[0] + assert_(not alltrue(a, axis=0)) + assert_(sometrue(a, axis=0)) + assert_equal(sum(a[:3], axis=0), 0) + assert_equal(product(a, axis=0), 0) + + def test_minmax(self): + a = arange(1, 13).reshape(3, 4) + amask = masked_where(a < 5, a) + assert_equal(amask.max(), a.max()) + assert_equal(amask.min(), 5) + assert_((amask.max(0) == a.max(0)).all()) + assert_((amask.min(0) == [5, 6, 7, 8]).all()) + assert_(amask.max(1)[0].mask) + assert_(amask.min(1)[0].mask) + + def test_nonzero(self): + for t in "?bhilqpBHILQPfdgFDGO": + x = array([1, 0, 2, 0], mask=[0, 0, 1, 1]) + assert_(eq(nonzero(x), [0])) + + +class TestArrayMethods: + + def setup_method(self): + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + X = x.reshape(6, 6) + XX = x.reshape(3, 2, 2, 3) + + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x, mask=m) + mX = array(data=X, mask=m.reshape(X.shape)) + mXX = array(data=XX, mask=m.reshape(XX.shape)) + + self.d = (x, X, XX, m, mx, mX, mXX) + + def test_trace(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXdiag = mX.diagonal() + assert_equal(mX.trace(), mX.diagonal().compressed().sum()) + assert_(eq(mX.trace(), + X.trace() - sum(mXdiag.mask * X.diagonal(), + axis=0))) + + def test_clip(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + clipped = mx.clip(2, 8) + assert_(eq(clipped.mask, mx.mask)) + assert_(eq(clipped._data, x.clip(2, 8))) + assert_(eq(clipped._data, mx._data.clip(2, 8))) + + def test_ptp(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + (n, m) = X.shape + assert_equal(mx.ptp(), mx.compressed().ptp()) + rows = np.zeros(n, np.float_) + cols = np.zeros(m, np.float_) + for k in range(m): + cols[k] = mX[:, k].compressed().ptp() + for k in range(n): + rows[k] = mX[k].compressed().ptp() + assert_(eq(mX.ptp(0), cols)) + assert_(eq(mX.ptp(1), rows)) + + def test_swapaxes(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXswapped = mX.swapaxes(0, 1) + assert_(eq(mXswapped[-1], mX[:, -1])) + mXXswapped = mXX.swapaxes(0, 2) + assert_equal(mXXswapped.shape, (2, 2, 3, 3)) + + def test_cumprod(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXcp = mX.cumprod(0) + assert_(eq(mXcp._data, mX.filled(1).cumprod(0))) + mXcp = mX.cumprod(1) + assert_(eq(mXcp._data, mX.filled(1).cumprod(1))) + + def test_cumsum(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXcp = mX.cumsum(0) + assert_(eq(mXcp._data, mX.filled(0).cumsum(0))) + mXcp = mX.cumsum(1) + assert_(eq(mXcp._data, mX.filled(0).cumsum(1))) + + def test_varstd(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + assert_(eq(mX.var(axis=None), mX.compressed().var())) + assert_(eq(mX.std(axis=None), mX.compressed().std())) + assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape)) + assert_(eq(mX.var().shape, X.var().shape)) + (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) + for k in range(6): + assert_(eq(mXvar1[k], mX[k].compressed().var())) + assert_(eq(mXvar0[k], mX[:, k].compressed().var())) + assert_(eq(np.sqrt(mXvar0[k]), + mX[:, k].compressed().std())) + + +def eqmask(m1, m2): + if m1 is nomask: + return m2 is nomask + if m2 is nomask: + return m1 is nomask + return (m1 == m2).all() diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/testutils.py b/.venv/lib/python3.11/site-packages/numpy/ma/testutils.py new file mode 100644 index 0000000000000000000000000000000000000000..7a633906bb4245261d71e9e783e188f3d44b7790 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/testutils.py @@ -0,0 +1,288 @@ +"""Miscellaneous functions for testing masked arrays and subclasses + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: testutils.py 3529 2007-11-13 08:01:14Z jarrod.millman $ + +""" +import operator + +import numpy as np +from numpy import ndarray, float_ +import numpy.core.umath as umath +import numpy.testing +from numpy.testing import ( + assert_, assert_allclose, assert_array_almost_equal_nulp, + assert_raises, build_err_msg + ) +from .core import mask_or, getmask, masked_array, nomask, masked, filled + +__all__masked = [ + 'almost', 'approx', 'assert_almost_equal', 'assert_array_almost_equal', + 'assert_array_approx_equal', 'assert_array_compare', + 'assert_array_equal', 'assert_array_less', 'assert_close', + 'assert_equal', 'assert_equal_records', 'assert_mask_equal', + 'assert_not_equal', 'fail_if_array_equal', + ] + +# Include some normal test functions to avoid breaking other projects who +# have mistakenly included them from this file. SciPy is one. That is +# unfortunate, as some of these functions are not intended to work with +# masked arrays. But there was no way to tell before. +from unittest import TestCase +__some__from_testing = [ + 'TestCase', 'assert_', 'assert_allclose', 'assert_array_almost_equal_nulp', + 'assert_raises' + ] + +__all__ = __all__masked + __some__from_testing + + +def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): + """ + Returns true if all components of a and b are equal to given tolerances. + + If fill_value is True, masked values considered equal. Otherwise, + masked values are considered unequal. The relative error rtol should + be positive and << 1.0 The absolute error atol comes into play for + those elements of b that are very small or zero; it says how small a + must be also. + + """ + m = mask_or(getmask(a), getmask(b)) + d1 = filled(a) + d2 = filled(b) + if d1.dtype.char == "O" or d2.dtype.char == "O": + return np.equal(d1, d2).ravel() + x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) + y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) + d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) + return d.ravel() + + +def almost(a, b, decimal=6, fill_value=True): + """ + Returns True if a and b are equal up to decimal places. + + If fill_value is True, masked values considered equal. Otherwise, + masked values are considered unequal. + + """ + m = mask_or(getmask(a), getmask(b)) + d1 = filled(a) + d2 = filled(b) + if d1.dtype.char == "O" or d2.dtype.char == "O": + return np.equal(d1, d2).ravel() + x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) + y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) + d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) + return d.ravel() + + +def _assert_equal_on_sequences(actual, desired, err_msg=''): + """ + Asserts the equality of two non-array sequences. + + """ + assert_equal(len(actual), len(desired), err_msg) + for k in range(len(desired)): + assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') + return + + +def assert_equal_records(a, b): + """ + Asserts that two records are equal. + + Pretty crude for now. + + """ + assert_equal(a.dtype, b.dtype) + for f in a.dtype.names: + (af, bf) = (operator.getitem(a, f), operator.getitem(b, f)) + if not (af is masked) and not (bf is masked): + assert_equal(operator.getitem(a, f), operator.getitem(b, f)) + return + + +def assert_equal(actual, desired, err_msg=''): + """ + Asserts that two items are equal. + + """ + # Case #1: dictionary ..... + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + assert_equal(len(actual), len(desired), err_msg) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(f"{k} not in {actual}") + assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') + return + # Case #2: lists ..... + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + return _assert_equal_on_sequences(actual, desired, err_msg='') + if not (isinstance(actual, ndarray) or isinstance(desired, ndarray)): + msg = build_err_msg([actual, desired], err_msg,) + if not desired == actual: + raise AssertionError(msg) + return + # Case #4. arrays or equivalent + if ((actual is masked) and not (desired is masked)) or \ + ((desired is masked) and not (actual is masked)): + msg = build_err_msg([actual, desired], + err_msg, header='', names=('x', 'y')) + raise ValueError(msg) + actual = np.asanyarray(actual) + desired = np.asanyarray(desired) + (actual_dtype, desired_dtype) = (actual.dtype, desired.dtype) + if actual_dtype.char == "S" and desired_dtype.char == "S": + return _assert_equal_on_sequences(actual.tolist(), + desired.tolist(), + err_msg='') + return assert_array_equal(actual, desired, err_msg) + + +def fail_if_equal(actual, desired, err_msg='',): + """ + Raises an assertion error if two items are equal. + + """ + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + fail_if_equal(len(actual), len(desired), err_msg) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(repr(k)) + fail_if_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') + return + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + fail_if_equal(len(actual), len(desired), err_msg) + for k in range(len(desired)): + fail_if_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') + return + if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): + return fail_if_array_equal(actual, desired, err_msg) + msg = build_err_msg([actual, desired], err_msg) + if not desired != actual: + raise AssertionError(msg) + + +assert_not_equal = fail_if_equal + + +def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): + """ + Asserts that two items are almost equal. + + The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal). + + """ + if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): + return assert_array_almost_equal(actual, desired, decimal=decimal, + err_msg=err_msg, verbose=verbose) + msg = build_err_msg([actual, desired], + err_msg=err_msg, verbose=verbose) + if not round(abs(desired - actual), decimal) == 0: + raise AssertionError(msg) + + +assert_close = assert_almost_equal + + +def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', + fill_value=True): + """ + Asserts that comparison between two masked arrays is satisfied. + + The comparison is elementwise. + + """ + # Allocate a common mask and refill + m = mask_or(getmask(x), getmask(y)) + x = masked_array(x, copy=False, mask=m, keep_mask=False, subok=False) + y = masked_array(y, copy=False, mask=m, keep_mask=False, subok=False) + if ((x is masked) and not (y is masked)) or \ + ((y is masked) and not (x is masked)): + msg = build_err_msg([x, y], err_msg=err_msg, verbose=verbose, + header=header, names=('x', 'y')) + raise ValueError(msg) + # OK, now run the basic tests on filled versions + return np.testing.assert_array_compare(comparison, + x.filled(fill_value), + y.filled(fill_value), + err_msg=err_msg, + verbose=verbose, header=header) + + +def assert_array_equal(x, y, err_msg='', verbose=True): + """ + Checks the elementwise equality of two masked arrays. + + """ + assert_array_compare(operator.__eq__, x, y, + err_msg=err_msg, verbose=verbose, + header='Arrays are not equal') + + +def fail_if_array_equal(x, y, err_msg='', verbose=True): + """ + Raises an assertion error if two masked arrays are not equal elementwise. + + """ + def compare(x, y): + return (not np.all(approx(x, y))) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not equal') + + +def assert_array_approx_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Checks the equality of two masked arrays, up to given number odecimals. + + The equality is checked elementwise. + + """ + def compare(x, y): + "Returns the result of the loose comparison between x and y)." + return approx(x, y, rtol=10. ** -decimal) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not almost equal') + + +def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Checks the equality of two masked arrays, up to given number odecimals. + + The equality is checked elementwise. + + """ + def compare(x, y): + "Returns the result of the loose comparison between x and y)." + return almost(x, y, decimal) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not almost equal') + + +def assert_array_less(x, y, err_msg='', verbose=True): + """ + Checks that x is smaller than y elementwise. + + """ + assert_array_compare(operator.__lt__, x, y, + err_msg=err_msg, verbose=verbose, + header='Arrays are not less-ordered') + + +def assert_mask_equal(m1, m2, err_msg=''): + """ + Asserts the equality of two masks. + + """ + if m1 is nomask: + assert_(m2 is nomask) + if m2 is nomask: + assert_(m1 is nomask) + assert_array_equal(m1, m2, err_msg=err_msg) diff --git a/.venv/lib/python3.11/site-packages/numpy/ma/timer_comparison.py b/.venv/lib/python3.11/site-packages/numpy/ma/timer_comparison.py new file mode 100644 index 0000000000000000000000000000000000000000..9eb1a23cd693b7f9176f4076c26c47caee3ce94c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/ma/timer_comparison.py @@ -0,0 +1,443 @@ +import timeit +from functools import reduce + +import numpy as np +from numpy import float_ +import numpy.core.fromnumeric as fromnumeric + +from numpy.testing import build_err_msg + + +pi = np.pi + +class ModuleTester: + def __init__(self, module): + self.module = module + self.allequal = module.allequal + self.arange = module.arange + self.array = module.array + self.concatenate = module.concatenate + self.count = module.count + self.equal = module.equal + self.filled = module.filled + self.getmask = module.getmask + self.getmaskarray = module.getmaskarray + self.id = id + self.inner = module.inner + self.make_mask = module.make_mask + self.masked = module.masked + self.masked_array = module.masked_array + self.masked_values = module.masked_values + self.mask_or = module.mask_or + self.nomask = module.nomask + self.ones = module.ones + self.outer = module.outer + self.repeat = module.repeat + self.resize = module.resize + self.sort = module.sort + self.take = module.take + self.transpose = module.transpose + self.zeros = module.zeros + self.MaskType = module.MaskType + try: + self.umath = module.umath + except AttributeError: + self.umath = module.core.umath + self.testnames = [] + + def assert_array_compare(self, comparison, x, y, err_msg='', header='', + fill_value=True): + """ + Assert that a comparison of two masked arrays is satisfied elementwise. + + """ + xf = self.filled(x) + yf = self.filled(y) + m = self.mask_or(self.getmask(x), self.getmask(y)) + + x = self.filled(self.masked_array(xf, mask=m), fill_value) + y = self.filled(self.masked_array(yf, mask=m), fill_value) + if (x.dtype.char != "O"): + x = x.astype(float_) + if isinstance(x, np.ndarray) and x.size > 1: + x[np.isnan(x)] = 0 + elif np.isnan(x): + x = 0 + if (y.dtype.char != "O"): + y = y.astype(float_) + if isinstance(y, np.ndarray) and y.size > 1: + y[np.isnan(y)] = 0 + elif np.isnan(y): + y = 0 + try: + cond = (x.shape == () or y.shape == ()) or x.shape == y.shape + if not cond: + msg = build_err_msg([x, y], + err_msg + + f'\n(shapes {x.shape}, {y.shape} mismatch)', + header=header, + names=('x', 'y')) + assert cond, msg + val = comparison(x, y) + if m is not self.nomask and fill_value: + val = self.masked_array(val, mask=m) + if isinstance(val, bool): + cond = val + reduced = [0] + else: + reduced = val.ravel() + cond = reduced.all() + reduced = reduced.tolist() + if not cond: + match = 100-100.0*reduced.count(1)/len(reduced) + msg = build_err_msg([x, y], + err_msg + + '\n(mismatch %s%%)' % (match,), + header=header, + names=('x', 'y')) + assert cond, msg + except ValueError as e: + msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) + raise ValueError(msg) from e + + def assert_array_equal(self, x, y, err_msg=''): + """ + Checks the elementwise equality of two masked arrays. + + """ + self.assert_array_compare(self.equal, x, y, err_msg=err_msg, + header='Arrays are not equal') + + @np.errstate(all='ignore') + def test_0(self): + """ + Tests creation + + """ + x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) + m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + xm = self.masked_array(x, mask=m) + xm[0] + + @np.errstate(all='ignore') + def test_1(self): + """ + Tests creation + + """ + x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = self.masked_array(x, mask=m1) + ym = self.masked_array(y, mask=m2) + xf = np.where(m1, 1.e+20, x) + xm.set_fill_value(1.e+20) + + assert((xm-ym).filled(0).any()) + s = x.shape + assert(xm.size == reduce(lambda x, y:x*y, s)) + assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) + + for s in [(4, 3), (6, 2)]: + x.shape = s + y.shape = s + xm.shape = s + ym.shape = s + xf.shape = s + assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) + + @np.errstate(all='ignore') + def test_2(self): + """ + Tests conversions and indexing. + + """ + x1 = np.array([1, 2, 4, 3]) + x2 = self.array(x1, mask=[1, 0, 0, 0]) + x3 = self.array(x1, mask=[0, 1, 0, 1]) + x4 = self.array(x1) + # test conversion to strings, no errors + str(x2) + repr(x2) + # tests of indexing + assert type(x2[1]) is type(x1[1]) + assert x1[1] == x2[1] + x1[2] = 9 + x2[2] = 9 + self.assert_array_equal(x1, x2) + x1[1:3] = 99 + x2[1:3] = 99 + x2[1] = self.masked + x2[1:3] = self.masked + x2[:] = x1 + x2[1] = self.masked + x3[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + x4[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + x1 = np.arange(5)*1.0 + x2 = self.masked_values(x1, 3.0) + x1 = self.array([1, 'hello', 2, 3], object) + x2 = np.array([1, 'hello', 2, 3], object) + # check that no error occurs. + x1[1] + x2[1] + assert x1[1:1].shape == (0,) + # Tests copy-size + n = [0, 0, 1, 0, 0] + m = self.make_mask(n) + m2 = self.make_mask(m) + assert(m is m2) + m3 = self.make_mask(m, copy=1) + assert(m is not m3) + + @np.errstate(all='ignore') + def test_3(self): + """ + Tests resize/repeat + + """ + x4 = self.arange(4) + x4[2] = self.masked + y4 = self.resize(x4, (8,)) + assert self.allequal(self.concatenate([x4, x4]), y4) + assert self.allequal(self.getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) + y5 = self.repeat(x4, (2, 2, 2, 2), axis=0) + self.assert_array_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) + y6 = self.repeat(x4, 2, axis=0) + assert self.allequal(y5, y6) + y7 = x4.repeat((2, 2, 2, 2), axis=0) + assert self.allequal(y5, y7) + y8 = x4.repeat(2, 0) + assert self.allequal(y5, y8) + + @np.errstate(all='ignore') + def test_4(self): + """ + Test of take, transpose, inner, outer products. + + """ + x = self.arange(24) + y = np.arange(24) + x[5:6] = self.masked + x = x.reshape(2, 3, 4) + y = y.reshape(2, 3, 4) + assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1))) + assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1)) + assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)), + self.inner(x, y)) + assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)), + self.outer(x, y)) + y = self.array(['abc', 1, 'def', 2, 3], object) + y[2] = self.masked + t = self.take(y, [0, 3, 4]) + assert t[0] == 'abc' + assert t[1] == 2 + assert t[2] == 3 + + @np.errstate(all='ignore') + def test_5(self): + """ + Tests inplace w/ scalar + + """ + x = self.arange(10) + y = self.arange(10) + xm = self.arange(10) + xm[2] = self.masked + x += 1 + assert self.allequal(x, y+1) + xm += 1 + assert self.allequal(xm, y+1) + + x = self.arange(10) + xm = self.arange(10) + xm[2] = self.masked + x -= 1 + assert self.allequal(x, y-1) + xm -= 1 + assert self.allequal(xm, y-1) + + x = self.arange(10)*1.0 + xm = self.arange(10)*1.0 + xm[2] = self.masked + x *= 2.0 + assert self.allequal(x, y*2) + xm *= 2.0 + assert self.allequal(xm, y*2) + + x = self.arange(10)*2 + xm = self.arange(10)*2 + xm[2] = self.masked + x /= 2 + assert self.allequal(x, y) + xm /= 2 + assert self.allequal(xm, y) + + x = self.arange(10)*1.0 + xm = self.arange(10)*1.0 + xm[2] = self.masked + x /= 2.0 + assert self.allequal(x, y/2.0) + xm /= self.arange(10) + self.assert_array_equal(xm, self.ones((10,))) + + x = self.arange(10).astype(float_) + xm = self.arange(10) + xm[2] = self.masked + x += 1. + assert self.allequal(x, y + 1.) + + @np.errstate(all='ignore') + def test_6(self): + """ + Tests inplace w/ array + + """ + x = self.arange(10, dtype=float_) + y = self.arange(10) + xm = self.arange(10, dtype=float_) + xm[2] = self.masked + m = xm.mask + a = self.arange(10, dtype=float_) + a[-1] = self.masked + x += a + xm += a + assert self.allequal(x, y+a) + assert self.allequal(xm, y+a) + assert self.allequal(xm.mask, self.mask_or(m, a.mask)) + + x = self.arange(10, dtype=float_) + xm = self.arange(10, dtype=float_) + xm[2] = self.masked + m = xm.mask + a = self.arange(10, dtype=float_) + a[-1] = self.masked + x -= a + xm -= a + assert self.allequal(x, y-a) + assert self.allequal(xm, y-a) + assert self.allequal(xm.mask, self.mask_or(m, a.mask)) + + x = self.arange(10, dtype=float_) + xm = self.arange(10, dtype=float_) + xm[2] = self.masked + m = xm.mask + a = self.arange(10, dtype=float_) + a[-1] = self.masked + x *= a + xm *= a + assert self.allequal(x, y*a) + assert self.allequal(xm, y*a) + assert self.allequal(xm.mask, self.mask_or(m, a.mask)) + + x = self.arange(10, dtype=float_) + xm = self.arange(10, dtype=float_) + xm[2] = self.masked + m = xm.mask + a = self.arange(10, dtype=float_) + a[-1] = self.masked + x /= a + xm /= a + + @np.errstate(all='ignore') + def test_7(self): + "Tests ufunc" + d = (self.array([1.0, 0, -1, pi/2]*2, mask=[0, 1]+[0]*6), + self.array([1.0, 0, -1, pi/2]*2, mask=[1, 0]+[0]*6),) + for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', +# 'sin', 'cos', 'tan', +# 'arcsin', 'arccos', 'arctan', +# 'sinh', 'cosh', 'tanh', +# 'arcsinh', +# 'arccosh', +# 'arctanh', +# 'absolute', 'fabs', 'negative', +# # 'nonzero', 'around', +# 'floor', 'ceil', +# # 'sometrue', 'alltrue', +# 'logical_not', +# 'add', 'subtract', 'multiply', +# 'divide', 'true_divide', 'floor_divide', +# 'remainder', 'fmod', 'hypot', 'arctan2', +# 'equal', 'not_equal', 'less_equal', 'greater_equal', +# 'less', 'greater', +# 'logical_and', 'logical_or', 'logical_xor', + ]: + try: + uf = getattr(self.umath, f) + except AttributeError: + uf = getattr(fromnumeric, f) + mf = getattr(self.module, f) + args = d[:uf.nin] + ur = uf(*args) + mr = mf(*args) + self.assert_array_equal(ur.filled(0), mr.filled(0), f) + self.assert_array_equal(ur._mask, mr._mask) + + @np.errstate(all='ignore') + def test_99(self): + # test average + ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + self.assert_array_equal(2.0, self.average(ott, axis=0)) + self.assert_array_equal(2.0, self.average(ott, weights=[1., 1., 2., 1.])) + result, wts = self.average(ott, weights=[1., 1., 2., 1.], returned=1) + self.assert_array_equal(2.0, result) + assert(wts == 4.0) + ott[:] = self.masked + assert(self.average(ott, axis=0) is self.masked) + ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + ott = ott.reshape(2, 2) + ott[:, 1] = self.masked + self.assert_array_equal(self.average(ott, axis=0), [2.0, 0.0]) + assert(self.average(ott, axis=1)[0] is self.masked) + self.assert_array_equal([2., 0.], self.average(ott, axis=0)) + result, wts = self.average(ott, axis=0, returned=1) + self.assert_array_equal(wts, [1., 0.]) + w1 = [0, 1, 1, 1, 1, 0] + w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] + x = self.arange(6) + self.assert_array_equal(self.average(x, axis=0), 2.5) + self.assert_array_equal(self.average(x, axis=0, weights=w1), 2.5) + y = self.array([self.arange(6), 2.0*self.arange(6)]) + self.assert_array_equal(self.average(y, None), np.add.reduce(np.arange(6))*3./12.) + self.assert_array_equal(self.average(y, axis=0), np.arange(6) * 3./2.) + self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) + self.assert_array_equal(self.average(y, None, weights=w2), 20./6.) + self.assert_array_equal(self.average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) + self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) + m1 = self.zeros(6) + m2 = [0, 0, 1, 1, 0, 0] + m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] + m4 = self.ones(6) + m5 = [0, 1, 1, 1, 1, 1] + self.assert_array_equal(self.average(self.masked_array(x, m1), axis=0), 2.5) + self.assert_array_equal(self.average(self.masked_array(x, m2), axis=0), 2.5) + self.assert_array_equal(self.average(self.masked_array(x, m5), axis=0), 0.0) + self.assert_array_equal(self.count(self.average(self.masked_array(x, m4), axis=0)), 0) + z = self.masked_array(y, m3) + self.assert_array_equal(self.average(z, None), 20./6.) + self.assert_array_equal(self.average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) + self.assert_array_equal(self.average(z, axis=1), [2.5, 5.0]) + self.assert_array_equal(self.average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0]) + + @np.errstate(all='ignore') + def test_A(self): + x = self.arange(24) + x[5:6] = self.masked + x = x.reshape(2, 3, 4) + + +if __name__ == '__main__': + setup_base = ("from __main__ import ModuleTester \n" + "import numpy\n" + "tester = ModuleTester(module)\n") + setup_cur = "import numpy.ma.core as module\n" + setup_base + (nrepeat, nloop) = (10, 10) + + for i in range(1, 8): + func = 'tester.test_%i()' % i + cur = timeit.Timer(func, setup_cur).repeat(nrepeat, nloop*10) + cur = np.sort(cur) + print("#%i" % i + 50*'.') + print(eval("ModuleTester.test_%i.__doc__" % i)) + print(f'core_current : {cur[0]:.3f} - {cur[1]:.3f}') diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__init__.py b/.venv/lib/python3.11/site-packages/numpy/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d255f41638df58ce47d20f08e7bdfdc27e59467 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test__all__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test__all__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8941be25545b8e038d11e7d0e793df6d286b2dad Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test__all__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f98710ac9b5ec52cada3e1141004853fc021d1e2 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..39b4a32722352d8acca2f6ddfe8ed10dd815acf1 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_matlib.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_matlib.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..558c7877e87ea0730b44be331ec7ec7ea3d6e389 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_matlib.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7c986354612e00016f9423af8606c7368e7ddec0 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a39418fb737086f1e8681bfe3b47cc6815b81d8 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_public_api.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_public_api.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a56dee4e8af36c20cedb19a859ad34131ce08fdb Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_public_api.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_reloading.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_reloading.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..555d2a89be22b0c3a23d89155489096ee722889f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_reloading.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_scripts.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_scripts.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..71ae50246fb9dcfaba0f843880ab57ae1cea58d3 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_scripts.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_warnings.cpython-311.pyc b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_warnings.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b1859e468c0f4231c5acb68cc556994f7b65b8a1 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/numpy/tests/__pycache__/test_warnings.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test__all__.py b/.venv/lib/python3.11/site-packages/numpy/tests/test__all__.py new file mode 100644 index 0000000000000000000000000000000000000000..e44bda3d58ab92e614905f6f20f102242d6d6b0c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test__all__.py @@ -0,0 +1,9 @@ + +import collections +import numpy as np + + +def test_no_duplicates_in_np__all__(): + # Regression test for gh-10198. + dups = {k: v for k, v in collections.Counter(np.__all__).items() if v > 1} + assert len(dups) == 0 diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_ctypeslib.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_ctypeslib.py new file mode 100644 index 0000000000000000000000000000000000000000..965e547e7c977a755885b5410d198dc912968eef --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_ctypeslib.py @@ -0,0 +1,370 @@ +import sys +import sysconfig +import weakref +from pathlib import Path + +import pytest + +import numpy as np +from numpy.ctypeslib import ndpointer, load_library, as_array +from numpy.testing import assert_, assert_array_equal, assert_raises, assert_equal + +try: + import ctypes +except ImportError: + ctypes = None +else: + cdll = None + test_cdll = None + if hasattr(sys, 'gettotalrefcount'): + try: + cdll = load_library('_multiarray_umath_d', np.core._multiarray_umath.__file__) + except OSError: + pass + try: + test_cdll = load_library('_multiarray_tests', np.core._multiarray_tests.__file__) + except OSError: + pass + if cdll is None: + cdll = load_library('_multiarray_umath', np.core._multiarray_umath.__file__) + if test_cdll is None: + test_cdll = load_library('_multiarray_tests', np.core._multiarray_tests.__file__) + + c_forward_pointer = test_cdll.forward_pointer + + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available in this python") +@pytest.mark.skipif(sys.platform == 'cygwin', + reason="Known to fail on cygwin") +class TestLoadLibrary: + def test_basic(self): + loader_path = np.core._multiarray_umath.__file__ + + out1 = load_library('_multiarray_umath', loader_path) + out2 = load_library(Path('_multiarray_umath'), loader_path) + out3 = load_library('_multiarray_umath', Path(loader_path)) + out4 = load_library(b'_multiarray_umath', loader_path) + + assert isinstance(out1, ctypes.CDLL) + assert out1 is out2 is out3 is out4 + + def test_basic2(self): + # Regression for #801: load_library with a full library name + # (including extension) does not work. + try: + so_ext = sysconfig.get_config_var('EXT_SUFFIX') + load_library('_multiarray_umath%s' % so_ext, + np.core._multiarray_umath.__file__) + except ImportError as e: + msg = ("ctypes is not available on this python: skipping the test" + " (import error was: %s)" % str(e)) + print(msg) + + +class TestNdpointer: + def test_dtype(self): + dt = np.intc + p = ndpointer(dtype=dt) + assert_(p.from_param(np.array([1], dt))) + dt = 'i4') + p = ndpointer(dtype=dt) + p.from_param(np.array([1], dt)) + assert_raises(TypeError, p.from_param, + np.array([1], dt.newbyteorder('swap'))) + dtnames = ['x', 'y'] + dtformats = [np.intc, np.float64] + dtdescr = {'names': dtnames, 'formats': dtformats} + dt = np.dtype(dtdescr) + p = ndpointer(dtype=dt) + assert_(p.from_param(np.zeros((10,), dt))) + samedt = np.dtype(dtdescr) + p = ndpointer(dtype=samedt) + assert_(p.from_param(np.zeros((10,), dt))) + dt2 = np.dtype(dtdescr, align=True) + if dt.itemsize != dt2.itemsize: + assert_raises(TypeError, p.from_param, np.zeros((10,), dt2)) + else: + assert_(p.from_param(np.zeros((10,), dt2))) + + def test_ndim(self): + p = ndpointer(ndim=0) + assert_(p.from_param(np.array(1))) + assert_raises(TypeError, p.from_param, np.array([1])) + p = ndpointer(ndim=1) + assert_raises(TypeError, p.from_param, np.array(1)) + assert_(p.from_param(np.array([1]))) + p = ndpointer(ndim=2) + assert_(p.from_param(np.array([[1]]))) + + def test_shape(self): + p = ndpointer(shape=(1, 2)) + assert_(p.from_param(np.array([[1, 2]]))) + assert_raises(TypeError, p.from_param, np.array([[1], [2]])) + p = ndpointer(shape=()) + assert_(p.from_param(np.array(1))) + + def test_flags(self): + x = np.array([[1, 2], [3, 4]], order='F') + p = ndpointer(flags='FORTRAN') + assert_(p.from_param(x)) + p = ndpointer(flags='CONTIGUOUS') + assert_raises(TypeError, p.from_param, x) + p = ndpointer(flags=x.flags.num) + assert_(p.from_param(x)) + assert_raises(TypeError, p.from_param, np.array([[1, 2], [3, 4]])) + + def test_cache(self): + assert_(ndpointer(dtype=np.float64) is ndpointer(dtype=np.float64)) + + # shapes are normalized + assert_(ndpointer(shape=2) is ndpointer(shape=(2,))) + + # 1.12 <= v < 1.16 had a bug that made these fail + assert_(ndpointer(shape=2) is not ndpointer(ndim=2)) + assert_(ndpointer(ndim=2) is not ndpointer(shape=2)) + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available on this python installation") +class TestNdpointerCFunc: + def test_arguments(self): + """ Test that arguments are coerced from arrays """ + c_forward_pointer.restype = ctypes.c_void_p + c_forward_pointer.argtypes = (ndpointer(ndim=2),) + + c_forward_pointer(np.zeros((2, 3))) + # too many dimensions + assert_raises( + ctypes.ArgumentError, c_forward_pointer, np.zeros((2, 3, 4))) + + @pytest.mark.parametrize( + 'dt', [ + float, + np.dtype(dict( + formats=['u2') + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, ctypes.c_uint16.__ctype_be__) + + dt = np.dtype('u2') + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, ctypes.c_uint16) + + def test_subarray(self): + dt = np.dtype((np.int32, (2, 3))) + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, 2 * (3 * ctypes.c_int32)) + + def test_structure(self): + dt = np.dtype([ + ('a', np.uint16), + ('b', np.uint32), + ]) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Structure)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ]) + + def test_structure_aligned(self): + dt = np.dtype([ + ('a', np.uint16), + ('b', np.uint32), + ], align=True) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Structure)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('', ctypes.c_char * 2), # padding + ('b', ctypes.c_uint32), + ]) + + def test_union(self): + dt = np.dtype(dict( + names=['a', 'b'], + offsets=[0, 0], + formats=[np.uint16, np.uint32] + )) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Union)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ]) + + def test_padded_union(self): + dt = np.dtype(dict( + names=['a', 'b'], + offsets=[0, 0], + formats=[np.uint16, np.uint32], + itemsize=5, + )) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Union)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ('', ctypes.c_char * 5), # padding + ]) + + def test_overlapping(self): + dt = np.dtype(dict( + names=['a', 'b'], + offsets=[0, 2], + formats=[np.uint32, np.uint32] + )) + assert_raises(NotImplementedError, np.ctypeslib.as_ctypes_type, dt) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_lazyloading.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_lazyloading.py new file mode 100644 index 0000000000000000000000000000000000000000..f31a4eab79d04d95f07a365f9ceafe5b168194fb --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_lazyloading.py @@ -0,0 +1,38 @@ +import sys +import importlib +from importlib.util import LazyLoader, find_spec, module_from_spec +import pytest + + +# Warning raised by _reload_guard() in numpy/__init__.py +@pytest.mark.filterwarnings("ignore:The NumPy module was reloaded") +def test_lazy_load(): + # gh-22045. lazyload doesn't import submodule names into the namespace + # muck with sys.modules to test the importing system + old_numpy = sys.modules.pop("numpy") + + numpy_modules = {} + for mod_name, mod in list(sys.modules.items()): + if mod_name[:6] == "numpy.": + numpy_modules[mod_name] = mod + sys.modules.pop(mod_name) + + try: + # create lazy load of numpy as np + spec = find_spec("numpy") + module = module_from_spec(spec) + sys.modules["numpy"] = module + loader = LazyLoader(spec.loader) + loader.exec_module(module) + np = module + + # test a subpackage import + from numpy.lib import recfunctions + + # test triggering the import of the package + np.ndarray + + finally: + if old_numpy: + sys.modules["numpy"] = old_numpy + sys.modules.update(numpy_modules) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_matlib.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_matlib.py new file mode 100644 index 0000000000000000000000000000000000000000..0e93c4848d75432c97189273f4f2e0cbc6c04e20 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_matlib.py @@ -0,0 +1,58 @@ +import numpy as np +import numpy.matlib +from numpy.testing import assert_array_equal, assert_ + +def test_empty(): + x = numpy.matlib.empty((2,)) + assert_(isinstance(x, np.matrix)) + assert_(x.shape, (1, 2)) + +def test_ones(): + assert_array_equal(numpy.matlib.ones((2, 3)), + np.matrix([[ 1., 1., 1.], + [ 1., 1., 1.]])) + + assert_array_equal(numpy.matlib.ones(2), np.matrix([[ 1., 1.]])) + +def test_zeros(): + assert_array_equal(numpy.matlib.zeros((2, 3)), + np.matrix([[ 0., 0., 0.], + [ 0., 0., 0.]])) + + assert_array_equal(numpy.matlib.zeros(2), np.matrix([[ 0., 0.]])) + +def test_identity(): + x = numpy.matlib.identity(2, dtype=int) + assert_array_equal(x, np.matrix([[1, 0], [0, 1]])) + +def test_eye(): + xc = numpy.matlib.eye(3, k=1, dtype=int) + assert_array_equal(xc, np.matrix([[ 0, 1, 0], + [ 0, 0, 1], + [ 0, 0, 0]])) + assert xc.flags.c_contiguous + assert not xc.flags.f_contiguous + + xf = numpy.matlib.eye(3, 4, dtype=int, order='F') + assert_array_equal(xf, np.matrix([[ 1, 0, 0, 0], + [ 0, 1, 0, 0], + [ 0, 0, 1, 0]])) + assert not xf.flags.c_contiguous + assert xf.flags.f_contiguous + +def test_rand(): + x = numpy.matlib.rand(3) + # check matrix type, array would have shape (3,) + assert_(x.ndim == 2) + +def test_randn(): + x = np.matlib.randn(3) + # check matrix type, array would have shape (3,) + assert_(x.ndim == 2) + +def test_repmat(): + a1 = np.arange(4) + x = numpy.matlib.repmat(a1, 2, 2) + y = np.array([[0, 1, 2, 3, 0, 1, 2, 3], + [0, 1, 2, 3, 0, 1, 2, 3]]) + assert_array_equal(x, y) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_config.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_config.py new file mode 100644 index 0000000000000000000000000000000000000000..82c1ad70b93015f71ce386a9388ccad0eff19047 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_config.py @@ -0,0 +1,44 @@ +""" +Check the numpy config is valid. +""" +import numpy as np +import pytest +from unittest.mock import Mock, patch + +pytestmark = pytest.mark.skipif( + not hasattr(np.__config__, "_built_with_meson"), + reason="Requires Meson builds", +) + + +class TestNumPyConfigs: + REQUIRED_CONFIG_KEYS = [ + "Compilers", + "Machine Information", + "Python Information", + ] + + @patch("numpy.__config__._check_pyyaml") + def test_pyyaml_not_found(self, mock_yaml_importer): + mock_yaml_importer.side_effect = ModuleNotFoundError() + with pytest.warns(UserWarning): + np.show_config() + + def test_dict_mode(self): + config = np.show_config(mode="dicts") + + assert isinstance(config, dict) + assert all([key in config for key in self.REQUIRED_CONFIG_KEYS]), ( + "Required key missing," + " see index of `False` with `REQUIRED_CONFIG_KEYS`" + ) + + def test_invalid_mode(self): + with pytest.raises(AttributeError): + np.show_config(mode="foo") + + def test_warn_to_add_tests(self): + assert len(np.__config__.DisplayModes) == 2, ( + "New mode detected," + " please add UT if applicable and increment this count" + ) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_version.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_version.py new file mode 100644 index 0000000000000000000000000000000000000000..61643426c8d757c8367dc7e8d19f6d4c106314a3 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_numpy_version.py @@ -0,0 +1,41 @@ +""" +Check the numpy version is valid. + +Note that a development version is marked by the presence of 'dev0' or '+' +in the version string, all else is treated as a release. The version string +itself is set from the output of ``git describe`` which relies on tags. + +Examples +-------- + +Valid Development: 1.22.0.dev0 1.22.0.dev0+5-g7999db4df2 1.22.0+5-g7999db4df2 +Valid Release: 1.21.0.rc1, 1.21.0.b1, 1.21.0 +Invalid: 1.22.0.dev, 1.22.0.dev0-5-g7999db4dfB, 1.21.0.d1, 1.21.a + +Note that a release is determined by the version string, which in turn +is controlled by the result of the ``git describe`` command. +""" +import re + +import numpy as np +from numpy.testing import assert_ + + +def test_valid_numpy_version(): + # Verify that the numpy version is a valid one (no .post suffix or other + # nonsense). See gh-6431 for an issue caused by an invalid version. + version_pattern = r"^[0-9]+\.[0-9]+\.[0-9]+(a[0-9]|b[0-9]|rc[0-9])?" + dev_suffix = r"(\.dev[0-9]+(\+git[0-9]+\.[0-9a-f]+)?)?" + res = re.match(version_pattern + dev_suffix + '$', np.__version__) + + assert_(res is not None, np.__version__) + + +def test_short_version(): + # Check numpy.short_version actually exists + if np.version.release: + assert_(np.__version__ == np.version.short_version, + "short_version mismatch in release version") + else: + assert_(np.__version__.split("+")[0] == np.version.short_version, + "short_version mismatch in development version") diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_public_api.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_public_api.py new file mode 100644 index 0000000000000000000000000000000000000000..54bf3dacf9722004d51cb13d8b5dd7c1105a655a --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_public_api.py @@ -0,0 +1,551 @@ +import sys +import sysconfig +import subprocess +import pkgutil +import types +import importlib +import warnings + +import numpy as np +import numpy +import pytest +from numpy.testing import IS_WASM + +try: + import ctypes +except ImportError: + ctypes = None + + +def check_dir(module, module_name=None): + """Returns a mapping of all objects with the wrong __module__ attribute.""" + if module_name is None: + module_name = module.__name__ + results = {} + for name in dir(module): + item = getattr(module, name) + if (hasattr(item, '__module__') and hasattr(item, '__name__') + and item.__module__ != module_name): + results[name] = item.__module__ + '.' + item.__name__ + return results + + +def test_numpy_namespace(): + # None of these objects are publicly documented to be part of the main + # NumPy namespace (some are useful though, others need to be cleaned up) + undocumented = { + '_add_newdoc_ufunc': 'numpy.core._multiarray_umath._add_newdoc_ufunc', + 'add_docstring': 'numpy.core._multiarray_umath.add_docstring', + 'add_newdoc': 'numpy.core.function_base.add_newdoc', + 'add_newdoc_ufunc': 'numpy.core._multiarray_umath._add_newdoc_ufunc', + 'byte_bounds': 'numpy.lib.utils.byte_bounds', + 'compare_chararrays': 'numpy.core._multiarray_umath.compare_chararrays', + 'deprecate': 'numpy.lib.utils.deprecate', + 'deprecate_with_doc': 'numpy.lib.utils.deprecate_with_doc', + 'disp': 'numpy.lib.function_base.disp', + 'fastCopyAndTranspose': 'numpy.core._multiarray_umath.fastCopyAndTranspose', + 'get_array_wrap': 'numpy.lib.shape_base.get_array_wrap', + 'get_include': 'numpy.lib.utils.get_include', + 'recfromcsv': 'numpy.lib.npyio.recfromcsv', + 'recfromtxt': 'numpy.lib.npyio.recfromtxt', + 'safe_eval': 'numpy.lib.utils.safe_eval', + 'set_string_function': 'numpy.core.arrayprint.set_string_function', + 'show_config': 'numpy.__config__.show', + 'show_runtime': 'numpy.lib.utils.show_runtime', + 'who': 'numpy.lib.utils.who', + } + # We override dir to not show these members + allowlist = undocumented + bad_results = check_dir(np) + # pytest gives better error messages with the builtin assert than with + # assert_equal + assert bad_results == allowlist + + +@pytest.mark.skipif(IS_WASM, reason="can't start subprocess") +@pytest.mark.parametrize('name', ['testing']) +def test_import_lazy_import(name): + """Make sure we can actually use the modules we lazy load. + + While not exported as part of the public API, it was accessible. With the + use of __getattr__ and __dir__, this isn't always true It can happen that + an infinite recursion may happen. + + This is the only way I found that would force the failure to appear on the + badly implemented code. + + We also test for the presence of the lazily imported modules in dir + + """ + exe = (sys.executable, '-c', "import numpy; numpy." + name) + result = subprocess.check_output(exe) + assert not result + + # Make sure they are still in the __dir__ + assert name in dir(np) + + +def test_dir_testing(): + """Assert that output of dir has only one "testing/tester" + attribute without duplicate""" + assert len(dir(np)) == len(set(dir(np))) + + +def test_numpy_linalg(): + bad_results = check_dir(np.linalg) + assert bad_results == {} + + +def test_numpy_fft(): + bad_results = check_dir(np.fft) + assert bad_results == {} + + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available in this python") +def test_NPY_NO_EXPORT(): + cdll = ctypes.CDLL(np.core._multiarray_tests.__file__) + # Make sure an arbitrary NPY_NO_EXPORT function is actually hidden + f = getattr(cdll, 'test_not_exported', None) + assert f is None, ("'test_not_exported' is mistakenly exported, " + "NPY_NO_EXPORT does not work") + + +# Historically NumPy has not used leading underscores for private submodules +# much. This has resulted in lots of things that look like public modules +# (i.e. things that can be imported as `import numpy.somesubmodule.somefile`), +# but were never intended to be public. The PUBLIC_MODULES list contains +# modules that are either public because they were meant to be, or because they +# contain public functions/objects that aren't present in any other namespace +# for whatever reason and therefore should be treated as public. +# +# The PRIVATE_BUT_PRESENT_MODULES list contains modules that look public (lack +# of underscores) but should not be used. For many of those modules the +# current status is fine. For others it may make sense to work on making them +# private, to clean up our public API and avoid confusion. +PUBLIC_MODULES = ['numpy.' + s for s in [ + "array_api", + "array_api.linalg", + "ctypeslib", + "doc", + "doc.constants", + "doc.ufuncs", + "dtypes", + "exceptions", + "f2py", + "fft", + "lib", + "lib.format", # was this meant to be public? + "lib.mixins", + "lib.recfunctions", + "lib.scimath", + "lib.stride_tricks", + "linalg", + "ma", + "ma.extras", + "ma.mrecords", + "matlib", + "polynomial", + "polynomial.chebyshev", + "polynomial.hermite", + "polynomial.hermite_e", + "polynomial.laguerre", + "polynomial.legendre", + "polynomial.polynomial", + "random", + "testing", + "testing.overrides", + "typing", + "typing.mypy_plugin", + "version" # Should be removed for NumPy 2.0 +]] +if sys.version_info < (3, 12): + PUBLIC_MODULES += [ + 'numpy.' + s for s in [ + "distutils", + "distutils.cpuinfo", + "distutils.exec_command", + "distutils.misc_util", + "distutils.log", + "distutils.system_info", + ] + ] + + + +PUBLIC_ALIASED_MODULES = [ + "numpy.char", + "numpy.emath", + "numpy.rec", +] + + +PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [ + "compat", + "compat.py3k", + "conftest", + "core", + "core.arrayprint", + "core.defchararray", + "core.einsumfunc", + "core.fromnumeric", + "core.function_base", + "core.getlimits", + "core.memmap", + "core.multiarray", + "core.numeric", + "core.numerictypes", + "core.overrides", + "core.records", + "core.shape_base", + "core.umath", + "f2py.auxfuncs", + "f2py.capi_maps", + "f2py.cb_rules", + "f2py.cfuncs", + "f2py.common_rules", + "f2py.crackfortran", + "f2py.diagnose", + "f2py.f2py2e", + "f2py.f90mod_rules", + "f2py.func2subr", + "f2py.rules", + "f2py.symbolic", + "f2py.use_rules", + "fft.helper", + "lib.arraypad", + "lib.arraysetops", + "lib.arrayterator", + "lib.function_base", + "lib.histograms", + "lib.index_tricks", + "lib.nanfunctions", + "lib.npyio", + "lib.polynomial", + "lib.shape_base", + "lib.twodim_base", + "lib.type_check", + "lib.ufunclike", + "lib.user_array", # note: not in np.lib, but probably should just be deleted + "lib.utils", + "linalg.lapack_lite", + "linalg.linalg", + "ma.core", + "ma.testutils", + "ma.timer_comparison", + "matrixlib", + "matrixlib.defmatrix", + "polynomial.polyutils", + "random.mtrand", + "random.bit_generator", + "testing.print_coercion_tables", +]] +if sys.version_info < (3, 12): + PRIVATE_BUT_PRESENT_MODULES += [ + 'numpy.' + s for s in [ + "distutils.armccompiler", + "distutils.fujitsuccompiler", + "distutils.ccompiler", + 'distutils.ccompiler_opt', + "distutils.command", + "distutils.command.autodist", + "distutils.command.bdist_rpm", + "distutils.command.build", + "distutils.command.build_clib", + "distutils.command.build_ext", + "distutils.command.build_py", + "distutils.command.build_scripts", + "distutils.command.build_src", + "distutils.command.config", + "distutils.command.config_compiler", + "distutils.command.develop", + "distutils.command.egg_info", + "distutils.command.install", + "distutils.command.install_clib", + "distutils.command.install_data", + "distutils.command.install_headers", + "distutils.command.sdist", + "distutils.conv_template", + "distutils.core", + "distutils.extension", + "distutils.fcompiler", + "distutils.fcompiler.absoft", + "distutils.fcompiler.arm", + "distutils.fcompiler.compaq", + "distutils.fcompiler.environment", + "distutils.fcompiler.g95", + "distutils.fcompiler.gnu", + "distutils.fcompiler.hpux", + "distutils.fcompiler.ibm", + "distutils.fcompiler.intel", + "distutils.fcompiler.lahey", + "distutils.fcompiler.mips", + "distutils.fcompiler.nag", + "distutils.fcompiler.none", + "distutils.fcompiler.pathf95", + "distutils.fcompiler.pg", + "distutils.fcompiler.nv", + "distutils.fcompiler.sun", + "distutils.fcompiler.vast", + "distutils.fcompiler.fujitsu", + "distutils.from_template", + "distutils.intelccompiler", + "distutils.lib2def", + "distutils.line_endings", + "distutils.mingw32ccompiler", + "distutils.msvccompiler", + "distutils.npy_pkg_config", + "distutils.numpy_distribution", + "distutils.pathccompiler", + "distutils.unixccompiler", + ] + ] + + +def is_unexpected(name): + """Check if this needs to be considered.""" + if '._' in name or '.tests' in name or '.setup' in name: + return False + + if name in PUBLIC_MODULES: + return False + + if name in PUBLIC_ALIASED_MODULES: + return False + + if name in PRIVATE_BUT_PRESENT_MODULES: + return False + + return True + + +# These are present in a directory with an __init__.py but cannot be imported +# code_generators/ isn't installed, but present for an inplace build +SKIP_LIST = [ + "numpy.core.code_generators", + "numpy.core.code_generators.genapi", + "numpy.core.code_generators.generate_umath", + "numpy.core.code_generators.ufunc_docstrings", + "numpy.core.code_generators.generate_numpy_api", + "numpy.core.code_generators.generate_ufunc_api", + "numpy.core.code_generators.numpy_api", + "numpy.core.code_generators.generate_umath_doc", + "numpy.core.code_generators.verify_c_api_version", + "numpy.core.cversions", + "numpy.core.generate_numpy_api", + "numpy.core.umath_tests", +] +if sys.version_info < (3, 12): + SKIP_LIST += ["numpy.distutils.msvc9compiler"] + + +# suppressing warnings from deprecated modules +@pytest.mark.filterwarnings("ignore:.*np.compat.*:DeprecationWarning") +def test_all_modules_are_expected(): + """ + Test that we don't add anything that looks like a new public module by + accident. Check is based on filenames. + """ + + modnames = [] + for _, modname, ispkg in pkgutil.walk_packages(path=np.__path__, + prefix=np.__name__ + '.', + onerror=None): + if is_unexpected(modname) and modname not in SKIP_LIST: + # We have a name that is new. If that's on purpose, add it to + # PUBLIC_MODULES. We don't expect to have to add anything to + # PRIVATE_BUT_PRESENT_MODULES. Use an underscore in the name! + modnames.append(modname) + + if modnames: + raise AssertionError(f'Found unexpected modules: {modnames}') + + +# Stuff that clearly shouldn't be in the API and is detected by the next test +# below +SKIP_LIST_2 = [ + 'numpy.math', + 'numpy.doc.constants.re', + 'numpy.doc.constants.textwrap', + 'numpy.lib.emath', + 'numpy.lib.math', + 'numpy.matlib.char', + 'numpy.matlib.rec', + 'numpy.matlib.emath', + 'numpy.matlib.exceptions', + 'numpy.matlib.math', + 'numpy.matlib.linalg', + 'numpy.matlib.fft', + 'numpy.matlib.random', + 'numpy.matlib.ctypeslib', + 'numpy.matlib.ma', +] +if sys.version_info < (3, 12): + SKIP_LIST_2 += [ + 'numpy.distutils.log.sys', + 'numpy.distutils.log.logging', + 'numpy.distutils.log.warnings', + ] + + +def test_all_modules_are_expected_2(): + """ + Method checking all objects. The pkgutil-based method in + `test_all_modules_are_expected` does not catch imports into a namespace, + only filenames. So this test is more thorough, and checks this like: + + import .lib.scimath as emath + + To check if something in a module is (effectively) public, one can check if + there's anything in that namespace that's a public function/object but is + not exposed in a higher-level namespace. For example for a `numpy.lib` + submodule:: + + mod = np.lib.mixins + for obj in mod.__all__: + if obj in np.__all__: + continue + elif obj in np.lib.__all__: + continue + + else: + print(obj) + + """ + + def find_unexpected_members(mod_name): + members = [] + module = importlib.import_module(mod_name) + if hasattr(module, '__all__'): + objnames = module.__all__ + else: + objnames = dir(module) + + for objname in objnames: + if not objname.startswith('_'): + fullobjname = mod_name + '.' + objname + if isinstance(getattr(module, objname), types.ModuleType): + if is_unexpected(fullobjname): + if fullobjname not in SKIP_LIST_2: + members.append(fullobjname) + + return members + + unexpected_members = find_unexpected_members("numpy") + for modname in PUBLIC_MODULES: + unexpected_members.extend(find_unexpected_members(modname)) + + if unexpected_members: + raise AssertionError("Found unexpected object(s) that look like " + "modules: {}".format(unexpected_members)) + + +def test_api_importable(): + """ + Check that all submodules listed higher up in this file can be imported + + Note that if a PRIVATE_BUT_PRESENT_MODULES entry goes missing, it may + simply need to be removed from the list (deprecation may or may not be + needed - apply common sense). + """ + def check_importable(module_name): + try: + importlib.import_module(module_name) + except (ImportError, AttributeError): + return False + + return True + + module_names = [] + for module_name in PUBLIC_MODULES: + if not check_importable(module_name): + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules in the public API that cannot be " + "imported: {}".format(module_names)) + + for module_name in PUBLIC_ALIASED_MODULES: + try: + eval(module_name) + except AttributeError: + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules in the public API that were not " + "found: {}".format(module_names)) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', category=DeprecationWarning) + warnings.filterwarnings('always', category=ImportWarning) + for module_name in PRIVATE_BUT_PRESENT_MODULES: + if not check_importable(module_name): + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules that are not really public but looked " + "public and can not be imported: " + "{}".format(module_names)) + + +@pytest.mark.xfail( + sysconfig.get_config_var("Py_DEBUG") not in (None, 0, "0"), + reason=( + "NumPy possibly built with `USE_DEBUG=True ./tools/travis-test.sh`, " + "which does not expose the `array_api` entry point. " + "See https://github.com/numpy/numpy/pull/19800" + ), +) +def test_array_api_entry_point(): + """ + Entry point for Array API implementation can be found with importlib and + returns the numpy.array_api namespace. + """ + # For a development install that did not go through meson-python, + # the entrypoint will not have been installed. So ensure this test fails + # only if numpy is inside site-packages. + numpy_in_sitepackages = sysconfig.get_path('platlib') in np.__file__ + + eps = importlib.metadata.entry_points() + try: + xp_eps = eps.select(group="array_api") + except AttributeError: + # The select interface for entry_points was introduced in py3.10, + # deprecating its dict interface. We fallback to dict keys for finding + # Array API entry points so that running this test in <=3.9 will + # still work - see https://github.com/numpy/numpy/pull/19800. + xp_eps = eps.get("array_api", []) + if len(xp_eps) == 0: + if numpy_in_sitepackages: + msg = "No entry points for 'array_api' found" + raise AssertionError(msg) from None + return + + try: + ep = next(ep for ep in xp_eps if ep.name == "numpy") + except StopIteration: + if numpy_in_sitepackages: + msg = "'numpy' not in array_api entry points" + raise AssertionError(msg) from None + return + + xp = ep.load() + msg = ( + f"numpy entry point value '{ep.value}' " + "does not point to our Array API implementation" + ) + assert xp is numpy.array_api, msg + + +@pytest.mark.parametrize("name", [ + 'ModuleDeprecationWarning', 'VisibleDeprecationWarning', + 'ComplexWarning', 'TooHardError', 'AxisError']) +def test_moved_exceptions(name): + # These were moved to the exceptions namespace, but currently still + # available + assert name in np.__all__ + assert name not in np.__dir__() + # Fetching works, but __module__ is set correctly: + assert getattr(np, name).__module__ == "numpy.exceptions" + assert name in np.exceptions.__all__ + getattr(np.exceptions, name) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_reloading.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_reloading.py new file mode 100644 index 0000000000000000000000000000000000000000..a1f360089a547bb4c81ef7a43884823ba4734227 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_reloading.py @@ -0,0 +1,72 @@ +from numpy.testing import ( + assert_raises, + assert_warns, + assert_, + assert_equal, + IS_WASM, +) +from numpy.compat import pickle + +import pytest +import sys +import subprocess +import textwrap +from importlib import reload + + +def test_numpy_reloading(): + # gh-7844. Also check that relevant globals retain their identity. + import numpy as np + import numpy._globals + + _NoValue = np._NoValue + VisibleDeprecationWarning = np.VisibleDeprecationWarning + ModuleDeprecationWarning = np.ModuleDeprecationWarning + + with assert_warns(UserWarning): + reload(np) + assert_(_NoValue is np._NoValue) + assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning) + assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning) + + assert_raises(RuntimeError, reload, numpy._globals) + with assert_warns(UserWarning): + reload(np) + assert_(_NoValue is np._NoValue) + assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning) + assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning) + +def test_novalue(): + import numpy as np + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + assert_equal(repr(np._NoValue), '') + assert_(pickle.loads(pickle.dumps(np._NoValue, + protocol=proto)) is np._NoValue) + + +@pytest.mark.skipif(IS_WASM, reason="can't start subprocess") +def test_full_reimport(): + """At the time of writing this, it is *not* truly supported, but + apparently enough users rely on it, for it to be an annoying change + when it started failing previously. + """ + # Test within a new process, to ensure that we do not mess with the + # global state during the test run (could lead to cryptic test failures). + # This is generally unsafe, especially, since we also reload the C-modules. + code = textwrap.dedent(r""" + import sys + from pytest import warns + import numpy as np + + for k in list(sys.modules.keys()): + if "numpy" in k: + del sys.modules[k] + + with warns(UserWarning): + import numpy as np + """) + p = subprocess.run([sys.executable, '-c', code], capture_output=True) + if p.returncode: + raise AssertionError( + f"Non-zero return code: {p.returncode!r}\n\n{p.stderr.decode()}" + ) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_scripts.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_scripts.py new file mode 100644 index 0000000000000000000000000000000000000000..892c04eef0bed4b9d92408419c547f8258a005e3 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_scripts.py @@ -0,0 +1,47 @@ +""" Test scripts + +Test that we can run executable scripts that have been installed with numpy. +""" +import sys +import os +import pytest +from os.path import join as pathjoin, isfile, dirname +import subprocess + +import numpy as np +from numpy.testing import assert_equal, IS_WASM + +is_inplace = isfile(pathjoin(dirname(np.__file__), '..', 'setup.py')) + + +def find_f2py_commands(): + if sys.platform == 'win32': + exe_dir = dirname(sys.executable) + if exe_dir.endswith('Scripts'): # virtualenv + return [os.path.join(exe_dir, 'f2py')] + else: + return [os.path.join(exe_dir, "Scripts", 'f2py')] + else: + # Three scripts are installed in Unix-like systems: + # 'f2py', 'f2py{major}', and 'f2py{major.minor}'. For example, + # if installed with python3.9 the scripts would be named + # 'f2py', 'f2py3', and 'f2py3.9'. + version = sys.version_info + major = str(version.major) + minor = str(version.minor) + return ['f2py', 'f2py' + major, 'f2py' + major + '.' + minor] + + +@pytest.mark.skipif(is_inplace, reason="Cannot test f2py command inplace") +@pytest.mark.xfail(reason="Test is unreliable") +@pytest.mark.parametrize('f2py_cmd', find_f2py_commands()) +def test_f2py(f2py_cmd): + # test that we can run f2py script + stdout = subprocess.check_output([f2py_cmd, '-v']) + assert_equal(stdout.strip(), np.__version__.encode('ascii')) + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +def test_pep338(): + stdout = subprocess.check_output([sys.executable, '-mnumpy.f2py', '-v']) + assert_equal(stdout.strip(), np.__version__.encode('ascii')) diff --git a/.venv/lib/python3.11/site-packages/numpy/tests/test_warnings.py b/.venv/lib/python3.11/site-packages/numpy/tests/test_warnings.py new file mode 100644 index 0000000000000000000000000000000000000000..df90fcef8c599ec1808bfb5d21f553d5f466e42d --- /dev/null +++ b/.venv/lib/python3.11/site-packages/numpy/tests/test_warnings.py @@ -0,0 +1,74 @@ +""" +Tests which scan for certain occurrences in the code, they may not find +all of these occurrences but should catch almost all. +""" +import pytest + +from pathlib import Path +import ast +import tokenize +import numpy + +class ParseCall(ast.NodeVisitor): + def __init__(self): + self.ls = [] + + def visit_Attribute(self, node): + ast.NodeVisitor.generic_visit(self, node) + self.ls.append(node.attr) + + def visit_Name(self, node): + self.ls.append(node.id) + + +class FindFuncs(ast.NodeVisitor): + def __init__(self, filename): + super().__init__() + self.__filename = filename + + def visit_Call(self, node): + p = ParseCall() + p.visit(node.func) + ast.NodeVisitor.generic_visit(self, node) + + if p.ls[-1] == 'simplefilter' or p.ls[-1] == 'filterwarnings': + if node.args[0].value == "ignore": + raise AssertionError( + "warnings should have an appropriate stacklevel; found in " + "{} on line {}".format(self.__filename, node.lineno)) + + if p.ls[-1] == 'warn' and ( + len(p.ls) == 1 or p.ls[-2] == 'warnings'): + + if "testing/tests/test_warnings.py" == self.__filename: + # This file + return + + # See if stacklevel exists: + if len(node.args) == 3: + return + args = {kw.arg for kw in node.keywords} + if "stacklevel" in args: + return + raise AssertionError( + "warnings should have an appropriate stacklevel; found in " + "{} on line {}".format(self.__filename, node.lineno)) + + +@pytest.mark.slow +def test_warning_calls(): + # combined "ignore" and stacklevel error + base = Path(numpy.__file__).parent + + for path in base.rglob("*.py"): + if base / "testing" in path.parents: + continue + if path == base / "__init__.py": + continue + if path == base / "random" / "__init__.py": + continue + # use tokenize to auto-detect encoding on systems where no + # default encoding is defined (e.g. LANG='C') + with tokenize.open(str(path)) as file: + tree = ast.parse(file.read()) + FindFuncs(path).visit(tree)