gaugan-landscapes / gaugan.py
klima7's picture
Add model files
4dd2c81
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
import keras
from keras import Model, Sequential, initializers
from keras.layers import Layer, Conv2D, LeakyReLU, Dropout
class SPADE(Layer):
def __init__(self, filters: int, epsilon=1e-5, **kwargs):
super().__init__(**kwargs)
self.epsilon = epsilon
self.conv = Conv2D(128, 3, padding="same", activation="relu")
self.conv_gamma = Conv2D(filters, 3, padding="same")
self.conv_beta = Conv2D(filters, 3, padding="same")
def build(self, input_shape):
self.resize_shape = input_shape[1:3]
def call(self, input_tensor, raw_mask):
mask = tf.image.resize(raw_mask, self.resize_shape, method="nearest")
x = self.conv(mask)
gamma = self.conv_gamma(x)
beta = self.conv_beta(x)
mean, var = tf.nn.moments(input_tensor, axes=(0, 1, 2), keepdims=True)
std = tf.sqrt(var + self.epsilon)
normalized = (input_tensor - mean) / std
output = gamma * normalized + beta
return output
def get_config(self):
return {
"epsilon": self.epsilon,
"conv": self.conv,
"conv_gamma": self.conv_gamma,
"conv_beta": self.conv_beta
}
class ResBlock(Layer):
def __init__(self, filters: int, **kwargs):
super().__init__(**kwargs)
self.filters = filters
def build(self, input_shape):
input_filter = input_shape[-1]
self.spade_1 = SPADE(input_filter)
self.spade_2 = SPADE(self.filters)
self.conv_1 = Conv2D(self.filters, 3, padding="same")
self.conv_2 = Conv2D(self.filters, 3, padding="same")
self.leaky_relu = LeakyReLU(0.2)
self.learned_skip = False
if self.filters != input_filter:
self.learned_skip = True
self.spade_3 = SPADE(input_filter)
self.conv_3 = Conv2D(self.filters, 3, padding="same")
def call(self, input_tensor, mask):
x = self.spade_1(input_tensor, mask)
x = self.conv_1(self.leaky_relu(x))
x = self.spade_2(x, mask)
x = self.conv_2(self.leaky_relu(x))
skip = (
self.conv_3(self.leaky_relu(self.spade_3(input_tensor, mask)))
if self.learned_skip
else input_tensor
)
output = skip + x
return output
def get_config(self):
return {"filters": self.filters}
class Downsample(Layer):
def __init__(self,
channels: int,
kernels: int,
strides: int = 2,
apply_norm=True,
apply_activation=True,
apply_dropout=False,
**kwargs
):
super().__init__(**kwargs)
self.channels = channels
self.kernels = kernels
self.strides = strides
self.apply_norm = apply_norm
self.apply_activation = apply_activation
self.apply_dropout = apply_dropout
def build(self, input_shape):
self.block = Sequential([
Conv2D(
self.channels,
self.kernels,
strides=self.strides,
padding="same",
use_bias=False,
kernel_initializer=initializers.GlorotNormal(),
)])
if self.apply_norm:
self.block.add(tfa.layers.InstanceNormalization())
if self.apply_activation:
self.block.add(LeakyReLU(0.2))
if self.apply_dropout:
self.block.add(Dropout(0.5))
def call(self, inputs):
return self.block(inputs)
def get_config(self):
return {
"channels": self.channels,
"kernels": self.kernels,
"strides": self.strides,
"apply_norm": self.apply_norm,
"apply_activation": self.apply_activation,
"apply_dropout": self.apply_dropout,
}
class GaussianSampler(Layer):
def __init__(self, latent_dim: int, **kwargs):
super().__init__(**kwargs)
self.latent_dim = latent_dim
def call(self, inputs):
means, variance = inputs
epsilon = tf.random.normal(
shape=(tf.shape(means)[0], self.latent_dim), mean=0.0, stddev=1.0
)
samples = means + tf.exp(0.5 * variance) * epsilon
return samples
def get_config(self):
return {"latent_dim": self.latent_dim}
class GauganPredictor():
CLASSES = (
'unknown','wall', 'sky', 'tree', 'road', 'grass', 'earth',
'mountain', 'plant', 'water', 'sea', 'field', 'fence', 'rock',
'sand', 'path', 'river', 'flower', 'hill', 'palm', 'tower',
'dirt', 'land', 'waterfall', 'lake'
)
def __init__(self, model_g_path: str, model_e_path: str = None) -> None:
custom_objects = {
'ResBlock': ResBlock,
'Downsample': Downsample,
}
if model_e_path is not None:
self.encoder: Model = keras.models.load_model(model_e_path, custom_objects=custom_objects)
self.sampler = GaussianSampler(256)
self.gen: Model = keras.models.load_model(
model_g_path, custom_objects=custom_objects)
def __call__(self, im: np.ndarray, z=None) -> np.ndarray:
if len(im.shape) == 3:
im = im[np.newaxis]
if z is None:
z = tf.random.normal((im.shape[0], 256))
tmp = self.gen.predict_on_batch([z, im])
x = np.array((tmp + 1) * 127.5, np.uint8)
return x
def predict_reference(self, im: np.ndarray, reference_im: np.ndarray) -> np.ndarray:
if len(im.shape) == 3:
im = im[np.newaxis]
reference_im = reference_im[np.newaxis]
mean, variance = self.encoder(reference_im)
z = self.sampler([mean, variance])
x = np.array((self.gen.predict_on_batch([z, im]) + 1) * 127.5, np.uint8)
return x