update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: beit-sketch-classifier
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# beit-sketch-classifier
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6083
|
20 |
+
- Accuracy: 0.7480
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 128
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
54 |
+
| 1.3452 | 1.0 | 3151 | 1.3825 | 0.6702 |
|
55 |
+
| 1.052 | 2.0 | 6302 | 1.0776 | 0.7252 |
|
56 |
+
| 0.9884 | 3.0 | 9453 | 0.9989 | 0.7443 |
|
57 |
+
| 0.8054 | 4.0 | 12604 | 0.9747 | 0.7526 |
|
58 |
+
| 0.6271 | 5.0 | 15755 | 0.9770 | 0.7558 |
|
59 |
+
| 0.5719 | 6.0 | 18906 | 1.0201 | 0.7528 |
|
60 |
+
| 0.3557 | 7.0 | 22057 | 1.0702 | 0.7523 |
|
61 |
+
| 0.2637 | 8.0 | 25208 | 1.1324 | 0.7501 |
|
62 |
+
| 0.1878 | 9.0 | 28359 | 1.2129 | 0.7434 |
|
63 |
+
| 0.1616 | 10.0 | 31510 | 1.2692 | 0.7457 |
|
64 |
+
| 0.1148 | 11.0 | 34661 | 1.3425 | 0.7435 |
|
65 |
+
| 0.0867 | 12.0 | 37812 | 1.3999 | 0.7430 |
|
66 |
+
| 0.065 | 13.0 | 40963 | 1.4472 | 0.7442 |
|
67 |
+
| 0.0489 | 14.0 | 44114 | 1.4836 | 0.7457 |
|
68 |
+
| 0.0365 | 15.0 | 47265 | 1.5194 | 0.7445 |
|
69 |
+
| 0.0386 | 16.0 | 50416 | 1.5506 | 0.7458 |
|
70 |
+
| 0.0315 | 17.0 | 53567 | 1.5778 | 0.7461 |
|
71 |
+
| 0.0236 | 18.0 | 56718 | 1.5986 | 0.7467 |
|
72 |
+
| 0.0264 | 19.0 | 59869 | 1.6085 | 0.7475 |
|
73 |
+
| 0.0146 | 20.0 | 63020 | 1.6083 | 0.7480 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.25.1
|
79 |
+
- Pytorch 1.13.1+cu117
|
80 |
+
- Datasets 2.7.1
|
81 |
+
- Tokenizers 0.13.2
|