File size: 1,895 Bytes
8d0cc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1305db
8d0cc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e7930
 
201a06d
34e7930
 
8d0cc81
 
b470978
8d0cc81
 
34e7930
709a1d1
8d0cc81
 
 
 
b470978
8d0cc81
 
34e7930
b470978
8d0cc81
 
 
 
 
b470978
8d0cc81
 
34e7930
b470978
8d0cc81
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language: en
tags:
- distilbert
- seq2seq
- text-classification
license: apache-2.0
datasets:
- Custom
metrics:
- Accuracy
- Precision
- Recall
widget:
- text: |-
    Let's start the project as soon as possible as we are running out of deadline.
model-index:
- name: Action_Items
  results:
  - task: 
      name: Action Item Classification
      type: text-classification
    dataset:
      name: Custom
      type: custom
      
    metrics:
    - name: Validation Accuracy
      type: accuracy
      value: 
    - name: Validation Precision
      type: precision
      value: 
    - name: Validation Recall
      type: recall
      value: 
    - name: Test Accuracy
      type: accuracy
      value: 
    - name: Test Precision
      type: precision
      value: 
    - name: Test Recall
      type: recall
      value:
---
Model obtained by Fine Tuning 'distilbert' using Custom Dataset!

LABEL_0 - Not an Action Item

LABEL_1 - Action Item

## Usage
# Example 1
```python
from transformers import pipeline
summarizer = pipeline("text-classification", model="knkarthick/Action_Items")
text = '''
Customer portion will have the dependency of , you know , fifty five probably has to be on XGEVA before we can start that track , but we can at least start the enablement track for sales and CSM who are as important as customers because they're the top of our funnel , especially sales.
'''
summarizer(text)
```
# Example 2
```python
from transformers import pipeline
summarizer = pipeline("text-classification", model="knkarthick/Action_Items")
text = '''
India, officially the Republic of India, is a country in South Asia.
'''
summarizer(text)
```

# Example 3
```python
from transformers import pipeline
summarizer = pipeline("text-classification", model="knkarthick/Action_Items")
text = '''
We have been running the business successfully for over a decade now.
'''
summarizer(text)
```