File size: 4,392 Bytes
ecbb88f
 
 
 
 
 
 
a075b97
ecbb88f
 
a075b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbb88f
 
 
 
 
 
 
 
f188709
 
 
ecbb88f
eb5cf2e
ecbb88f
a075b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbb88f
a075b97
 
 
 
ecbb88f
a075b97
 
ecbb88f
a075b97
 
 
ecbb88f
a075b97
ecbb88f
a075b97
 
ecbb88f
a075b97
 
eb5cf2e
a075b97
eb5cf2e
ecbb88f
 
 
f188709
ecbb88f
f188709
ecbb88f
f188709
 
ecbb88f
 
f188709
 
ecbb88f
 
 
f188709
 
 
 
 
 
 
ecbb88f
 
 
 
 
 
 
a075b97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-xls-r-300m-hi
  results: 
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 15
      type: mozilla-foundation/common_voice_15_0
      args: hi
    metrics:
      - name: Test WER
        type: wer
        value: 0.2934
      - name: Test CER
        type: cer
        value: 0.0786
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: hi
    metrics:
      - name: Test WER
        type: wer
        value: 0.5209
      - name: Test CER
        type: cer
        value: 0.1790
datasets:
- mozilla-foundation/common_voice_15_0
language:
- hi
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3611
- Wer: 0.2992
- Cer: 0.0786

View the results on Kaggle Notebook: https://www.kaggle.com/code/kingabzpro/wav2vec-2-eval

## Evaluation

```python
import torch
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import librosa
import unicodedata
import re


test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test")
wer = load_metric("wer")
cer = load_metric("cer")

processor = Wav2Vec2Processor.from_pretrained("kingabzpro/wav2vec2-large-xls-r-300m-hi")
model = Wav2Vec2ForCTC.from_pretrained("kingabzpro/wav2vec2-large-xls-r-300m-hi")
model.to("cuda")


# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
    chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\'\|\&\–]'
    remove_en = '[A-Za-z]'
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower())
    batch["sentence"] = re.sub(remove_en, "", batch["sentence"]).lower()
    batch["sentence"] = unicodedata.normalize("NFKC", batch["sentence"])

    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
      logits = model(inputs.input_values.to("cuda")).logits

      pred_ids = torch.argmax(logits, dim=-1)
      batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
      return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {}".format(wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {}".format(cer.compute(predictions=result["pred_strings"], references=result["sentence"])))

```
**WER: 0.5209850206372026**

**CER: 0.17902923538230883**

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 7.0431        | 19.05 | 300  | 3.4423          | 1.0    | 1.0    |
| 2.3233        | 38.1  | 600  | 0.5965          | 0.4757 | 0.1329 |
| 0.5676        | 57.14 | 900  | 0.3962          | 0.3584 | 0.0954 |
| 0.3611        | 76.19 | 1200 | 0.3651          | 0.3190 | 0.0820 |
| 0.2996        | 95.24 | 1500 | 0.3611          | 0.2992 | 0.0786 |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3