Next commited on
Commit
3afc76f
1 Parent(s): f7f0fad

Upload folder using huggingface_hub

Browse files
Files changed (21) hide show
  1. D32k.pth +3 -0
  2. D40k.pth +3 -0
  3. G32k.pth +3 -0
  4. G40k.pth +3 -0
  5. README.md +3 -3
  6. a.png +0 -0
  7. app.py +1474 -0
  8. astronauts.mp3 +0 -0
  9. download_files.py +15 -0
  10. easy_sync.py +122 -0
  11. f0D32k.pth +3 -0
  12. f0D40k.pth +3 -0
  13. f0G32k.pth +3 -0
  14. f0G40k.pth +3 -0
  15. hubert_base.pt +3 -0
  16. project-main.zip +3 -0
  17. rmvpe.pt +3 -0
  18. somegirl.mp3 +0 -0
  19. someguy.mp3 +0 -0
  20. unachica.mp3 +0 -0
  21. unchico.mp3 +0 -0
D32k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8043378cc6619083d385f5a045de09b83fb3bf8de45c433ca863b71723ac3ca
3
+ size 142875703
D40k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:471378e894e7191f89a94eda8288c5947b16bbe0b10c3f1f17efdb7a1d998242
3
+ size 142875703
G32k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81817645cde7ed2e2d83f23ef883f33dda564924b497e84d792743912eca4c23
3
+ size 72653893
G40k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3843da7fde33db1dab176146c70d6c2df06eafe9457f4e3aa10024e9c6a4b69
3
+ size 72959671
README.md CHANGED
@@ -1,3 +1,3 @@
1
- ---
2
- license: mit
3
- ---
 
1
+ ---
2
+ license: unknown
3
+ ---
a.png ADDED
app.py ADDED
@@ -0,0 +1,1474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ import datetime, subprocess
3
+ from mega import Mega
4
+ now_dir = os.getcwd()
5
+ sys.path.append(now_dir)
6
+ import logging
7
+ import shutil
8
+ import threading
9
+ import traceback
10
+ import warnings
11
+ from random import shuffle
12
+ from subprocess import Popen
13
+ from time import sleep
14
+ import json
15
+ import pathlib
16
+
17
+ import fairseq
18
+ import faiss
19
+ import gradio as gr
20
+ import numpy as np
21
+ import torch
22
+ from dotenv import load_dotenv
23
+ from sklearn.cluster import MiniBatchKMeans
24
+
25
+ from configs.config import Config
26
+ from i18n.i18n import I18nAuto
27
+ from infer.lib.train.process_ckpt import (
28
+ change_info,
29
+ extract_small_model,
30
+ merge,
31
+ show_info,
32
+ )
33
+ from infer.modules.uvr5.modules import uvr
34
+ from infer.modules.vc.modules import VC
35
+ logging.getLogger("numba").setLevel(logging.WARNING)
36
+
37
+ logger = logging.getLogger(__name__)
38
+
39
+ tmp = os.path.join(now_dir, "TEMP")
40
+ shutil.rmtree(tmp, ignore_errors=True)
41
+ shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
42
+ shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
43
+ os.makedirs(tmp, exist_ok=True)
44
+ os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
45
+ os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
46
+ os.makedirs(os.path.join(now_dir, "audios"), exist_ok=True)
47
+ os.environ["TEMP"] = tmp
48
+ warnings.filterwarnings("ignore")
49
+ torch.manual_seed(114514)
50
+
51
+
52
+ load_dotenv()
53
+ config = Config()
54
+ vc = VC(config)
55
+
56
+ if config.dml == True:
57
+
58
+ def forward_dml(ctx, x, scale):
59
+ ctx.scale = scale
60
+ res = x.clone().detach()
61
+ return res
62
+
63
+ fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
64
+ i18n = I18nAuto()
65
+ logger.info(i18n)
66
+ # 判断是否有能用来训练和加速推理的N卡
67
+ ngpu = torch.cuda.device_count()
68
+ gpu_infos = []
69
+ mem = []
70
+ if_gpu_ok = False
71
+
72
+ if torch.cuda.is_available() or ngpu != 0:
73
+ for i in range(ngpu):
74
+ gpu_name = torch.cuda.get_device_name(i)
75
+ if any(
76
+ value in gpu_name.upper()
77
+ for value in [
78
+ "10",
79
+ "16",
80
+ "20",
81
+ "30",
82
+ "40",
83
+ "A2",
84
+ "A3",
85
+ "A4",
86
+ "P4",
87
+ "A50",
88
+ "500",
89
+ "A60",
90
+ "70",
91
+ "80",
92
+ "90",
93
+ "M4",
94
+ "T4",
95
+ "TITAN",
96
+ ]
97
+ ):
98
+ # A10#A100#V100#A40#P40#M40#K80#A4500
99
+ if_gpu_ok = True # 至少有一张能用的N卡
100
+ gpu_infos.append("%s\t%s" % (i, gpu_name))
101
+ mem.append(
102
+ int(
103
+ torch.cuda.get_device_properties(i).total_memory
104
+ / 1024
105
+ / 1024
106
+ / 1024
107
+ + 0.4
108
+ )
109
+ )
110
+ if if_gpu_ok and len(gpu_infos) > 0:
111
+ gpu_info = "\n".join(gpu_infos)
112
+ default_batch_size = min(mem) // 2
113
+ else:
114
+ gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
115
+ default_batch_size = 1
116
+ gpus = "-".join([i[0] for i in gpu_infos])
117
+
118
+
119
+ class ToolButton(gr.Button, gr.components.FormComponent):
120
+ """Small button with single emoji as text, fits inside gradio forms"""
121
+
122
+ def __init__(self, **kwargs):
123
+ super().__init__(variant="tool", **kwargs)
124
+
125
+ def get_block_name(self):
126
+ return "button"
127
+
128
+
129
+ weight_root = os.getenv("weight_root")
130
+ weight_uvr5_root = os.getenv("weight_uvr5_root")
131
+ index_root = os.getenv("index_root")
132
+
133
+ names = []
134
+ for name in os.listdir(weight_root):
135
+ if name.endswith(".pth"):
136
+ names.append(name)
137
+ index_paths = []
138
+ for root, dirs, files in os.walk(index_root, topdown=False):
139
+ for name in files:
140
+ if name.endswith(".index") and "trained" not in name:
141
+ index_paths.append("%s/%s" % (root, name))
142
+ uvr5_names = []
143
+ for name in os.listdir(weight_uvr5_root):
144
+ if name.endswith(".pth") or "onnx" in name:
145
+ uvr5_names.append(name.replace(".pth", ""))
146
+
147
+
148
+ def change_choices():
149
+ names = []
150
+ for name in os.listdir(weight_root):
151
+ if name.endswith(".pth"):
152
+ names.append(name)
153
+ index_paths = []
154
+ for root, dirs, files in os.walk(index_root, topdown=False):
155
+ for name in files:
156
+ if name.endswith(".index") and "trained" not in name:
157
+ index_paths.append("%s/%s" % (root, name))
158
+ audio_files=[]
159
+ for filename in os.listdir("./audios"):
160
+ if filename.endswith(('.wav','.mp3','.ogg')):
161
+ audio_files.append('./audios/'+filename)
162
+ return {"choices": sorted(names), "__type__": "update"}, {
163
+ "choices": sorted(index_paths),
164
+ "__type__": "update",
165
+ }, {"choices": sorted(audio_files), "__type__": "update"}
166
+
167
+ def clean():
168
+ return {"value": "", "__type__": "update"}
169
+
170
+
171
+ def export_onnx():
172
+ from infer.modules.onnx.export import export_onnx as eo
173
+
174
+ eo()
175
+
176
+
177
+ sr_dict = {
178
+ "32k": 32000,
179
+ "40k": 40000,
180
+ "48k": 48000,
181
+ }
182
+
183
+
184
+ def if_done(done, p):
185
+ while 1:
186
+ if p.poll() is None:
187
+ sleep(0.5)
188
+ else:
189
+ break
190
+ done[0] = True
191
+
192
+
193
+ def if_done_multi(done, ps):
194
+ while 1:
195
+ # poll==None代表进程未结束
196
+ # 只要有一个进程未结束都不停
197
+ flag = 1
198
+ for p in ps:
199
+ if p.poll() is None:
200
+ flag = 0
201
+ sleep(0.5)
202
+ break
203
+ if flag == 1:
204
+ break
205
+ done[0] = True
206
+
207
+
208
+ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
209
+ sr = sr_dict[sr]
210
+ os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
211
+ f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
212
+ f.close()
213
+ per = 3.0 if config.is_half else 3.7
214
+ cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
215
+ config.python_cmd,
216
+ trainset_dir,
217
+ sr,
218
+ n_p,
219
+ now_dir,
220
+ exp_dir,
221
+ config.noparallel,
222
+ per,
223
+ )
224
+ logger.info(cmd)
225
+ p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
226
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
227
+ done = [False]
228
+ threading.Thread(
229
+ target=if_done,
230
+ args=(
231
+ done,
232
+ p,
233
+ ),
234
+ ).start()
235
+ while 1:
236
+ with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
237
+ yield (f.read())
238
+ sleep(1)
239
+ if done[0]:
240
+ break
241
+ with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
242
+ log = f.read()
243
+ logger.info(log)
244
+ yield log
245
+
246
+
247
+ # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
248
+ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
249
+ gpus = gpus.split("-")
250
+ os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
251
+ f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
252
+ f.close()
253
+ if if_f0:
254
+ if f0method != "rmvpe_gpu":
255
+ cmd = (
256
+ '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
257
+ % (
258
+ config.python_cmd,
259
+ now_dir,
260
+ exp_dir,
261
+ n_p,
262
+ f0method,
263
+ )
264
+ )
265
+ logger.info(cmd)
266
+ p = Popen(
267
+ cmd, shell=True, cwd=now_dir
268
+ ) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
269
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
270
+ done = [False]
271
+ threading.Thread(
272
+ target=if_done,
273
+ args=(
274
+ done,
275
+ p,
276
+ ),
277
+ ).start()
278
+ else:
279
+ if gpus_rmvpe != "-":
280
+ gpus_rmvpe = gpus_rmvpe.split("-")
281
+ leng = len(gpus_rmvpe)
282
+ ps = []
283
+ for idx, n_g in enumerate(gpus_rmvpe):
284
+ cmd = (
285
+ '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
286
+ % (
287
+ config.python_cmd,
288
+ leng,
289
+ idx,
290
+ n_g,
291
+ now_dir,
292
+ exp_dir,
293
+ config.is_half,
294
+ )
295
+ )
296
+ logger.info(cmd)
297
+ p = Popen(
298
+ cmd, shell=True, cwd=now_dir
299
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
300
+ ps.append(p)
301
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
302
+ done = [False]
303
+ threading.Thread(
304
+ target=if_done_multi, #
305
+ args=(
306
+ done,
307
+ ps,
308
+ ),
309
+ ).start()
310
+ else:
311
+ cmd = (
312
+ config.python_cmd
313
+ + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
314
+ % (
315
+ now_dir,
316
+ exp_dir,
317
+ )
318
+ )
319
+ logger.info(cmd)
320
+ p = Popen(
321
+ cmd, shell=True, cwd=now_dir
322
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
323
+ p.wait()
324
+ done = [True]
325
+ while 1:
326
+ with open(
327
+ "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
328
+ ) as f:
329
+ yield (f.read())
330
+ sleep(1)
331
+ if done[0]:
332
+ break
333
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
334
+ log = f.read()
335
+ logger.info(log)
336
+ yield log
337
+ ####对不同part分别开多进程
338
+ """
339
+ n_part=int(sys.argv[1])
340
+ i_part=int(sys.argv[2])
341
+ i_gpu=sys.argv[3]
342
+ exp_dir=sys.argv[4]
343
+ os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
344
+ """
345
+ leng = len(gpus)
346
+ ps = []
347
+ for idx, n_g in enumerate(gpus):
348
+ cmd = (
349
+ '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s True'
350
+ % (
351
+ config.python_cmd,
352
+ config.device,
353
+ leng,
354
+ idx,
355
+ n_g,
356
+ now_dir,
357
+ exp_dir,
358
+ version19,
359
+ )
360
+ )
361
+ logger.info(cmd)
362
+ p = Popen(
363
+ cmd, shell=True, cwd=now_dir
364
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
365
+ ps.append(p)
366
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
367
+ done = [False]
368
+ threading.Thread(
369
+ target=if_done_multi,
370
+ args=(
371
+ done,
372
+ ps,
373
+ ),
374
+ ).start()
375
+ while 1:
376
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
377
+ yield (f.read())
378
+ sleep(1)
379
+ if done[0]:
380
+ break
381
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
382
+ log = f.read()
383
+ logger.info(log)
384
+ yield log
385
+
386
+
387
+ def get_pretrained_models(path_str, f0_str, sr2):
388
+ if_pretrained_generator_exist = os.access(
389
+ "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
390
+ )
391
+ if_pretrained_discriminator_exist = os.access(
392
+ "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
393
+ )
394
+ if not if_pretrained_generator_exist:
395
+ logger.warn(
396
+ "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
397
+ path_str,
398
+ f0_str,
399
+ sr2,
400
+ )
401
+ if not if_pretrained_discriminator_exist:
402
+ logger.warn(
403
+ "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
404
+ path_str,
405
+ f0_str,
406
+ sr2,
407
+ )
408
+ return (
409
+ "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
410
+ if if_pretrained_generator_exist
411
+ else "",
412
+ "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
413
+ if if_pretrained_discriminator_exist
414
+ else "",
415
+ )
416
+
417
+
418
+ def change_sr2(sr2, if_f0_3, version19):
419
+ path_str = "" if version19 == "v1" else "_v2"
420
+ f0_str = "f0" if if_f0_3 else ""
421
+ return get_pretrained_models(path_str, f0_str, sr2)
422
+
423
+
424
+ def change_version19(sr2, if_f0_3, version19):
425
+ path_str = "" if version19 == "v1" else "_v2"
426
+ if sr2 == "32k" and version19 == "v1":
427
+ sr2 = "40k"
428
+ to_return_sr2 = (
429
+ {"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
430
+ if version19 == "v1"
431
+ else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
432
+ )
433
+ f0_str = "f0" if if_f0_3 else ""
434
+ return (
435
+ *get_pretrained_models(path_str, f0_str, sr2),
436
+ to_return_sr2,
437
+ )
438
+
439
+
440
+ def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
441
+ path_str = "" if version19 == "v1" else "_v2"
442
+ return (
443
+ {"visible": if_f0_3, "__type__": "update"},
444
+ *get_pretrained_models(path_str, "f0", sr2),
445
+ )
446
+
447
+
448
+ # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
449
+ def click_train(
450
+ exp_dir1,
451
+ sr2,
452
+ if_f0_3,
453
+ spk_id5,
454
+ save_epoch10,
455
+ total_epoch11,
456
+ batch_size12,
457
+ if_save_latest13,
458
+ pretrained_G14,
459
+ pretrained_D15,
460
+ gpus16,
461
+ if_cache_gpu17,
462
+ if_save_every_weights18,
463
+ version19,
464
+ ):
465
+ # 生成filelist
466
+ exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
467
+ os.makedirs(exp_dir, exist_ok=True)
468
+ gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
469
+ feature_dir = (
470
+ "%s/3_feature256" % (exp_dir)
471
+ if version19 == "v1"
472
+ else "%s/3_feature768" % (exp_dir)
473
+ )
474
+ if if_f0_3:
475
+ f0_dir = "%s/2a_f0" % (exp_dir)
476
+ f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
477
+ names = (
478
+ set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
479
+ & set([name.split(".")[0] for name in os.listdir(feature_dir)])
480
+ & set([name.split(".")[0] for name in os.listdir(f0_dir)])
481
+ & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
482
+ )
483
+ else:
484
+ names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
485
+ [name.split(".")[0] for name in os.listdir(feature_dir)]
486
+ )
487
+ opt = []
488
+ for name in names:
489
+ if if_f0_3:
490
+ opt.append(
491
+ "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
492
+ % (
493
+ gt_wavs_dir.replace("\\", "\\\\"),
494
+ name,
495
+ feature_dir.replace("\\", "\\\\"),
496
+ name,
497
+ f0_dir.replace("\\", "\\\\"),
498
+ name,
499
+ f0nsf_dir.replace("\\", "\\\\"),
500
+ name,
501
+ spk_id5,
502
+ )
503
+ )
504
+ else:
505
+ opt.append(
506
+ "%s/%s.wav|%s/%s.npy|%s"
507
+ % (
508
+ gt_wavs_dir.replace("\\", "\\\\"),
509
+ name,
510
+ feature_dir.replace("\\", "\\\\"),
511
+ name,
512
+ spk_id5,
513
+ )
514
+ )
515
+ fea_dim = 256 if version19 == "v1" else 768
516
+ if if_f0_3:
517
+ for _ in range(2):
518
+ opt.append(
519
+ "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
520
+ % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
521
+ )
522
+ else:
523
+ for _ in range(2):
524
+ opt.append(
525
+ "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
526
+ % (now_dir, sr2, now_dir, fea_dim, spk_id5)
527
+ )
528
+ shuffle(opt)
529
+ with open("%s/filelist.txt" % exp_dir, "w") as f:
530
+ f.write("\n".join(opt))
531
+ logger.debug("Write filelist done")
532
+ # 生成config#无需生成config
533
+ # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
534
+ logger.info("Use gpus: %s", str(gpus16))
535
+ if pretrained_G14 == "":
536
+ logger.info("No pretrained Generator")
537
+ if pretrained_D15 == "":
538
+ logger.info("No pretrained Discriminator")
539
+ if version19 == "v1" or sr2 == "40k":
540
+ config_path = "v1/%s.json" % sr2
541
+ else:
542
+ config_path = "v2/%s.json" % sr2
543
+ config_save_path = os.path.join(exp_dir, "config.json")
544
+ if not pathlib.Path(config_save_path).exists():
545
+ with open(config_save_path, "w", encoding="utf-8") as f:
546
+ json.dump(
547
+ config.json_config[config_path],
548
+ f,
549
+ ensure_ascii=False,
550
+ indent=4,
551
+ sort_keys=True,
552
+ )
553
+ f.write("\n")
554
+ if gpus16:
555
+ cmd = (
556
+ '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
557
+ % (
558
+ config.python_cmd,
559
+ exp_dir1,
560
+ sr2,
561
+ 1 if if_f0_3 else 0,
562
+ batch_size12,
563
+ gpus16,
564
+ total_epoch11,
565
+ save_epoch10,
566
+ "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
567
+ "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
568
+ 1 if if_save_latest13 == i18n("是") else 0,
569
+ 1 if if_cache_gpu17 == i18n("是") else 0,
570
+ 1 if if_save_every_weights18 == i18n("是") else 0,
571
+ version19,
572
+ )
573
+ )
574
+ else:
575
+ cmd = (
576
+ '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
577
+ % (
578
+ config.python_cmd,
579
+ exp_dir1,
580
+ sr2,
581
+ 1 if if_f0_3 else 0,
582
+ batch_size12,
583
+ total_epoch11,
584
+ save_epoch10,
585
+ "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
586
+ "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
587
+ 1 if if_save_latest13 == i18n("是") else 0,
588
+ 1 if if_cache_gpu17 == i18n("是") else 0,
589
+ 1 if if_save_every_weights18 == i18n("是") else 0,
590
+ version19,
591
+ )
592
+ )
593
+ logger.info(cmd)
594
+ p = Popen(cmd, shell=True, cwd=now_dir)
595
+ p.wait()
596
+ return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
597
+
598
+
599
+ # but4.click(train_index, [exp_dir1], info3)
600
+ def train_index(exp_dir1, version19):
601
+ # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
602
+ exp_dir = "logs/%s" % (exp_dir1)
603
+ os.makedirs(exp_dir, exist_ok=True)
604
+ feature_dir = (
605
+ "%s/3_feature256" % (exp_dir)
606
+ if version19 == "v1"
607
+ else "%s/3_feature768" % (exp_dir)
608
+ )
609
+ if not os.path.exists(feature_dir):
610
+ return "请先进行特征提取!"
611
+ listdir_res = list(os.listdir(feature_dir))
612
+ if len(listdir_res) == 0:
613
+ return "请先进行特征提取!"
614
+ infos = []
615
+ npys = []
616
+ for name in sorted(listdir_res):
617
+ phone = np.load("%s/%s" % (feature_dir, name))
618
+ npys.append(phone)
619
+ big_npy = np.concatenate(npys, 0)
620
+ big_npy_idx = np.arange(big_npy.shape[0])
621
+ np.random.shuffle(big_npy_idx)
622
+ big_npy = big_npy[big_npy_idx]
623
+ if big_npy.shape[0] > 2e5:
624
+ infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
625
+ yield "\n".join(infos)
626
+ try:
627
+ big_npy = (
628
+ MiniBatchKMeans(
629
+ n_clusters=10000,
630
+ verbose=True,
631
+ batch_size=256 * config.n_cpu,
632
+ compute_labels=False,
633
+ init="random",
634
+ )
635
+ .fit(big_npy)
636
+ .cluster_centers_
637
+ )
638
+ except:
639
+ info = traceback.format_exc()
640
+ logger.info(info)
641
+ infos.append(info)
642
+ yield "\n".join(infos)
643
+
644
+ np.save("%s/total_fea.npy" % exp_dir, big_npy)
645
+ n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
646
+ infos.append("%s,%s" % (big_npy.shape, n_ivf))
647
+ yield "\n".join(infos)
648
+ index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
649
+ # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
650
+ infos.append("training")
651
+ yield "\n".join(infos)
652
+ index_ivf = faiss.extract_index_ivf(index) #
653
+ index_ivf.nprobe = 1
654
+ index.train(big_npy)
655
+ faiss.write_index(
656
+ index,
657
+ "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
658
+ % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
659
+ )
660
+
661
+ infos.append("adding")
662
+ yield "\n".join(infos)
663
+ batch_size_add = 8192
664
+ for i in range(0, big_npy.shape[0], batch_size_add):
665
+ index.add(big_npy[i : i + batch_size_add])
666
+ faiss.write_index(
667
+ index,
668
+ "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
669
+ % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
670
+ )
671
+ infos.append(
672
+ "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
673
+ % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
674
+ )
675
+ # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
676
+ # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
677
+ yield "\n".join(infos)
678
+
679
+
680
+ # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
681
+ def train1key(
682
+ exp_dir1,
683
+ sr2,
684
+ if_f0_3,
685
+ trainset_dir4,
686
+ spk_id5,
687
+ np7,
688
+ f0method8,
689
+ save_epoch10,
690
+ total_epoch11,
691
+ batch_size12,
692
+ if_save_latest13,
693
+ pretrained_G14,
694
+ pretrained_D15,
695
+ gpus16,
696
+ if_cache_gpu17,
697
+ if_save_every_weights18,
698
+ version19,
699
+ gpus_rmvpe,
700
+ ):
701
+ infos = []
702
+
703
+ def get_info_str(strr):
704
+ infos.append(strr)
705
+ return "\n".join(infos)
706
+
707
+ ####### step1:处理数据
708
+ yield get_info_str(i18n("step1:正在处理数据"))
709
+ [get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
710
+
711
+ ####### step2a:提取音高
712
+ yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
713
+ [
714
+ get_info_str(_)
715
+ for _ in extract_f0_feature(
716
+ gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
717
+ )
718
+ ]
719
+
720
+ ####### step3a:训练模型
721
+ yield get_info_str(i18n("step3a:正在训练模型"))
722
+ click_train(
723
+ exp_dir1,
724
+ sr2,
725
+ if_f0_3,
726
+ spk_id5,
727
+ save_epoch10,
728
+ total_epoch11,
729
+ batch_size12,
730
+ if_save_latest13,
731
+ pretrained_G14,
732
+ pretrained_D15,
733
+ gpus16,
734
+ if_cache_gpu17,
735
+ if_save_every_weights18,
736
+ version19,
737
+ )
738
+ yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
739
+
740
+ ####### step3b:训练索引
741
+ [get_info_str(_) for _ in train_index(exp_dir1, version19)]
742
+ yield get_info_str(i18n("全流程结束!"))
743
+
744
+
745
+ # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
746
+ def change_info_(ckpt_path):
747
+ if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
748
+ return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
749
+ try:
750
+ with open(
751
+ ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
752
+ ) as f:
753
+ info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
754
+ sr, f0 = info["sample_rate"], info["if_f0"]
755
+ version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
756
+ return sr, str(f0), version
757
+ except:
758
+ traceback.print_exc()
759
+ return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
760
+
761
+
762
+ F0GPUVisible = config.dml == False
763
+
764
+
765
+ def change_f0_method(f0method8):
766
+ if f0method8 == "rmvpe_gpu":
767
+ visible = F0GPUVisible
768
+ else:
769
+ visible = False
770
+ return {"visible": visible, "__type__": "update"}
771
+
772
+ def find_model():
773
+ if len(names) > 0:
774
+ vc.get_vc(sorted(names)[0],None,None)
775
+ return sorted(names)[0]
776
+ else:
777
+ try:
778
+ gr.Info("Do not forget to choose a model.")
779
+ except:
780
+ pass
781
+ return ''
782
+
783
+ def find_audios(index=False):
784
+ audio_files=[]
785
+ if not os.path.exists('./audios'): os.mkdir("./audios")
786
+ for filename in os.listdir("./audios"):
787
+ if filename.endswith(('.wav','.mp3','.ogg')):
788
+ audio_files.append("./audios/"+filename)
789
+ if index:
790
+ if len(audio_files) > 0: return sorted(audio_files)[0]
791
+ else: return ""
792
+ elif len(audio_files) > 0: return sorted(audio_files)
793
+ else: return []
794
+
795
+ def get_index():
796
+ if find_model() != '':
797
+ chosen_model=sorted(names)[0].split(".")[0]
798
+ logs_path="./logs/"+chosen_model
799
+ if os.path.exists(logs_path):
800
+ for file in os.listdir(logs_path):
801
+ if file.endswith(".index"):
802
+ return os.path.join(logs_path, file)
803
+ return ''
804
+ else:
805
+ return ''
806
+
807
+ def get_indexes():
808
+ indexes_list=[]
809
+ for dirpath, dirnames, filenames in os.walk("./logs/"):
810
+ for filename in filenames:
811
+ if filename.endswith(".index"):
812
+ indexes_list.append(os.path.join(dirpath,filename))
813
+ if len(indexes_list) > 0:
814
+ return indexes_list
815
+ else:
816
+ return ''
817
+
818
+ def save_wav(file):
819
+ try:
820
+ file_path=file.name
821
+ shutil.move(file_path,'./audios')
822
+ return './audios/'+os.path.basename(file_path)
823
+ except AttributeError:
824
+ try:
825
+ new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
826
+ new_path='./audios/'+new_name
827
+ shutil.move(file,new_path)
828
+ return new_path
829
+ except TypeError:
830
+ return None
831
+
832
+ def download_from_url(url, model):
833
+ if model =='':
834
+ try:
835
+ model = url.split('/')[-1].split('?')[0]
836
+ except:
837
+ return "You need to name your model. For example: My-Model"
838
+ url=url.replace('/blob/main/','/resolve/main/')
839
+ model=model.replace('.pth','').replace('.index','').replace('.zip','')
840
+ if url == '':
841
+ return "URL cannot be left empty."
842
+ url = url.strip()
843
+ zip_dirs = ["zips", "unzips"]
844
+ for directory in zip_dirs:
845
+ if os.path.exists(directory):
846
+ shutil.rmtree(directory)
847
+ os.makedirs("zips", exist_ok=True)
848
+ os.makedirs("unzips", exist_ok=True)
849
+ zipfile = model + '.zip'
850
+ zipfile_path = './zips/' + zipfile
851
+ try:
852
+ if url.endswith('.pth'):
853
+ subprocess.run(["wget", url, "-O", f'./assets/weights/{model}.pth'])
854
+ return f"Sucessfully downloaded as {model}.pth"
855
+ if url.endswith('.index'):
856
+ if not os.path.exists(f'./logs/{model}'): os.makedirs(f'./logs/{model}')
857
+ subprocess.run(["wget", url, "-O", f'./logs/{model}/added_{model}.index'])
858
+ return f"Successfully downloaded as added_{model}.index"
859
+ if "drive.google.com" in url:
860
+ subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
861
+ elif "mega.nz" in url:
862
+ m = Mega()
863
+ m.download_url(url, './zips')
864
+ else:
865
+ subprocess.run(["wget", url, "-O", zipfile_path])
866
+ for filename in os.listdir("./zips"):
867
+ if filename.endswith(".zip"):
868
+ zipfile_path = os.path.join("./zips/",filename)
869
+ shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
870
+ else:
871
+ return "No zipfile found."
872
+ for root, dirs, files in os.walk('./unzips'):
873
+ for file in files:
874
+ file_path = os.path.join(root, file)
875
+ if file.endswith(".index"):
876
+ os.mkdir(f'./logs/{model}')
877
+ shutil.copy2(file_path,f'./logs/{model}')
878
+ elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
879
+ shutil.copy(file_path,f'./assets/weights/{model}.pth')
880
+ shutil.rmtree("zips")
881
+ shutil.rmtree("unzips")
882
+ return "Success."
883
+ except:
884
+ return "There's been an error."
885
+
886
+ def upload_to_dataset(files, dir):
887
+ if dir == '':
888
+ dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
889
+ if not os.path.exists(dir):
890
+ os.makedirs(dir)
891
+ for file in files:
892
+ path=file.name
893
+ shutil.copy2(path,dir)
894
+ try:
895
+ gr.Info(i18n("处理数据"))
896
+ except:
897
+ pass
898
+ return i18n("处理数据"), {"value":dir,"__type__":"update"}
899
+
900
+ def download_model_files(model):
901
+ model_found = False
902
+ index_found = False
903
+ if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
904
+ if os.path.exists(f'./logs/{model}'):
905
+ for file in os.listdir(f'./logs/{model}'):
906
+ if file.endswith('.index') and 'added' in file:
907
+ log_file = file
908
+ index_found = True
909
+ if model_found and index_found:
910
+ return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
911
+ elif model_found and not index_found:
912
+ return f'./assets/weights/{model}.pth', "Could not find Index file."
913
+ elif index_found and not model_found:
914
+ return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
915
+ else:
916
+ return None, f'Could not find {model}.pth or corresponding Index file.'
917
+
918
+ def update_visibility(visible):
919
+ if visible:
920
+ return {"visible":True,"__type__":"update"},{"visible":True,"__type__":"update"}
921
+ else:
922
+ return {"visible":False,"__type__":"update"},{"visible":False,"__type__":"update"}
923
+
924
+ def get_pretrains(string):
925
+ pretrains = []
926
+ for file in os.listdir('assets/pretrained_v2'):
927
+ if string in file:
928
+ pretrains.append(os.path.join('assets/pretrained_v2',file))
929
+ return pretrains
930
+
931
+ with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
932
+ with gr.Row():
933
+ gr.HTML("<img src='file/a.png' alt='image'>")
934
+ with gr.Tabs():
935
+ with gr.TabItem(i18n("模型推理")):
936
+ with gr.Row():
937
+ sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
938
+ refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
939
+ #clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
940
+ spk_item = gr.Slider(
941
+ minimum=0,
942
+ maximum=2333,
943
+ step=1,
944
+ label=i18n("请选择说话人id"),
945
+ value=0,
946
+ visible=False,
947
+ interactive=True,
948
+ )
949
+ #clean_button.click(
950
+ # fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
951
+ #)
952
+ vc_transform0 = gr.Number(
953
+ label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
954
+ )
955
+ but0 = gr.Button(i18n("转换"), variant="primary")
956
+ with gr.Row():
957
+ with gr.Column():
958
+ with gr.Row():
959
+ dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
960
+ with gr.Row():
961
+ record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
962
+ with gr.Row():
963
+ input_audio0 = gr.Dropdown(
964
+ label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
965
+ value=find_audios(True),
966
+ choices=find_audios()
967
+ )
968
+ record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
969
+ dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
970
+ with gr.Column():
971
+ with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
972
+ file_index2 = gr.Dropdown(
973
+ label=i18n("自动检测index路径,下拉式选择(dropdown)"),
974
+ choices=get_indexes(),
975
+ interactive=True,
976
+ value=get_index()
977
+ )
978
+ index_rate1 = gr.Slider(
979
+ minimum=0,
980
+ maximum=1,
981
+ label=i18n("检索特征占比"),
982
+ value=0.66,
983
+ interactive=True,
984
+ )
985
+ vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
986
+ with gr.Accordion(label=i18n("常规设置"), open=False):
987
+ f0method0 = gr.Radio(
988
+ label=i18n(
989
+ "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
990
+ ),
991
+ choices=["pm", "harvest", "crepe", "rmvpe"]
992
+ if config.dml == False
993
+ else ["pm", "harvest", "rmvpe"],
994
+ value="rmvpe",
995
+ interactive=True,
996
+ )
997
+ filter_radius0 = gr.Slider(
998
+ minimum=0,
999
+ maximum=7,
1000
+ label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
1001
+ value=3,
1002
+ step=1,
1003
+ interactive=True,
1004
+ )
1005
+ resample_sr0 = gr.Slider(
1006
+ minimum=0,
1007
+ maximum=48000,
1008
+ label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
1009
+ value=0,
1010
+ step=1,
1011
+ interactive=True,
1012
+ visible=False
1013
+ )
1014
+ rms_mix_rate0 = gr.Slider(
1015
+ minimum=0,
1016
+ maximum=1,
1017
+ label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
1018
+ value=0.21,
1019
+ interactive=True,
1020
+ )
1021
+ protect0 = gr.Slider(
1022
+ minimum=0,
1023
+ maximum=0.5,
1024
+ label=i18n(
1025
+ "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
1026
+ ),
1027
+ value=0.33,
1028
+ step=0.01,
1029
+ interactive=True,
1030
+ )
1031
+ file_index1 = gr.Textbox(
1032
+ label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
1033
+ value="",
1034
+ interactive=True,
1035
+ visible=False
1036
+ )
1037
+ refresh_button.click(
1038
+ fn=change_choices,
1039
+ inputs=[],
1040
+ outputs=[sid0, file_index2, input_audio0],
1041
+ api_name="infer_refresh",
1042
+ )
1043
+ # file_big_npy1 = gr.Textbox(
1044
+ # label=i18n("特征文件路径"),
1045
+ # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
1046
+ # interactive=True,
1047
+ # )
1048
+ with gr.Row():
1049
+ f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
1050
+ with gr.Row():
1051
+ vc_output1 = gr.Textbox(label=i18n("输出信息"))
1052
+ but0.click(
1053
+ vc.vc_single,
1054
+ [
1055
+ spk_item,
1056
+ input_audio0,
1057
+ vc_transform0,
1058
+ f0_file,
1059
+ f0method0,
1060
+ file_index1,
1061
+ file_index2,
1062
+ # file_big_npy1,
1063
+ index_rate1,
1064
+ filter_radius0,
1065
+ resample_sr0,
1066
+ rms_mix_rate0,
1067
+ protect0,
1068
+ ],
1069
+ [vc_output1, vc_output2],
1070
+ api_name="infer_convert",
1071
+ )
1072
+ with gr.Row():
1073
+ with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
1074
+ with gr.Row():
1075
+ opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
1076
+ vc_transform1 = gr.Number(
1077
+ label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
1078
+ )
1079
+ f0method1 = gr.Radio(
1080
+ label=i18n(
1081
+ "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
1082
+ ),
1083
+ choices=["pm", "harvest", "crepe", "rmvpe"]
1084
+ if config.dml == False
1085
+ else ["pm", "harvest", "rmvpe"],
1086
+ value="pm",
1087
+ interactive=True,
1088
+ )
1089
+ with gr.Row():
1090
+ filter_radius1 = gr.Slider(
1091
+ minimum=0,
1092
+ maximum=7,
1093
+ label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
1094
+ value=3,
1095
+ step=1,
1096
+ interactive=True,
1097
+ visible=False
1098
+ )
1099
+ with gr.Row():
1100
+ file_index3 = gr.Textbox(
1101
+ label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
1102
+ value="",
1103
+ interactive=True,
1104
+ visible=False
1105
+ )
1106
+ file_index4 = gr.Dropdown(
1107
+ label=i18n("自动检测index路径,下拉式选择(dropdown)"),
1108
+ choices=sorted(index_paths),
1109
+ interactive=True,
1110
+ visible=False
1111
+ )
1112
+ refresh_button.click(
1113
+ fn=lambda: change_choices()[1],
1114
+ inputs=[],
1115
+ outputs=file_index4,
1116
+ api_name="infer_refresh_batch",
1117
+ )
1118
+ # file_big_npy2 = gr.Textbox(
1119
+ # label=i18n("特征文件路径"),
1120
+ # value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
1121
+ # interactive=True,
1122
+ # )
1123
+ index_rate2 = gr.Slider(
1124
+ minimum=0,
1125
+ maximum=1,
1126
+ label=i18n("检索特征占比"),
1127
+ value=1,
1128
+ interactive=True,
1129
+ visible=False
1130
+ )
1131
+ with gr.Row():
1132
+ resample_sr1 = gr.Slider(
1133
+ minimum=0,
1134
+ maximum=48000,
1135
+ label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
1136
+ value=0,
1137
+ step=1,
1138
+ interactive=True,
1139
+ visible=False
1140
+ )
1141
+ rms_mix_rate1 = gr.Slider(
1142
+ minimum=0,
1143
+ maximum=1,
1144
+ label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
1145
+ value=0.21,
1146
+ interactive=True,
1147
+ )
1148
+ protect1 = gr.Slider(
1149
+ minimum=0,
1150
+ maximum=0.5,
1151
+ label=i18n(
1152
+ "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
1153
+ ),
1154
+ value=0.33,
1155
+ step=0.01,
1156
+ interactive=True,
1157
+ )
1158
+ with gr.Row():
1159
+ dir_input = gr.Textbox(
1160
+ label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
1161
+ value="./audios",
1162
+ )
1163
+ inputs = gr.File(
1164
+ file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
1165
+ )
1166
+ with gr.Row():
1167
+ format1 = gr.Radio(
1168
+ label=i18n("导出文件格式"),
1169
+ choices=["wav", "flac", "mp3", "m4a"],
1170
+ value="wav",
1171
+ interactive=True,
1172
+ )
1173
+ but1 = gr.Button(i18n("转换"), variant="primary")
1174
+ vc_output3 = gr.Textbox(label=i18n("输出信息"))
1175
+ but1.click(
1176
+ vc.vc_multi,
1177
+ [
1178
+ spk_item,
1179
+ dir_input,
1180
+ opt_input,
1181
+ inputs,
1182
+ vc_transform1,
1183
+ f0method1,
1184
+ file_index1,
1185
+ file_index2,
1186
+ # file_big_npy2,
1187
+ index_rate1,
1188
+ filter_radius1,
1189
+ resample_sr1,
1190
+ rms_mix_rate1,
1191
+ protect1,
1192
+ format1,
1193
+ ],
1194
+ [vc_output3],
1195
+ api_name="infer_convert_batch",
1196
+ )
1197
+ sid0.change(
1198
+ fn=vc.get_vc,
1199
+ inputs=[sid0, protect0, protect1],
1200
+ outputs=[spk_item, protect0, protect1, file_index2, file_index4],
1201
+ )
1202
+ with gr.TabItem("Download Model"):
1203
+ with gr.Row():
1204
+ url=gr.Textbox(label="Enter the URL to the Model:")
1205
+ with gr.Row():
1206
+ model = gr.Textbox(label="Name your model:")
1207
+ download_button=gr.Button("Download")
1208
+ with gr.Row():
1209
+ status_bar=gr.Textbox(label="")
1210
+ download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
1211
+ with gr.Row():
1212
+ gr.Markdown(
1213
+ """
1214
+ ❤️ If you use this and like it, help me keep it.❤️
1215
+ https://paypal.me/lesantillan
1216
+ """
1217
+ )
1218
+ with gr.TabItem(i18n("训练")):
1219
+ with gr.Row():
1220
+ with gr.Column():
1221
+ exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
1222
+ np7 = gr.Slider(
1223
+ minimum=0,
1224
+ maximum=config.n_cpu,
1225
+ step=1,
1226
+ label=i18n("提取音高和处理数据使用的CPU进程数"),
1227
+ value=int(np.ceil(config.n_cpu / 1.5)),
1228
+ interactive=True,
1229
+ )
1230
+ sr2 = gr.Radio(
1231
+ label=i18n("目标采样率"),
1232
+ choices=["40k", "32k"],
1233
+ value="40k",
1234
+ interactive=True,
1235
+ visible=True
1236
+ )
1237
+ if_f0_3 = gr.Radio(
1238
+ label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
1239
+ choices=[True, False],
1240
+ value=True,
1241
+ interactive=True,
1242
+ visible=False
1243
+ )
1244
+ version19 = gr.Radio(
1245
+ label=i18n("版本"),
1246
+ choices=["v1", "v2"],
1247
+ value="v2",
1248
+ interactive=True,
1249
+ visible=False,
1250
+ )
1251
+ trainset_dir4 = gr.Textbox(
1252
+ label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
1253
+ )
1254
+ easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
1255
+ but1 = gr.Button(i18n("处理数据"), variant="primary")
1256
+ info1 = gr.Textbox(label=i18n("输出信息"), value="")
1257
+ easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
1258
+ gpus6 = gr.Textbox(
1259
+ label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1260
+ value=gpus,
1261
+ interactive=True,
1262
+ visible=F0GPUVisible,
1263
+ )
1264
+ gpu_info9 = gr.Textbox(
1265
+ label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
1266
+ )
1267
+ spk_id5 = gr.Slider(
1268
+ minimum=0,
1269
+ maximum=4,
1270
+ step=1,
1271
+ label=i18n("请指定说话人id"),
1272
+ value=0,
1273
+ interactive=True,
1274
+ visible=False
1275
+ )
1276
+ but1.click(
1277
+ preprocess_dataset,
1278
+ [trainset_dir4, exp_dir1, sr2, np7],
1279
+ [info1],
1280
+ api_name="train_preprocess",
1281
+ )
1282
+ with gr.Column():
1283
+ f0method8 = gr.Radio(
1284
+ label=i18n(
1285
+ "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
1286
+ ),
1287
+ choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
1288
+ value="rmvpe_gpu",
1289
+ interactive=True,
1290
+ )
1291
+ gpus_rmvpe = gr.Textbox(
1292
+ label=i18n(
1293
+ "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
1294
+ ),
1295
+ value="%s-%s" % (gpus, gpus),
1296
+ interactive=True,
1297
+ visible=F0GPUVisible,
1298
+ )
1299
+ but2 = gr.Button(i18n("特征提取"), variant="primary")
1300
+ info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1301
+ f0method8.change(
1302
+ fn=change_f0_method,
1303
+ inputs=[f0method8],
1304
+ outputs=[gpus_rmvpe],
1305
+ )
1306
+ but2.click(
1307
+ extract_f0_feature,
1308
+ [
1309
+ gpus6,
1310
+ np7,
1311
+ f0method8,
1312
+ if_f0_3,
1313
+ exp_dir1,
1314
+ version19,
1315
+ gpus_rmvpe,
1316
+ ],
1317
+ [info2],
1318
+ api_name="train_extract_f0_feature",
1319
+ )
1320
+ with gr.Column():
1321
+ total_epoch11 = gr.Slider(
1322
+ minimum=2,
1323
+ maximum=1000,
1324
+ step=1,
1325
+ label=i18n("总训练轮数total_epoch"),
1326
+ value=150,
1327
+ interactive=True,
1328
+ )
1329
+ gpus16 = gr.Textbox(
1330
+ label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1331
+ value="0",
1332
+ interactive=True,
1333
+ visible=True
1334
+ )
1335
+ but3 = gr.Button(i18n("训练模型"), variant="primary")
1336
+ but4 = gr.Button(i18n("训练特征索引"), variant="primary")
1337
+ info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
1338
+ with gr.Accordion(label=i18n("常规设置"), open=False):
1339
+ save_epoch10 = gr.Slider(
1340
+ minimum=1,
1341
+ maximum=50,
1342
+ step=1,
1343
+ label=i18n("保存频率save_every_epoch"),
1344
+ value=25,
1345
+ interactive=True,
1346
+ )
1347
+ batch_size12 = gr.Slider(
1348
+ minimum=1,
1349
+ maximum=40,
1350
+ step=1,
1351
+ label=i18n("每张显卡的batch_size"),
1352
+ value=default_batch_size,
1353
+ interactive=True,
1354
+ )
1355
+ if_save_latest13 = gr.Radio(
1356
+ label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
1357
+ choices=[i18n("是"), i18n("否")],
1358
+ value=i18n("是"),
1359
+ interactive=True,
1360
+ visible=False
1361
+ )
1362
+ if_cache_gpu17 = gr.Radio(
1363
+ label=i18n(
1364
+ "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
1365
+ ),
1366
+ choices=[i18n("是"), i18n("否")],
1367
+ value=i18n("否"),
1368
+ interactive=True,
1369
+ )
1370
+ if_save_every_weights18 = gr.Radio(
1371
+ label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
1372
+ choices=[i18n("是"), i18n("否")],
1373
+ value=i18n("是"),
1374
+ interactive=True,
1375
+ )
1376
+ display_advanced_settings = gr.Checkbox(
1377
+ value=False,
1378
+ label="Advanced Settings"
1379
+ )
1380
+ pretrained_G14 = gr.Dropdown(
1381
+ label=i18n("加载预训练底模G路径"),
1382
+ value="assets/pretrained_v2/f0G40k.pth",
1383
+ choices=get_pretrains('G'),
1384
+ interactive=True,
1385
+ visible=False
1386
+ )
1387
+ pretrained_D15 = gr.Dropdown(
1388
+ label=i18n("加载预训练底模D路径"),
1389
+ value="assets/pretrained_v2/f0D40k.pth",
1390
+ interactive=True,
1391
+ choices=get_pretrains('D'),
1392
+ visible=False
1393
+ )
1394
+ display_advanced_settings.change(fn=update_visibility,inputs=[display_advanced_settings],outputs=[pretrained_G14,pretrained_D15])
1395
+ with gr.Row():
1396
+ download_model = gr.Button('5.Download Model')
1397
+ with gr.Row():
1398
+ model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
1399
+ download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3])
1400
+ with gr.Row():
1401
+ sr2.change(
1402
+ change_sr2,
1403
+ [sr2, if_f0_3, version19],
1404
+ [pretrained_G14, pretrained_D15],
1405
+ )
1406
+ version19.change(
1407
+ change_version19,
1408
+ [sr2, if_f0_3, version19],
1409
+ [pretrained_G14, pretrained_D15, sr2],
1410
+ )
1411
+ if_f0_3.change(
1412
+ change_f0,
1413
+ [if_f0_3, sr2, version19],
1414
+ [f0method8, pretrained_G14, pretrained_D15],
1415
+ )
1416
+ with gr.Row():
1417
+ but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
1418
+ but3.click(
1419
+ click_train,
1420
+ [
1421
+ exp_dir1,
1422
+ sr2,
1423
+ if_f0_3,
1424
+ spk_id5,
1425
+ save_epoch10,
1426
+ total_epoch11,
1427
+ batch_size12,
1428
+ if_save_latest13,
1429
+ pretrained_G14,
1430
+ pretrained_D15,
1431
+ gpus16,
1432
+ if_cache_gpu17,
1433
+ if_save_every_weights18,
1434
+ version19,
1435
+ ],
1436
+ info3,
1437
+ api_name="train_start",
1438
+ )
1439
+ but4.click(train_index, [exp_dir1, version19], info3)
1440
+ but5.click(
1441
+ train1key,
1442
+ [
1443
+ exp_dir1,
1444
+ sr2,
1445
+ if_f0_3,
1446
+ trainset_dir4,
1447
+ spk_id5,
1448
+ np7,
1449
+ f0method8,
1450
+ save_epoch10,
1451
+ total_epoch11,
1452
+ batch_size12,
1453
+ if_save_latest13,
1454
+ pretrained_G14,
1455
+ pretrained_D15,
1456
+ gpus16,
1457
+ if_cache_gpu17,
1458
+ if_save_every_weights18,
1459
+ version19,
1460
+ gpus_rmvpe,
1461
+ ],
1462
+ info3,
1463
+ api_name="train_start_all",
1464
+ )
1465
+
1466
+ if config.iscolab:
1467
+ app.queue().launch(share=True,debug=True)
1468
+ else:
1469
+ app.queue().launch(
1470
+ server_name="0.0.0.0",
1471
+ inbrowser=not config.noautoopen,
1472
+ server_port=config.listen_port,
1473
+ quiet=True,
1474
+ )
astronauts.mp3 ADDED
Binary file (73.6 kB). View file
 
download_files.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess, os
2
+ assets_folder = "./assets/"
3
+ if not os.path.exists(assets_folder):
4
+ os.makedirs(assets_folder)
5
+ files = {
6
+ "rmvpe/rmvpe.pt":"https://huggingface.co/Rejekts/project/resolve/main/rmvpe.pt",
7
+ "hubert/hubert_base.pt":"https://huggingface.co/Rejekts/project/resolve/main/hubert_base.pt"
8
+ }
9
+ for file, link in files.items():
10
+ file_path = os.path.join(assets_folder, file)
11
+ if not os.path.exists(file_path):
12
+ try:
13
+ subprocess.run(['wget', link, '-O', file_path], check=True)
14
+ except subprocess.CalledProcessError as e:
15
+ print(f"Error downloading {file}: {e}")
easy_sync.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess, time, threading
2
+ from typing import List, Union
3
+ import os, shutil, fnmatch
4
+
5
+ class Channel:
6
+ def __init__(self,source,destination,sync_deletions=False,every=60,exclude: Union[str, List, None] = None):
7
+ self.source = source
8
+ self.destination = destination
9
+ self.event = threading.Event()
10
+ self.syncing_thread = threading.Thread(target=self._sync,args=())
11
+ self.sync_deletions = sync_deletions
12
+ self.every = every
13
+ if not exclude:
14
+ exclude = []
15
+ if isinstance(exclude,str):
16
+ exclude = [exclude]
17
+ self.exclude = exclude
18
+ self.command = ['rsync','-aP']
19
+
20
+ def alive(self):#Check if the thread is alive
21
+ if self.syncing_thread.is_alive():
22
+ return True
23
+ else:
24
+ return False
25
+
26
+ def _sync(self):#Sync constantly
27
+ command = self.command
28
+ for exclusion in self.exclude:
29
+ command.append(f'--exclude={exclusion}')
30
+ command.extend([f'{self.source}/',f'{self.destination}/'])
31
+ if self.sync_deletions:
32
+ command.append('--delete')
33
+ while not self.event.is_set():
34
+ subprocess.run(command)
35
+ time.sleep(self.every)
36
+
37
+ def copy(self):#Sync once
38
+ command = self.command
39
+ for exclusion in self.exclude:
40
+ command.append(f'--exclude={exclusion}')
41
+ command.extend([f'{self.source}/',f'{self.destination}/'])
42
+ if self.sync_deletions:
43
+ command.append('--delete')
44
+ subprocess.run(command)
45
+ return True
46
+
47
+ def start(self):#Handle threads
48
+ if self.syncing_thread.is_alive():#Check if it's running
49
+ self.event.set()
50
+ self.syncing_thread.join()
51
+ if self.event.is_set():
52
+ self.event.clear()
53
+ if self.syncing_thread._started.is_set():#If it has been started before
54
+ self.syncing_thread = threading.Thread(target=self._sync,args=())#Create a FRESH thread
55
+ self.syncing_thread.start()#Start the thread
56
+ return self.alive()
57
+
58
+ def stop(self):#Stop the thread and close the process
59
+ if self.alive():
60
+ self.event.set()
61
+ self.syncing_thread.join()
62
+ while self.alive():
63
+ if not self.alive():
64
+ break
65
+ return not self.alive()
66
+
67
+ class GarbageMan:
68
+ def __init__(self) -> None:
69
+ self.thread = threading.Thread(target=self.take_out,args=())
70
+ self.event = threading.Event()
71
+
72
+ def destroy(self, trash):
73
+ if not isinstance(trash,dict):
74
+ if os.path.isdir(os.path.join(self.path,trash)):
75
+ shutil.rmtree(os.path.join(self.path,trash))
76
+ elif os.path.isfile(os.path.join(self.path,trash)):
77
+ os.remove(os.path.join(self.path,trash))
78
+ else:
79
+ trash.Delete()
80
+
81
+ def take_out(self) -> None:
82
+ while not self.event.is_set():
83
+ for object in self.garbage:
84
+ trash = object["title"] if isinstance(object,dict) else object
85
+ if fnmatch.fnmatch(trash,self.pattern):
86
+ self.destroy(object)
87
+ time.sleep(self.every)
88
+
89
+ def stop(self) -> None:
90
+ if not self.event.is_set():
91
+ self.event.set()
92
+ self.thread.join()
93
+ self.event.clear()
94
+ if self.thread._started.is_set():
95
+ self.thread = threading.Thread(target=self.take_out,args=())
96
+
97
+ def start(self,path: Union[str,List],every:int=30,pattern: str='') -> None:
98
+ if isinstance(path,list):
99
+ self.path = None
100
+ self.garbage = path
101
+ elif isinstance(path,str):
102
+ self.path = path
103
+ self.garbage = os.listdir(path)
104
+ else:
105
+ return "Error"
106
+ self.every = every
107
+ self.pattern = pattern
108
+ if self.thread.is_alive():
109
+ self.stop()
110
+ self.thread.start()
111
+
112
+ def _fake(self, trash):
113
+ if not isinstance(trash,dict):
114
+ if os.path.isdir(os.path.join(self.path,trash)):
115
+ with open("log.txt","a") as f:
116
+ f.write(f"Fake deleted dir: {trash}")
117
+ elif os.path.isfile(os.path.join(self.path,trash)):
118
+ with open("log.txt","a") as f:
119
+ f.write(f"Fake deleted file: {trash}")
120
+ else:
121
+ with open("log.txt","a") as f:
122
+ f.write(f"Fake permanently deleted: {trash['title']}")
f0D32k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd7134e7793674c85474d5145d2d982e3c5d8124fc7bb6c20f710ed65808fa8a
3
+ size 142875703
f0D40k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6ab091e70801b28e3f41f335f2fc5f3f35c75b39ae2628d419644ec2b0fa09
3
+ size 142875703
f0G32k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2332611297b8d88c7436de8f17ef5f07a2119353e962cd93cda5806d59a1133d
3
+ size 73950049
f0G40k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b2c44035e782c4b14ddc0bede9e2f4a724d025cd073f736d4f43708453adfcb
3
+ size 73106273
hubert_base.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
3
+ size 189507909
project-main.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcfb833d0514f8d3558abb5fca9975f9093c75ff7b316fd395e2b80e358a3769
3
+ size 1510847
rmvpe.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962
3
+ size 181189687
somegirl.mp3 ADDED
Binary file (32.2 kB). View file
 
someguy.mp3 ADDED
Binary file (24.9 kB). View file
 
unachica.mp3 ADDED
Binary file (36.4 kB). View file
 
unchico.mp3 ADDED
Binary file (35.9 kB). View file