File size: 13,870 Bytes
3464aee
cf4c061
 
 
 
 
 
 
 
 
 
3464aee
 
cf4c061
 
3464aee
cf4c061
3464aee
cf4c061
 
 
 
3464aee
cf4c061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3464aee
cf4c061
 
 
3464aee
 
cf4c061
3464aee
cf4c061
3464aee
cf4c061
3464aee
cf4c061
3464aee
cf4c061
 
 
 
 
 
 
 
 
 
 
 
 
3464aee
cf4c061
3464aee
cf4c061
 
 
 
 
 
 
3464aee
 
cf4c061
3464aee
cf4c061
 
 
 
 
3464aee
 
cf4c061
3464aee
cf4c061
3464aee
 
cf4c061
 
 
 
 
 
 
 
3464aee
 
 
 
cf4c061
3464aee
 
cf4c061
 
 
 
 
 
 
 
 
 
 
3464aee
 
 
 
cf4c061
3464aee
cf4c061
3464aee
cf4c061
 
 
 
 
 
 
 
3464aee
 
 
cf4c061
3464aee
 
cf4c061
 
 
 
 
 
 
 
 
 
 
3464aee
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
---
base_model: meta-llama/Llama-3.2-3B
library_name: peft
license: llama3.2
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: code-knowledge-eval
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-3.2-3B-Code-Knowledge-Value-Eval-lora

This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the [kimsan0622/code-knowledge-eval](https://huggingface.co/datasets/kimsan0622/code-knowledge-eval) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9173
- Accuracy: 0.5945

## **Model Description**
The model trained on the **Code Knowledge Value Evaluation Dataset** is designed to assess the educational and knowledge value of code snippets. It leverages patterns and contextual information from a large collection of open-source code, sourced from the `bigcode/the-stack` repository. By analyzing these code samples, the model can evaluate their utility in teaching coding concepts, solving problems, and improving developer education.

The model focuses on understanding the structure, syntax, and logic of various programming languages, enabling it to provide insights into the learning potential and technical depth of different code samples. The dataset used for training consists of 22,786 samples for training, 4,555 for validation, and 18,232 for testing, ensuring that the model is both robust and well-generalized across different coding contexts.

## **Intended Uses & Limitations**
### **Intended Uses**:
1. **Automated Code Review**: The model can be applied in automated systems to assess the knowledge value of code during code review processes. It can help identify areas where code could be optimized for better readability, maintainability, and educational impact.
2. **Educational Feedback**: For instructors and educational platforms, the model can offer feedback on the effectiveness of code samples used in teaching, helping to improve curriculum materials and select code that best conveys core programming concepts.
3. **Curriculum Development**: The model can aid in designing coding courses or instructional materials by suggesting code examples that have higher educational value, supporting a more effective learning experience.
4. **Technical Skill Assessment**: Organizations or platforms can use the model to assess the complexity and educational value of code submissions in coding challenges or exams.

### **Limitations**:
1. **Narrow Scope in Knowledge Evaluation**: The model is specialized in evaluating code from an educational standpoint, focusing primarily on learning potential rather than production-level code quality (e.g., performance optimization or security).
2. **Language and Domain Limitations**: Since the dataset is sourced from `bigcode/the-stack`, it may not cover all programming languages or specialized domains. The model may perform less effectively in underrepresented languages or niche coding styles not well-represented in the dataset.
3. **Not Suitable for All Educational Levels**: While the model is designed to evaluate code for educational purposes, its outputs may be better suited for certain levels (e.g., beginner or intermediate coding), and its recommendations might not fully cater to advanced or highly specialized learners.



## How to use this model?

```python
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel, PeftConfig

# Define the model name or path for loading the tokenizer and model using LoRA fine-tuning
model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval-lora"

# Load the PEFT (Parameter-Efficient Fine-Tuning) configuration from the pretrained model
config = PeftConfig.from_pretrained(model_name_or_path)

# Load the base model for sequence classification, setting up for 6 possible labels
inference_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,  # Base model path
    device_map="cuda:0",  # Use the first CUDA device for inference
    label2id={str(k): k for k in range(6)},  # Map label names (0-5) to IDs
    id2label={k: str(k) for k in range(6)},  # Map label IDs to names (0-5)
    num_labels=6,  # Define the number of labels for classification (0 to 5)
)

# Load the tokenizer for the base model
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Set the padding token if it is not already defined, matching it with the EOS token
if not tokenizer.pad_token_id: 
    tokenizer.pad_token_id = tokenizer.eos_token_id
    inference_model.config.pad_token_id = inference_model.config.eos_token_id

# Load the PEFT model using the pre-trained LoRA model and the base model
model = PeftModel.from_pretrained(inference_model, model_name_or_path)

# Sample code input to evaluate
code = [
"""
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel, PeftConfig

# Define the model name or path for loading the tokenizer and model using LoRA fine-tuning
model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval-lora"

# Load the PEFT (Parameter-Efficient Fine-Tuning) configuration from the pretrained model
config = PeftConfig.from_pretrained(model_name_or_path)

# Load the base model for sequence classification, setting up for 6 possible labels
inference_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,  # Base model path
    device_map="cuda:0",  # Use the first CUDA device for inference
    label2id={str(k): k for k in range(6)},  # Map label names (0-5) to IDs
    id2label={k: str(k) for k in range(6)},  # Map label IDs to names (0-5)
    num_labels=6,  # Define the number of labels for classification (0 to 5)
)

# Load the tokenizer for the base model
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Set the padding token if it is not already defined, matching it with the EOS token
if not tokenizer.pad_token_id: 
    tokenizer.pad_token_id = tokenizer.eos_token_id
    inference_model.config.pad_token_id = inference_model.config.eos_token_id

# Load the PEFT model using the pre-trained LoRA model and the base model
model = PeftModel.from_pretrained(inference_model, model_name_or_path)

# Sample code input to evaluate
code = ["code"]

# Tokenize the input code, setting the maximum length and ensuring proper padding and truncation
batch = tokenizer(code, max_length=1024, padding=True, truncation=True, return_tensors="pt")

# Perform inference without computing gradients for faster processing
with torch.no_grad():
    # Pass the input IDs and attention mask to the model for prediction
    res = model(
            input_ids=batch["input_ids"].to("cuda:0"),
            attention_mask=batch["attention_mask"].to("cuda:0"),
        )
    
    # Move the logits to the CPU and convert them to a numpy array
    preds = res.logits.cpu().numpy()
    
    # Get the predicted label by taking the argmax of the logits
    preds = np.argmax(preds, axis=1).tolist()
    
    # Print the predicted labels
    print(preds)
"""
]

# Tokenize the input code, setting the maximum length and ensuring proper padding and truncation
batch = tokenizer(code, max_length=1024, padding=True, truncation=True, return_tensors="pt")

# Perform inference without computing gradients for faster processing
with torch.no_grad():
    # Pass the input IDs and attention mask to the model for prediction
    res = model(
            input_ids=batch["input_ids"].to("cuda:0"),
            attention_mask=batch["attention_mask"].to("cuda:0"),
        )
    
    # Move the logits to the CPU and convert them to a numpy array
    preds = res.logits.cpu().numpy()
    
    # Get the predicted label by taking the argmax of the logits
    preds = np.argmax(preds, axis=1).tolist()
    
    # Print the predicted labels
    print(preds)

```

### 8 Bit quantization

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BitsAndBytesConfig
from peft import PeftModel, PeftConfig

# Define the model name or path for loading the LoRA fine-tuned model
model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval-lora"

# Configure the model to load in 8-bit precision to optimize memory usage and speed
bnb_config = BitsAndBytesConfig(load_in_8bit=True)

# Load the PEFT (Parameter-Efficient Fine-Tuning) configuration from the pre-trained model
config = PeftConfig.from_pretrained(model_path)

# Load the base model for sequence classification with 8-bit quantization and a device map to the first CUDA device
inference_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,   # Base model path from PEFT config
    quantization_config=bnb_config,   # Apply 8-bit quantization for memory efficiency
    device_map="cuda:0",              # Map the model to the first CUDA device
    label2id={str(k): k for k in range(6)},  # Map label names (0-5) to label IDs
    id2label={k: str(k) for k in range(6)},  # Map label IDs to label names (0-5)
    num_labels=6,  # Specify the number of labels for classification
)

# Load the tokenizer associated with the base model
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Set the padding token if it's not defined, using the EOS token as the fallback
if not tokenizer.pad_token_id: 
    tokenizer.pad_token_id = tokenizer.eos_token_id
    inference_model.config.pad_token_id = inference_model.config.eos_token_id

# Load the PEFT model by applying LoRA (Low-Rank Adaptation) on top of the base model
model = PeftModel.from_pretrained(inference_model, model_path)
```


## Training and evaluation data

[kimsan0622/code-knowledge-eval](https://huggingface.co/datasets/kimsan0622/code-knowledge-eval)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9527        | 0.9993 | 178  | 0.9795          | 0.5568   |
| 0.8867        | 1.9986 | 356  | 0.9173          | 0.5945   |
| 0.7937        | 2.9979 | 534  | 0.9297          | 0.5982   |
| 0.6486        | 3.9972 | 712  | 1.0171          | 0.5932   |
| 0.5555        | 4.9965 | 890  | 1.0441          | 0.5945   |


### Framework versions

- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.20.0
- Tokenizers 0.19.1


## Test set results

### Confusion matrix


| y_true |**pred_0**|**pred_1**|**pred_2**|**pred_3**|**pred_4**|**pred_5**|
|-------|-------|-------|-------|-------|-------|-------|
|   0   | 1112  |  155  |   75  |   35  |   0   |   0   |
|   1   |  413  |  327  |  274  |  226  |   3   |   1   |
|   2   |  151  |  207  |  433  |  941  |  37   |   5   |
|   3   |   71  |   79  |  298  | 3490  |  928  |  59   |
|   4   |   14  |    1  |   24  | 1735  | 3334  | 1216  |
|   5   |    1  |    0  |    2  |   77  |  591  | 1917  |




### Classification reports


|    y_true     | **precision** | **recall** | **f1-score** | **support** |
|:-------------:|:-------------:|:----------:|:------------:|:-----------:|
|       0       |     0.63      |    0.81    |     0.71     |    1377     |
|       1       |     0.43      |    0.26    |     0.32     |    1244     |
|       2       |     0.39      |    0.24    |     0.30     |    1774     |
|       3       |     0.54      |    0.71    |     0.61     |    4925     |
|       4       |     0.68      |    0.53    |     0.59     |    6324     |
|       5       |     0.60      |    0.74    |     0.66     |    2588     |
|  **accuracy** |               |            |     0.58     |   18232     |
|  **macro avg**|     0.54      |    0.55    |     0.53     |   18232     |
| **weighted avg** |  0.58      |    0.58    |     0.57     |   18232     |




## 8 bit quantization

### Confusion matrix

| y_true |**pred_0**|**pred_1**|**pred_2**|**pred_3**|**pred_4**|**pred_5**|
|-------|-------|-------|-------|-------|-------|-------|
|   0   | 1107  |  169  |   71  |   29  |    1  |   0   |
|   1   |  396  |  359  |  273  |  213  |    2  |   1   |
|   2   |  143  |  234  |  418  |  938  |   36  |   5   |
|   3   |   66  |   97  |  301  | 3516  |  888  |  57   |
|   4   |   12  |    3  |   24  | 1799  | 3315  | 1171  |
|   5   |    1  |    0  |    2  |   81  |  610  | 1894  |



### Classification reports


|    y_true     | **precision** | **recall** | **f1-score** | **support** |
|:-------------:|:-------------:|:----------:|:------------:|:-----------:|
|       0       |     0.64      |    0.80    |     0.71     |    1377     |
|       1       |     0.42      |    0.29    |     0.34     |    1244     |
|       2       |     0.38      |    0.24    |     0.29     |    1774     |
|       3       |     0.53      |    0.71    |     0.61     |    4925     |
|       4       |     0.68      |    0.52    |     0.59     |    6324     |
|       5       |     0.61      |    0.73    |     0.66     |    2588     |
|  **accuracy** |               |            |     0.58     |   18232     |
|  **macro avg**|     0.54      |    0.55    |     0.54     |   18232     |
| **weighted avg** |  0.58      |    0.58    |     0.57     |   18232     |