File size: 3,596 Bytes
1b7b016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5d2bff
 
32c8a6f
 
 
ece144f
32c8a6f
 
 
 
 
 
 
 
e5a3934
 
32c8a6f
 
 
 
 
 
 
 
 
 
 
 
54413c5
32c8a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54413c5
6d90199
 
54413c5
 
 
 
 
32c8a6f
 
54413c5
 
 
ece144f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
base_model: kochan13/llm-jp-3-13b-8
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---

# Uploaded  model

- **Developed by:** kochan13
- **License:** apache-2.0
- **Finetuned from model :** kochan13/llm-jp-3-13b-8

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

# 24/11/24版のLoRA_template_unsloth2.ipynbを3度使用
#ichikara-instruction-003-002-1_trans.json でSFTを行ったモデルに対し、 ichikara-instruction-003-001-2.json と ichikara-instruction-003-001-5.jsonを混合したdatasetで追加事後学習
#その後、ichikara-instruction-003-001-1.jsonにて追加事後学習実施

```python
#以下コードにて推論可能
# 必要なライブラリをインストール
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft

!pip install httpx==0.27.2

# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

import os  # osモジュールをインポート
# アクセストークンを設定 (プライベートリポジトリの場合)
os.environ["HUGGING_FACE_HUB_TOKEN"] = "my_token"

model_id = "kochan13/llm-jp-3-13b-9"

# Hugging Face Token を指定。
# 下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。
# https://huggingface.co/settings/tokens  
HF_TOKEN = "" #@param {type:"string"}

# unslothのFastLanguageModelで元のモデルをロード。
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# タスクとなるデータの読み込み。
# 事前にデータをアップロードしてください。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# モデルを用いてタスクの推論。

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})


# 結果をjsonlで保存
import os

filename = f"{model_id.split('/')[-1]}_output.jsonl"  # モデル名の末尾部分だけを使用
filepath = os.path.join("/content", filename)  # Join the directory and filename

# 保存処理
with open(filepath, 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

print(f"Results saved to: {filepath}")
```