test_model / tests /test_packed_dataset.py
khoicrtp's picture
init
12001a9
raw
history blame
7.45 kB
import os
from unittest.mock import MagicMock
import requests
from torch.utils.data import IterableDataset
def train_tokenizer(destination_path):
destination_path.mkdir(parents=True, exist_ok=True)
# download the tiny shakespeare dataset
input_file_path = destination_path / "input.txt"
if not input_file_path.exists():
data_url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
with open(input_file_path, "w") as f:
f.write(requests.get(data_url).text)
from lit_llama import Tokenizer
Tokenizer.train(
input=input_file_path,
destination=destination_path,
vocab_size=100,
)
return destination_path / "tokenizer.model"
def test_packed_dataset(tmp_path):
tokenizer_path = train_tokenizer(tmp_path)
from lit_llama import Tokenizer
tokenizer = Tokenizer(tokenizer_path)
texts = [
"The moment of truth is upon us.",
"Time to open the fridge."
]
from lit_llama.packed_dataset import PackedDatasetBuilder, PackedDataset, HDR_SIZE
block_size = 10
n_blocks = 2
chunk_size = block_size * n_blocks
builder = PackedDatasetBuilder(
outdir=tmp_path,
prefix="packed_dataset",
chunk_size=chunk_size,
sep_token=tokenizer.bos_id,
dtype="auto",
vocab_size=100,
)
text_ids = []
for text in texts:
text_ids = tokenizer.encode(text)
assert text_ids[0] == tokenizer.bos_id
builder.add_array(text_ids)
filenames = builder.filenames
assert len(filenames) == 2
assert os.path.basename(filenames[0]) == "packed_dataset_0000000000.bin"
assert os.path.basename(filenames[1]) == "packed_dataset_0000000001.bin"
import numpy as np
ex_tokenized = [
tokenizer.encode(text).numpy().astype(builder.dtype)
for text in texts
]
ex_tokenized = np.concatenate(ex_tokenized)
ex_tokenized = ex_tokenized[:2 * chunk_size]
for filename, el in zip(filenames, np.array_split(ex_tokenized, 2)):
mmap = np.memmap(filename, mode="r", order="C", offset=HDR_SIZE)
count = len(mmap) // np.dtype(builder.dtype).itemsize
arr = np.frombuffer(
mmap, dtype=builder.dtype, count=count, offset=0
)
where_bos = np.where(arr == tokenizer.bos_id)
# we expect two BOS tokens, one per file
assert len(where_bos) == 1
assert np.array_equal(arr, el)
dataset = PackedDataset(filenames=filenames, n_chunks=2, block_size=block_size, shuffle=False)
ex_split = np.array_split(ex_tokenized, ex_tokenized.shape[0] // block_size)
for item, el in zip(dataset, ex_split):
assert np.array_equal(item, el)
dataset = PackedDataset(filenames=filenames, n_chunks=2, block_size=block_size, seed=12345)
for i, item in enumerate(dataset):
block_idxs = iter(dataset)._block_idxs
assert np.array_equal(item, ex_split[block_idxs[i]])
dataset = PackedDataset(filenames=filenames, n_chunks=2, block_size=block_size, seed=12345, wrap=True)
for i, item in enumerate(dataset):
if i > 24:
break
dataset = PackedDataset(filenames=filenames, n_chunks=1, block_size=block_size, seed=12345)
for i, item in enumerate(dataset):
block_idxs = iter(dataset)._block_idxs
chunk_idx = i // n_blocks * n_blocks
assert np.array_equal(item, ex_split[chunk_idx + block_idxs[i % n_blocks]])
block_size_ = block_size // 2
ex_split = np.array_split(ex_tokenized, ex_tokenized.shape[0] // block_size_)
dataset = PackedDataset(filenames=filenames, n_chunks=2, block_size=block_size_, seed=12345)
for i, item in enumerate(dataset):
block_idxs = iter(dataset)._block_idxs
assert np.array_equal(item, ex_split[block_idxs[i]])
block_size_ = block_size // 3
n_chunks = 2
ex_chunks = np.split(ex_tokenized, n_chunks)
n_splits = ex_tokenized.shape[0] // n_chunks // block_size_
ex_splits = [np.split(el[:n_splits * block_size_], n_splits) for el in ex_chunks]
ex_split = sum(ex_splits, [])
dataset = PackedDataset(filenames=filenames, n_chunks=n_chunks, block_size=block_size_, seed=12345)
for i, item in enumerate(dataset):
block_idxs = iter(dataset)._block_idxs
assert np.array_equal(item, ex_split[block_idxs[i]])
class SimpleDataset(IterableDataset):
def __init__(self, start, end):
super().__init__()
self._start = start
self._end = end
def __iter__(self):
return iter(range(self._start, self._end))
def test_combined_dataset(tmp_path):
from lit_llama.packed_dataset import CombinedDataset
dataset1 = SimpleDataset(0, 10)
dataset2 = SimpleDataset(10, 20)
dataset = CombinedDataset(datasets=[dataset1, dataset2], weights=[1.0, 0.0], seed=12345)
res = [el for el in dataset]
assert res == list(range(0, 10))
dataset1 = SimpleDataset(0, 10)
dataset2 = SimpleDataset(10, 20)
dataset = CombinedDataset(datasets=[dataset1, dataset2], weights=[0.0, 1.0], seed=12345)
res = [el for el in dataset]
assert res == list(range(10, 20))
dataset1 = SimpleDataset(0, 10)
dataset2 = SimpleDataset(10, 20)
dataset = CombinedDataset(datasets=[dataset1, dataset2], weights=[0.5, 0.5], seed=12345)
res = [el for el in dataset]
assert 9 in res or 19 in res
if len(res) > 10:
assert 0 in res and 10 in res
def test_sharded_packed_dataset(monkeypatch):
import lit_llama.packed_dataset
from lit_llama.packed_dataset import PackedDataset
dataset_iterator_mock = MagicMock()
monkeypatch.setattr(lit_llama.packed_dataset, "PackedDatasetIterator", dataset_iterator_mock)
filenames = [str(i) for i in range(10)]
# world_size = 1, rank = 0
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2))
assert dataset_iterator_mock.call_args[1]["filenames"] == filenames
dataset_iterator_mock.reset_mock()
# world_size = 2, rank = 0
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2, num_processes=2, process_rank=0))
assert dataset_iterator_mock.call_args[1]["filenames"] == ["0", "2", "4", "6", "8"]
dataset_iterator_mock.reset_mock()
# world_size = 2, rank = 1
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2, num_processes=2, process_rank=1))
assert dataset_iterator_mock.call_args[1]["filenames"] == ["1", "3", "5", "7", "9"]
dataset_iterator_mock.reset_mock()
# world_size = 3, rank = 0 (dataset size not cleanly divisible by world size)
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2, num_processes=3, process_rank=0))
assert dataset_iterator_mock.call_args[1]["filenames"] == ["0", "3", "6"]
dataset_iterator_mock.reset_mock()
# world_size = 3, rank = 1 (dataset size not cleanly divisible by world size)
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2, num_processes=3, process_rank=1))
assert dataset_iterator_mock.call_args[1]["filenames"] == ["1", "4", "7"]
dataset_iterator_mock.reset_mock()
# world_size = 3, rank = 2 (dataset size not cleanly divisible by world size)
iter(PackedDataset(filenames=filenames, n_chunks=2, block_size=2, num_processes=3, process_rank=2))
assert dataset_iterator_mock.call_args[1]["filenames"] == ["2", "5", "8"]