|
import json |
|
import transformers |
|
import textwrap |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
import os |
|
import sys |
|
from typing import List |
|
|
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
get_peft_model_state_dict, |
|
prepare_model_for_int8_training, |
|
) |
|
|
|
import fire |
|
import torch |
|
from datasets import load_dataset |
|
import pandas as pd |
|
|
|
import matplotlib.pyplot as plt |
|
import matplotlib as mpl |
|
import seaborn as sns |
|
from pylab import rcParams |
|
|
|
sns.set(rc={'figure.figsize': (10, 7)}) |
|
sns.set(rc={'figure.dpi': 100}) |
|
sns.set(style='white', palette='muted', font_scale=1.2) |
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(DEVICE) |
|
|
|
|
|
def find_files(directory): |
|
file_list = [] |
|
for root, dirs, files in os.walk(directory): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
file_list.append(file_path) |
|
return file_list |
|
|
|
|
|
def load_all_mitre_dataset(filepath): |
|
res = [] |
|
for file in find_files(filepath): |
|
|
|
if file.endswith(".json"): |
|
|
|
data = json.load(open(file)) |
|
for object_data in data["objects"]: |
|
if "name" in object_data: |
|
|
|
res.append(object_data) |
|
return res |
|
|
|
|
|
loaded_data = load_all_mitre_dataset("./cti-ATT-CK-v13.1") |
|
print("[+] ALL FILES: ", len(loaded_data)) |
|
|
|
|
|
|
|
""" |
|
{ |
|
"instruction": "What is", |
|
"input": "field definition", |
|
"output": "field ) |
|
} |
|
""" |
|
|
|
|
|
def formal_dataset(loaded_data): |
|
res = [] |
|
print(loaded_data[0]) |
|
for data in loaded_data: |
|
try: |
|
|
|
res.append({ |
|
"instruction": "What is", |
|
"input": data["name"], |
|
"output": data["description"] |
|
}) |
|
except: |
|
pass |
|
|
|
return res |
|
|
|
|
|
dataset_data = formal_dataset(loaded_data) |
|
print("[+] DATASET LEN: ", len(dataset_data)) |
|
print(dataset_data[0]) |
|
|
|
with open("mitre-dataset.json", "w") as f: |
|
json.dump(dataset_data, f) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) |
|
|
|
BASE_MODEL = "decapoda-research/llama-7b-hf" |
|
|
|
device_map = { |
|
"transformer.word_embeddings": 0, |
|
"transformer.word_embeddings_layernorm": 0, |
|
"lm_head": "cpu", |
|
"transformer.h": 0, |
|
"transformer.ln_f": 0, |
|
} |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
) |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) |
|
|
|
tokenizer.pad_token_id = ( |
|
0 |
|
) |
|
tokenizer.padding_side = "left" |
|
|
|
data = load_dataset("json", data_files="mitre-dataset.json") |
|
print(data["train"]) |
|
|
|
|
|
def generate_prompt(data_point): |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501 |
|
### Instruction: |
|
{data_point["instruction"]} |
|
### Input: |
|
{data_point["input"]} |
|
### Response: |
|
{data_point["output"]}""" |
|
|
|
|
|
CUTOFF_LEN = 256 |
|
|
|
|
|
def tokenize(prompt, add_eos_token=True): |
|
result = tokenizer( |
|
prompt, |
|
truncation=True, |
|
max_length=CUTOFF_LEN, |
|
padding=False, |
|
return_tensors=None, |
|
) |
|
if ( |
|
result["input_ids"][-1] != tokenizer.eos_token_id |
|
and len(result["input_ids"]) < CUTOFF_LEN |
|
and add_eos_token |
|
): |
|
result["input_ids"].append(tokenizer.eos_token_id) |
|
result["attention_mask"].append(1) |
|
|
|
result["labels"] = result["input_ids"].copy() |
|
|
|
return result |
|
|
|
|
|
def generate_and_tokenize_prompt(data_point): |
|
full_prompt = generate_prompt(data_point) |
|
tokenized_full_prompt = tokenize(full_prompt) |
|
return tokenized_full_prompt |
|
|
|
|
|
train_val = data["train"].train_test_split( |
|
test_size=200, shuffle=True, seed=42 |
|
) |
|
train_data = ( |
|
train_val["train"].map(generate_and_tokenize_prompt) |
|
) |
|
val_data = ( |
|
train_val["test"].map(generate_and_tokenize_prompt) |
|
) |
|
|
|
LORA_R = 8 |
|
LORA_ALPHA = 16 |
|
LORA_DROPOUT = 0.05 |
|
LORA_TARGET_MODULES = [ |
|
"q_proj", |
|
"v_proj", |
|
] |
|
|
|
BATCH_SIZE = 128 |
|
MICRO_BATCH_SIZE = 4 |
|
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE |
|
LEARNING_RATE = 3e-4 |
|
TRAIN_STEPS = 300 |
|
OUTPUT_DIR = "experiments" |
|
|
|
model = prepare_model_for_int8_training(model) |
|
config = LoraConfig( |
|
r=LORA_R, |
|
lora_alpha=LORA_ALPHA, |
|
target_modules=LORA_TARGET_MODULES, |
|
lora_dropout=LORA_DROPOUT, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
model = get_peft_model(model, config) |
|
model.print_trainable_parameters() |
|
|
|
training_arguments = transformers.TrainingArguments( |
|
per_device_train_batch_size=MICRO_BATCH_SIZE, |
|
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, |
|
warmup_steps=100, |
|
max_steps=TRAIN_STEPS, |
|
learning_rate=LEARNING_RATE, |
|
logging_steps=10, |
|
optim="adamw_torch", |
|
evaluation_strategy="steps", |
|
save_strategy="steps", |
|
eval_steps=50, |
|
save_steps=50, |
|
output_dir=OUTPUT_DIR, |
|
save_total_limit=3, |
|
load_best_model_at_end=True, |
|
report_to="tensorboard" |
|
) |
|
|
|
data_collator = transformers.DataCollatorForSeq2Seq( |
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
) |
|
|
|
trainer = transformers.Trainer( |
|
model=model, |
|
train_dataset=train_data, |
|
eval_dataset=val_data, |
|
args=training_arguments, |
|
data_collator=data_collator |
|
) |
|
model.config.use_cache = False |
|
old_state_dict = model.state_dict |
|
model.state_dict = ( |
|
lambda self, *_, **__: get_peft_model_state_dict( |
|
self, old_state_dict() |
|
) |
|
).__get__(model, type(model)) |
|
|
|
print("Compiling model...") |
|
model = torch.compile(model) |
|
print("Done compiling model...") |
|
|
|
print("Training model...") |
|
trainer.train() |
|
print("Done training model...") |
|
|
|
print("Saving model...") |
|
model.save_pretrained(OUTPUT_DIR) |
|
print("Done saving model...") |