klashenrik commited on
Commit
39bfceb
·
1 Parent(s): c9f474d

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1030.11 +/- 108.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd479fe01705688341c28fbe0c7d84415228a81f560143113a1f2627decacf6
3
+ size 129258
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f824bae1160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f824bae11f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f824bae1280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f824bae1310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f824bae13a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f824bae1430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f824bae14c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f824bae1550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f824bae15e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f824bae1670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f824bae1700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f824bae1790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f824bad99f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674379460437830123,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOdqrz7u6Z6/u+01v61+0D8adL4+P3KpvxWoPD7wQR6/+2xTv6qIFkDmoJa9k+jsPwqGiz/zqHe7rV4BPzN5KL593ro/I/MsvQKxe77sHkXArYQsP2LhXECF28o/B9IOvwCgub+SuKo+wLPxPl+Igj8ccLs+IRqyvyLUiL+xydo/8fzfP+cpOj99kaQ+GvVuvt/OzL9cVlI8klaev8I7rryrR9q+QR9zQKx7j74azCw/HTv4PmL3fkAHa18+flbAvt6vlb9N3uA/xG//PttHxj4AoLm/kriqPmKSB8BfiII/KXR/P3rZ1r4Hoso+WnbiP4UEi79QH+E+ZnOTP6ia17+ogkC+JOaMP4W5WT/yXDdAKLvhPlo5GD0wwp8+cWSgv9ibyj/gkOs8tdN2Ps5SoL8Su7u/IY3DP/qw9T8TlMA/AKC5v5K4qj7As/E+X4iCP7w/YD9V4Vu/9a5wvX4w8j+s4Zm+rI9KP+GZfj8R4ALAmaYyvx/Bij7LvhK+KKg7QDlbhL6KmNM/RPgqPkID1z6fCro/b736vAnnmT7HHgs/vgRxv46lYkDMVwpAMS3PvACgub+SuKo+YpIHwGsIe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqEeQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALchiPQAAAABJWfC/AAAAACdpDj4AAAAAG439PwAAAABa+sA9AAAAAB4o+j8AAAAAe6bpvQAAAADVi/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyofswAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKZJ0b0AAAAAPlLnvwAAAADv3YU9AAAAAOD69j8AAAAAREL0vQAAAABSVwBAAAAAABUkPz0AAAAA/4wAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANlPgjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRKQ++AAAAAOMP878AAAAAI+SJPQAAAAB1QOo/AAAAAKxPjL0AAAAA5wL3PwAAAADLPcs9AAAAAGvb+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqKG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw3I/vQAAAAAYiu2/AAAAAPVcm7wAAAAAq9zfPwAAAACX9ca9AAAAALn/3T8AAAAAE30EPgAAAABXsvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbiVH8TBZaMAWyUTegDjAF0lEdAqgwVw71ZknV9lChoBkdAlHIOd07r9mgHTegDaAhHQKoMsPQOWjZ1fZQoaAZHQJbGcIyCWeJoB03oA2gIR0CqD+E4ecQRdX2UKGgGR0CV1zlE7W/baAdN6ANoCEdAqhLULlV94XV9lChoBkdAlnBsImgJ1WgHTegDaAhHQKoYcmICU5d1fZQoaAZHQJKS3dqL0jFoB03oA2gIR0CqGQNx+8XfdX2UKGgGR0CX0mEDyOJdaAdN6ANoCEdAqhwkJng5znV9lChoBkdAmSJV0T101mgHTegDaAhHQKofHlkH2RJ1fZQoaAZHQJg5V1vES/VoB03oA2gIR0CqJMWilBQfdX2UKGgGR0CWMNAzYVZcaAdN6ANoCEdAqiVTc9GI9HV9lChoBkdAmAAc3ZPEbmgHTegDaAhHQKoodCJoCdV1fZQoaAZHQJfK6Zpi7TVoB03oA2gIR0CqK3dSMtK7dX2UKGgGR0CNzWoG6f8NaAdN6ANoCEdAqjFJxYJVsHV9lChoBkdAmUG/07KaHGgHTegDaAhHQKox5YbKifx1fZQoaAZHQI2FTvb48EFoB03oA2gIR0CqNQDOcDr7dX2UKGgGR0CVnALEDQqqaAdN6ANoCEdAqjfziwSrYHV9lChoBkdAlCU9xuKoAGgHTegDaAhHQKo9sDQJHAh1fZQoaAZHQJEf/JLdvbZoB03oA2gIR0CqPkj1wo9cdX2UKGgGR0CURWqIJqqPaAdN6ANoCEdAqkF+IRAbAHV9lChoBkdAlJUH1rZam2gHTegDaAhHQKpEk+W4Vh11fZQoaAZHQJGRQVWS2YxoB03oA2gIR0CqSnPp6hQFdX2UKGgGR0CTNyQUYbbUaAdN6ANoCEdAqksV4oqkM3V9lChoBkdAliAMGTs6aWgHTegDaAhHQKpOSwEhaDB1fZQoaAZHQJRzRZlnRLNoB03oA2gIR0CqUUITfzjFdX2UKGgGR0CXMJ1BMSK4aAdN6ANoCEdAqlb5sQ/X5HV9lChoBkdAkCzUzKs+3mgHTegDaAhHQKpXlJaq0dB1fZQoaAZHQJZj7VTaTOhoB03oA2gIR0CqWs/ub7TEdX2UKGgGR0CXm5/Ue+23aAdN6ANoCEdAql3FW+49YHV9lChoBkdAlXpoiPhhpmgHTegDaAhHQKpjfz7MxGl1fZQoaAZHQJVZgHHFPzpoB03oA2gIR0CqZB14gRsedX2UKGgGR0CRiPblijL0aAdN6ANoCEdAqmddZV4oqnV9lChoBkdAkS8d1ZDArWgHTegDaAhHQKpqX/H5rQB1fZQoaAZHQI/en7iyY5VoB03oA2gIR0CqcCp5NXYEdX2UKGgGR0CRZL/ub7TEaAdN6ANoCEdAqnDF3np0OnV9lChoBkdAllIy2c8Tz2gHTegDaAhHQKpz7qZ+hGp1fZQoaAZHQJJu7rLQokRoB03oA2gIR0Cqdu8L0BfbdX2UKGgGR0CQTD4//vORaAdN6ANoCEdAqn0C5VfeDXV9lChoBkdAkksAC0WuYGgHTegDaAhHQKp9mvAXVLB1fZQoaAZHQJSw/ywwCbNoB03oA2gIR0CqgNDslb/wdX2UKGgGR0CZx8fHPu5SaAdN6ANoCEdAqoPWY8dPtXV9lChoBkdAlMGUILPUrmgHTegDaAhHQKqJrGhmGud1fZQoaAZHQJZoJaIN3GJoB03oA2gIR0CqikZxR2r5dX2UKGgGR0CYPwsUZeiSaAdN6ANoCEdAqo1nhESdv3V9lChoBkdAlOJuMAFPi2gHTegDaAhHQKqQaeQMhHN1fZQoaAZHQJHE7EbYK6ZoB03oA2gIR0Cqlkbg0j1PdX2UKGgGR0CWAnQb+98JaAdN6ANoCEdAqpbvGjsUqXV9lChoBkdAlQCBSpBHC2gHTegDaAhHQKqaHua4MF51fZQoaAZHQI66CpzcRDloB03oA2gIR0CqnSH9vS+hdX2UKGgGR0CRKL8La24NaAdN6ANoCEdAqqMGKQ7tA3V9lChoBkdAkgpJi7TUiWgHTegDaAhHQKqjqMhouf51fZQoaAZHQJNXIw482aVoB03oA2gIR0CqptS925hCdX2UKGgGR0CVQcnivPkaaAdN6ANoCEdAqqnFa6jFh3V9lChoBkdAllUA7o0Q9WgHTegDaAhHQKqvdt6X0Gx1fZQoaAZHQJVwJDneSB9oB03oA2gIR0CqsA1SflIVdX2UKGgGR0CUUpewcHW0aAdN6ANoCEdAqrMp8+iaiXV9lChoBkdAkYKCIUJv52gHTegDaAhHQKq2IeFtbcJ1fZQoaAZHQJa+V1PnB+FoB03oA2gIR0Cqu9OQhfShdX2UKGgGR0CSCFsMy8BdaAdN6ANoCEdAqrxpWq94/3V9lChoBkdAlAR4p6QeWGgHTegDaAhHQKq/htw71Zl1fZQoaAZHQJbAaVAzHjpoB03oA2gIR0Cqwm+HrQgLdX2UKGgGR0CRff8M/hVEaAdN6ANoCEdAqsgoaisXBXV9lChoBkdAlkUZfx+a0GgHTegDaAhHQKrIuro4dZJ1fZQoaAZHQJHDAyHmA9VoB03oA2gIR0Cqy+OyE+PjdX2UKGgGR0CMIXSeAd4naAdN6ANoCEdAqs7eC04R3HV9lChoBkdAlY2z81n/UGgHTegDaAhHQKrUu6g/Tsp1fZQoaAZHQJGIEafjCHhoB03oA2gIR0Cq1VY3WFvidX2UKGgGR0CPU4uoxYaHaAdN6ANoCEdAqth9f/m1Y3V9lChoBkdAkkvRsl9jPWgHTegDaAhHQKrbgbMotth1fZQoaAZHQJEjPzFuNxVoB03oA2gIR0Cq4VWmxdIHdX2UKGgGR0CSS6gwoLG8aAdN6ANoCEdAquH0cZLqU3V9lChoBkdAkvsfy9VWCGgHTegDaAhHQKrlK4Ia99N1fZQoaAZHQJN8hlVcUudoB03oA2gIR0Cq6COtGNJfdX2UKGgGR0CUaGrhR64UaAdN6ANoCEdAqu4Hd43WF3V9lChoBkdAkC5lhsqJ/GgHTegDaAhHQKruo6xPfsN1fZQoaAZHQJKbzbmEGqxoB03oA2gIR0Cq8dp/XoTxdX2UKGgGR0CRBZeKKpDNaAdN6ANoCEdAqvTJhMJyAHV9lChoBkdAjZhxF7Uoa2gHTegDaAhHQKr6YUEgW8B1fZQoaAZHQJHy/q2SdOJoB03oA2gIR0Cq+v7jcVQAdX2UKGgGR0CUXe07r9l3aAdN6ANoCEdAqv4zF85S33V9lChoBkdAlH2OB6KLsWgHTegDaAhHQKsBMtYjjaR1fZQoaAZHQJLXpD8cdYJoB03oA2gIR0CrBuk2P1cudX2UKGgGR0CUJUJLdvbXaAdN6ANoCEdAqweA3HaN/HV9lChoBkdAkn1pTVDrq2gHTegDaAhHQKsKpggow251fZQoaAZHQI8aKUornT1oB03oA2gIR0CrDZzSsr/bdX2UKGgGR0CPYvtWMju8aAdN6ANoCEdAqxOT/p+tsHV9lChoBkdAkeT5q7Ack2gHTegDaAhHQKsULpD/lyR1fZQoaAZHQJDYemR/3FloB03oA2gIR0CrF03vhIe6dX2UKGgGR0CRn45ZKWcCaAdN6ANoCEdAqxpG9SMtLHV9lChoBkdAkO6KRISUT2gHTegDaAhHQKsgQxZ+x4Z1fZQoaAZHQI1nhmqYJE9oB03oA2gIR0CrIN3Qla8pdX2UKGgGR0CUApR7JGONaAdN6ANoCEdAqyP/f0mMO3V9lChoBkdAkHpRj8UEgWgHTegDaAhHQKsm5w1BMSN1fZQoaAZHQJCoPJYDDCRoB03oA2gIR0CrLKkvK2a2dX2UKGgGR0CQfTmp2ll9aAdN6ANoCEdAqy1E10knkXV9lChoBkdAlKt61og3cmgHTegDaAhHQKswcxdIGyJ1fZQoaAZHQJJBpKNAC4loB03oA2gIR0CrM3QeNkvsdX2UKGgGR0CRQIYHPeHjaAdN6ANoCEdAqzlDeVLSNXV9lChoBkdAkFZujIq9XmgHTegDaAhHQKs519MK1G91fZQoaAZHQJHgOK+BYmtoB03oA2gIR0CrPR9jXnQqdX2UKGgGR0CM6n84PwuvaAdN6ANoCEdAq0APbwjMV3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e767f62d9eea5e8a55837661899b448149656efdf6929d1709d5682bc057ff8b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52977335623084a2f0f6d695967fe3bb634324882e1b5cd5bfd228d68f0e5d36
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f824bae1160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f824bae11f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f824bae1280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f824bae1310>", "_build": "<function ActorCriticPolicy._build at 0x7f824bae13a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f824bae1430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f824bae14c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f824bae1550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f824bae15e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f824bae1670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f824bae1700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f824bae1790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f824bad99f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674379460437830123, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOdqrz7u6Z6/u+01v61+0D8adL4+P3KpvxWoPD7wQR6/+2xTv6qIFkDmoJa9k+jsPwqGiz/zqHe7rV4BPzN5KL593ro/I/MsvQKxe77sHkXArYQsP2LhXECF28o/B9IOvwCgub+SuKo+wLPxPl+Igj8ccLs+IRqyvyLUiL+xydo/8fzfP+cpOj99kaQ+GvVuvt/OzL9cVlI8klaev8I7rryrR9q+QR9zQKx7j74azCw/HTv4PmL3fkAHa18+flbAvt6vlb9N3uA/xG//PttHxj4AoLm/kriqPmKSB8BfiII/KXR/P3rZ1r4Hoso+WnbiP4UEi79QH+E+ZnOTP6ia17+ogkC+JOaMP4W5WT/yXDdAKLvhPlo5GD0wwp8+cWSgv9ibyj/gkOs8tdN2Ps5SoL8Su7u/IY3DP/qw9T8TlMA/AKC5v5K4qj7As/E+X4iCP7w/YD9V4Vu/9a5wvX4w8j+s4Zm+rI9KP+GZfj8R4ALAmaYyvx/Bij7LvhK+KKg7QDlbhL6KmNM/RPgqPkID1z6fCro/b736vAnnmT7HHgs/vgRxv46lYkDMVwpAMS3PvACgub+SuKo+YpIHwGsIe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqEeQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALchiPQAAAABJWfC/AAAAACdpDj4AAAAAG439PwAAAABa+sA9AAAAAB4o+j8AAAAAe6bpvQAAAADVi/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyofswAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKZJ0b0AAAAAPlLnvwAAAADv3YU9AAAAAOD69j8AAAAAREL0vQAAAABSVwBAAAAAABUkPz0AAAAA/4wAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANlPgjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRKQ++AAAAAOMP878AAAAAI+SJPQAAAAB1QOo/AAAAAKxPjL0AAAAA5wL3PwAAAADLPcs9AAAAAGvb+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqKG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw3I/vQAAAAAYiu2/AAAAAPVcm7wAAAAAq9zfPwAAAACX9ca9AAAAALn/3T8AAAAAE30EPgAAAABXsvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbiVH8TBZaMAWyUTegDjAF0lEdAqgwVw71ZknV9lChoBkdAlHIOd07r9mgHTegDaAhHQKoMsPQOWjZ1fZQoaAZHQJbGcIyCWeJoB03oA2gIR0CqD+E4ecQRdX2UKGgGR0CV1zlE7W/baAdN6ANoCEdAqhLULlV94XV9lChoBkdAlnBsImgJ1WgHTegDaAhHQKoYcmICU5d1fZQoaAZHQJKS3dqL0jFoB03oA2gIR0CqGQNx+8XfdX2UKGgGR0CX0mEDyOJdaAdN6ANoCEdAqhwkJng5znV9lChoBkdAmSJV0T101mgHTegDaAhHQKofHlkH2RJ1fZQoaAZHQJg5V1vES/VoB03oA2gIR0CqJMWilBQfdX2UKGgGR0CWMNAzYVZcaAdN6ANoCEdAqiVTc9GI9HV9lChoBkdAmAAc3ZPEbmgHTegDaAhHQKoodCJoCdV1fZQoaAZHQJfK6Zpi7TVoB03oA2gIR0CqK3dSMtK7dX2UKGgGR0CNzWoG6f8NaAdN6ANoCEdAqjFJxYJVsHV9lChoBkdAmUG/07KaHGgHTegDaAhHQKox5YbKifx1fZQoaAZHQI2FTvb48EFoB03oA2gIR0CqNQDOcDr7dX2UKGgGR0CVnALEDQqqaAdN6ANoCEdAqjfziwSrYHV9lChoBkdAlCU9xuKoAGgHTegDaAhHQKo9sDQJHAh1fZQoaAZHQJEf/JLdvbZoB03oA2gIR0CqPkj1wo9cdX2UKGgGR0CURWqIJqqPaAdN6ANoCEdAqkF+IRAbAHV9lChoBkdAlJUH1rZam2gHTegDaAhHQKpEk+W4Vh11fZQoaAZHQJGRQVWS2YxoB03oA2gIR0CqSnPp6hQFdX2UKGgGR0CTNyQUYbbUaAdN6ANoCEdAqksV4oqkM3V9lChoBkdAliAMGTs6aWgHTegDaAhHQKpOSwEhaDB1fZQoaAZHQJRzRZlnRLNoB03oA2gIR0CqUUITfzjFdX2UKGgGR0CXMJ1BMSK4aAdN6ANoCEdAqlb5sQ/X5HV9lChoBkdAkCzUzKs+3mgHTegDaAhHQKpXlJaq0dB1fZQoaAZHQJZj7VTaTOhoB03oA2gIR0CqWs/ub7TEdX2UKGgGR0CXm5/Ue+23aAdN6ANoCEdAql3FW+49YHV9lChoBkdAlXpoiPhhpmgHTegDaAhHQKpjfz7MxGl1fZQoaAZHQJVZgHHFPzpoB03oA2gIR0CqZB14gRsedX2UKGgGR0CRiPblijL0aAdN6ANoCEdAqmddZV4oqnV9lChoBkdAkS8d1ZDArWgHTegDaAhHQKpqX/H5rQB1fZQoaAZHQI/en7iyY5VoB03oA2gIR0CqcCp5NXYEdX2UKGgGR0CRZL/ub7TEaAdN6ANoCEdAqnDF3np0OnV9lChoBkdAllIy2c8Tz2gHTegDaAhHQKpz7qZ+hGp1fZQoaAZHQJJu7rLQokRoB03oA2gIR0Cqdu8L0BfbdX2UKGgGR0CQTD4//vORaAdN6ANoCEdAqn0C5VfeDXV9lChoBkdAkksAC0WuYGgHTegDaAhHQKp9mvAXVLB1fZQoaAZHQJSw/ywwCbNoB03oA2gIR0CqgNDslb/wdX2UKGgGR0CZx8fHPu5SaAdN6ANoCEdAqoPWY8dPtXV9lChoBkdAlMGUILPUrmgHTegDaAhHQKqJrGhmGud1fZQoaAZHQJZoJaIN3GJoB03oA2gIR0CqikZxR2r5dX2UKGgGR0CYPwsUZeiSaAdN6ANoCEdAqo1nhESdv3V9lChoBkdAlOJuMAFPi2gHTegDaAhHQKqQaeQMhHN1fZQoaAZHQJHE7EbYK6ZoB03oA2gIR0Cqlkbg0j1PdX2UKGgGR0CWAnQb+98JaAdN6ANoCEdAqpbvGjsUqXV9lChoBkdAlQCBSpBHC2gHTegDaAhHQKqaHua4MF51fZQoaAZHQI66CpzcRDloB03oA2gIR0CqnSH9vS+hdX2UKGgGR0CRKL8La24NaAdN6ANoCEdAqqMGKQ7tA3V9lChoBkdAkgpJi7TUiWgHTegDaAhHQKqjqMhouf51fZQoaAZHQJNXIw482aVoB03oA2gIR0CqptS925hCdX2UKGgGR0CVQcnivPkaaAdN6ANoCEdAqqnFa6jFh3V9lChoBkdAllUA7o0Q9WgHTegDaAhHQKqvdt6X0Gx1fZQoaAZHQJVwJDneSB9oB03oA2gIR0CqsA1SflIVdX2UKGgGR0CUUpewcHW0aAdN6ANoCEdAqrMp8+iaiXV9lChoBkdAkYKCIUJv52gHTegDaAhHQKq2IeFtbcJ1fZQoaAZHQJa+V1PnB+FoB03oA2gIR0Cqu9OQhfShdX2UKGgGR0CSCFsMy8BdaAdN6ANoCEdAqrxpWq94/3V9lChoBkdAlAR4p6QeWGgHTegDaAhHQKq/htw71Zl1fZQoaAZHQJbAaVAzHjpoB03oA2gIR0Cqwm+HrQgLdX2UKGgGR0CRff8M/hVEaAdN6ANoCEdAqsgoaisXBXV9lChoBkdAlkUZfx+a0GgHTegDaAhHQKrIuro4dZJ1fZQoaAZHQJHDAyHmA9VoB03oA2gIR0Cqy+OyE+PjdX2UKGgGR0CMIXSeAd4naAdN6ANoCEdAqs7eC04R3HV9lChoBkdAlY2z81n/UGgHTegDaAhHQKrUu6g/Tsp1fZQoaAZHQJGIEafjCHhoB03oA2gIR0Cq1VY3WFvidX2UKGgGR0CPU4uoxYaHaAdN6ANoCEdAqth9f/m1Y3V9lChoBkdAkkvRsl9jPWgHTegDaAhHQKrbgbMotth1fZQoaAZHQJEjPzFuNxVoB03oA2gIR0Cq4VWmxdIHdX2UKGgGR0CSS6gwoLG8aAdN6ANoCEdAquH0cZLqU3V9lChoBkdAkvsfy9VWCGgHTegDaAhHQKrlK4Ia99N1fZQoaAZHQJN8hlVcUudoB03oA2gIR0Cq6COtGNJfdX2UKGgGR0CUaGrhR64UaAdN6ANoCEdAqu4Hd43WF3V9lChoBkdAkC5lhsqJ/GgHTegDaAhHQKruo6xPfsN1fZQoaAZHQJKbzbmEGqxoB03oA2gIR0Cq8dp/XoTxdX2UKGgGR0CRBZeKKpDNaAdN6ANoCEdAqvTJhMJyAHV9lChoBkdAjZhxF7Uoa2gHTegDaAhHQKr6YUEgW8B1fZQoaAZHQJHy/q2SdOJoB03oA2gIR0Cq+v7jcVQAdX2UKGgGR0CUXe07r9l3aAdN6ANoCEdAqv4zF85S33V9lChoBkdAlH2OB6KLsWgHTegDaAhHQKsBMtYjjaR1fZQoaAZHQJLXpD8cdYJoB03oA2gIR0CrBuk2P1cudX2UKGgGR0CUJUJLdvbXaAdN6ANoCEdAqweA3HaN/HV9lChoBkdAkn1pTVDrq2gHTegDaAhHQKsKpggow251fZQoaAZHQI8aKUornT1oB03oA2gIR0CrDZzSsr/bdX2UKGgGR0CPYvtWMju8aAdN6ANoCEdAqxOT/p+tsHV9lChoBkdAkeT5q7Ack2gHTegDaAhHQKsULpD/lyR1fZQoaAZHQJDYemR/3FloB03oA2gIR0CrF03vhIe6dX2UKGgGR0CRn45ZKWcCaAdN6ANoCEdAqxpG9SMtLHV9lChoBkdAkO6KRISUT2gHTegDaAhHQKsgQxZ+x4Z1fZQoaAZHQI1nhmqYJE9oB03oA2gIR0CrIN3Qla8pdX2UKGgGR0CUApR7JGONaAdN6ANoCEdAqyP/f0mMO3V9lChoBkdAkHpRj8UEgWgHTegDaAhHQKsm5w1BMSN1fZQoaAZHQJCoPJYDDCRoB03oA2gIR0CrLKkvK2a2dX2UKGgGR0CQfTmp2ll9aAdN6ANoCEdAqy1E10knkXV9lChoBkdAlKt61og3cmgHTegDaAhHQKswcxdIGyJ1fZQoaAZHQJJBpKNAC4loB03oA2gIR0CrM3QeNkvsdX2UKGgGR0CRQIYHPeHjaAdN6ANoCEdAqzlDeVLSNXV9lChoBkdAkFZujIq9XmgHTegDaAhHQKs519MK1G91fZQoaAZHQJHgOK+BYmtoB03oA2gIR0CrPR9jXnQqdX2UKGgGR0CM6n84PwuvaAdN6ANoCEdAq0APbwjMV3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c79ba0fd5f78d53f5c4ffc3a088e4ea4b0a2d95adcc0af29bd71d896b908925f
3
+ size 1089650
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1030.1051978511446, "std_reward": 108.15226093976004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T10:30:15.453599"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63db78b1ddf884386f9d23d2b031f6362e16d670f4dc891b891882d80af261d4
3
+ size 2136