main.py
CHANGED
@@ -1,250 +1,262 @@
|
|
1 |
-
import json
|
2 |
-
import transformers
|
3 |
-
import textwrap
|
4 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM
|
5 |
-
import os
|
6 |
-
import sys
|
7 |
-
from typing import List
|
8 |
-
|
9 |
-
from peft import (
|
10 |
-
LoraConfig,
|
11 |
-
get_peft_model,
|
12 |
-
get_peft_model_state_dict,
|
13 |
-
prepare_model_for_int8_training,
|
14 |
-
)
|
15 |
-
|
16 |
-
import fire
|
17 |
-
import torch
|
18 |
-
from datasets import load_dataset
|
19 |
-
import pandas as pd
|
20 |
-
|
21 |
-
import matplotlib.pyplot as plt
|
22 |
-
import matplotlib as mpl
|
23 |
-
import seaborn as sns
|
24 |
-
from pylab import rcParams
|
25 |
-
|
26 |
-
sns.set(rc={'figure.figsize': (10, 7)})
|
27 |
-
sns.set(rc={'figure.dpi': 100})
|
28 |
-
sns.set(style='white', palette='muted', font_scale=1.2)
|
29 |
-
|
30 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"
|
66 |
-
"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
"
|
80 |
-
"
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
print(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
"transformer.
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"transformer.
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
quantization_config=quantization_config,
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
###
|
133 |
-
{data_point["
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
result["input_ids"]
|
153 |
-
result["
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
model
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
print(
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
print("Done saving model...")
|
|
|
1 |
+
import json
|
2 |
+
import transformers
|
3 |
+
import textwrap
|
4 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
from peft import (
|
10 |
+
LoraConfig,
|
11 |
+
get_peft_model,
|
12 |
+
get_peft_model_state_dict,
|
13 |
+
prepare_model_for_int8_training,
|
14 |
+
)
|
15 |
+
|
16 |
+
import fire
|
17 |
+
import torch
|
18 |
+
from datasets import load_dataset
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import matplotlib as mpl
|
23 |
+
import seaborn as sns
|
24 |
+
from pylab import rcParams
|
25 |
+
|
26 |
+
sns.set(rc={'figure.figsize': (10, 7)})
|
27 |
+
sns.set(rc={'figure.dpi': 100})
|
28 |
+
sns.set(style='white', palette='muted', font_scale=1.2)
|
29 |
+
|
30 |
+
#DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
DEVICE = "cpu"
|
32 |
+
print(DEVICE)
|
33 |
+
|
34 |
+
|
35 |
+
def find_files(directory):
|
36 |
+
file_list = []
|
37 |
+
for root, dirs, files in os.walk(directory):
|
38 |
+
for file in files:
|
39 |
+
file_path = os.path.join(root, file)
|
40 |
+
file_list.append(file_path)
|
41 |
+
return file_list
|
42 |
+
|
43 |
+
|
44 |
+
def load_all_mitre_dataset(filepath):
|
45 |
+
res = []
|
46 |
+
for file in find_files(filepath):
|
47 |
+
# print(file)
|
48 |
+
if file.endswith(".json"):
|
49 |
+
# filename = os.path.join(filepath, file)
|
50 |
+
data_local = json.load(open(file))
|
51 |
+
for object_data in data_local["objects"]:
|
52 |
+
if "name" in object_data:
|
53 |
+
# print(object_data["name"])
|
54 |
+
res.append(object_data)
|
55 |
+
return res
|
56 |
+
|
57 |
+
|
58 |
+
loaded_data = load_all_mitre_dataset("./cti-ATT-CK-v13.1")
|
59 |
+
print("[+] ALL FILES: ", len(loaded_data))
|
60 |
+
# print(loaded_data[0])
|
61 |
+
|
62 |
+
|
63 |
+
"""
|
64 |
+
{
|
65 |
+
"instruction": "What is",
|
66 |
+
"input": "field definition",
|
67 |
+
"output": "field )
|
68 |
+
}
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
def formal_dataset(loaded_data):
|
73 |
+
res = []
|
74 |
+
print(loaded_data[0])
|
75 |
+
for data in loaded_data:
|
76 |
+
try:
|
77 |
+
# print(object_data["name"])
|
78 |
+
res.append({
|
79 |
+
"instruction": "What is",
|
80 |
+
"input": data["name"],
|
81 |
+
"output": data["description"]
|
82 |
+
})
|
83 |
+
except:
|
84 |
+
pass
|
85 |
+
print("[+] FORMAL DATASET:", len(res))
|
86 |
+
return res
|
87 |
+
|
88 |
+
|
89 |
+
dataset_data = formal_dataset(loaded_data)
|
90 |
+
print("[+] DATASET LEN: ", len(dataset_data))
|
91 |
+
print(dataset_data[0])
|
92 |
+
|
93 |
+
with open("mitre-dataset.json", "w") as f:
|
94 |
+
json.dump(dataset_data, f)
|
95 |
+
|
96 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
97 |
+
|
98 |
+
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
|
99 |
+
|
100 |
+
BASE_MODEL = "decapoda-research/llama-7b-hf"
|
101 |
+
|
102 |
+
device_map = {
|
103 |
+
"transformer.word_embeddings": 0,
|
104 |
+
"transformer.word_embeddings_layernorm": 0,
|
105 |
+
"lm_head": "cpu",
|
106 |
+
"transformer.h": 0,
|
107 |
+
"transformer.ln_f": 0,
|
108 |
+
}
|
109 |
+
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(
|
111 |
+
BASE_MODEL,
|
112 |
+
quantization_config=quantization_config,
|
113 |
+
return_dict=True,
|
114 |
+
load_in_8bit=True
|
115 |
+
#torch_dtype=torch.float16,
|
116 |
+
# device_map={'': 0},
|
117 |
+
)
|
118 |
+
|
119 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
120 |
+
|
121 |
+
tokenizer.pad_token_id = (
|
122 |
+
0 # unk. we want this to be different from the eos token
|
123 |
+
)
|
124 |
+
tokenizer.padding_side = "left"
|
125 |
+
|
126 |
+
data = load_dataset("json", data_files="mitre-dataset.json")
|
127 |
+
print("[+] DATA TRAIN:", data["train"])
|
128 |
+
|
129 |
+
|
130 |
+
def generate_prompt(data_point):
|
131 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501
|
132 |
+
### Instruction:
|
133 |
+
{data_point["instruction"]}
|
134 |
+
### Input:
|
135 |
+
{data_point["input"]}
|
136 |
+
### Response:
|
137 |
+
{data_point["output"]}"""
|
138 |
+
|
139 |
+
|
140 |
+
CUTOFF_LEN = 256
|
141 |
+
|
142 |
+
|
143 |
+
def tokenize(prompt, add_eos_token=True):
|
144 |
+
result = tokenizer(
|
145 |
+
prompt,
|
146 |
+
truncation=True,
|
147 |
+
max_length=CUTOFF_LEN,
|
148 |
+
padding=False,
|
149 |
+
return_tensors=None,
|
150 |
+
)
|
151 |
+
if (
|
152 |
+
result["input_ids"][-1] != tokenizer.eos_token_id
|
153 |
+
and len(result["input_ids"]) < CUTOFF_LEN
|
154 |
+
and add_eos_token
|
155 |
+
):
|
156 |
+
result["input_ids"].append(tokenizer.eos_token_id)
|
157 |
+
result["attention_mask"].append(1)
|
158 |
+
|
159 |
+
result["labels"] = result["input_ids"].copy()
|
160 |
+
|
161 |
+
return result
|
162 |
+
|
163 |
+
|
164 |
+
def generate_and_tokenize_prompt(data_point):
|
165 |
+
full_prompt = generate_prompt(data_point)
|
166 |
+
tokenized_full_prompt = tokenize(full_prompt)
|
167 |
+
return tokenized_full_prompt
|
168 |
+
|
169 |
+
print("-------------------------------")
|
170 |
+
print("DATA[TRAIN]", data["train"])
|
171 |
+
train_val = data["train"].train_test_split(
|
172 |
+
test_size=200, shuffle=True, seed=42
|
173 |
+
)
|
174 |
+
train_data = (
|
175 |
+
train_val["train"].map(generate_and_tokenize_prompt)
|
176 |
+
)
|
177 |
+
val_data = (
|
178 |
+
train_val["test"].map(generate_and_tokenize_prompt)
|
179 |
+
)
|
180 |
+
print("--------------------------")
|
181 |
+
print(train_val)
|
182 |
+
print("--------------------------")
|
183 |
+
print(train_data)
|
184 |
+
print("--------------------------")
|
185 |
+
print(val_data)
|
186 |
+
LORA_R = 8
|
187 |
+
LORA_ALPHA = 16
|
188 |
+
LORA_DROPOUT = 0.05
|
189 |
+
LORA_TARGET_MODULES = [
|
190 |
+
"q_proj",
|
191 |
+
"v_proj",
|
192 |
+
]
|
193 |
+
|
194 |
+
BATCH_SIZE = 128
|
195 |
+
MICRO_BATCH_SIZE = 4
|
196 |
+
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
197 |
+
LEARNING_RATE = 3e-4
|
198 |
+
TRAIN_STEPS = 300
|
199 |
+
OUTPUT_DIR = "experiments"
|
200 |
+
|
201 |
+
model = prepare_model_for_int8_training(model)
|
202 |
+
config = LoraConfig(
|
203 |
+
r=LORA_R,
|
204 |
+
lora_alpha=LORA_ALPHA,
|
205 |
+
target_modules=LORA_TARGET_MODULES,
|
206 |
+
lora_dropout=LORA_DROPOUT,
|
207 |
+
bias="none",
|
208 |
+
task_type="CAUSAL_LM",
|
209 |
+
)
|
210 |
+
model = get_peft_model(model, config)
|
211 |
+
model.print_trainable_parameters()
|
212 |
+
|
213 |
+
training_arguments = transformers.TrainingArguments(
|
214 |
+
per_device_train_batch_size=MICRO_BATCH_SIZE,
|
215 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
216 |
+
warmup_steps=100,
|
217 |
+
max_steps=TRAIN_STEPS,
|
218 |
+
learning_rate=LEARNING_RATE,
|
219 |
+
logging_steps=10,
|
220 |
+
optim="adamw_torch",
|
221 |
+
evaluation_strategy="steps",
|
222 |
+
save_strategy="steps",
|
223 |
+
eval_steps=50,
|
224 |
+
save_steps=50,
|
225 |
+
output_dir=OUTPUT_DIR,
|
226 |
+
save_total_limit=3,
|
227 |
+
no_cuda=True,
|
228 |
+
load_best_model_at_end=True,
|
229 |
+
report_to="tensorboard"
|
230 |
+
)
|
231 |
+
|
232 |
+
data_collator = transformers.DataCollatorForSeq2Seq(
|
233 |
+
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
model.config.use_cache = False
|
238 |
+
old_state_dict = model.state_dict
|
239 |
+
model.state_dict = (
|
240 |
+
lambda self, *_, **__: get_peft_model_state_dict(
|
241 |
+
self, old_state_dict()
|
242 |
+
)
|
243 |
+
).__get__(model, type(model))
|
244 |
+
|
245 |
+
print("Compiling model...")
|
246 |
+
model = torch.compile(model)
|
247 |
+
print("Done compiling model...")
|
248 |
+
print(model)
|
249 |
+
trainer = transformers.Trainer(
|
250 |
+
model=model,
|
251 |
+
train_dataset=train_data,
|
252 |
+
eval_dataset=val_data,
|
253 |
+
args=training_arguments,
|
254 |
+
data_collator=data_collator
|
255 |
+
)
|
256 |
+
print("Training model...")
|
257 |
+
trainer.train()
|
258 |
+
print("Done training model...")
|
259 |
+
|
260 |
+
print("Saving model...")
|
261 |
+
model.save_pretrained(OUTPUT_DIR)
|
262 |
print("Done saving model...")
|