test_model / tests /test_model.py
khoicrtp's picture
init
12001a9
raw
history blame
7.32 kB
import torch
import pytest
import sys
def copy_mlp(llama_mlp, orig_llama_mlp) -> None:
orig_llama_mlp.w1.weight.copy_(llama_mlp.c_fc1.weight)
orig_llama_mlp.w3.weight.copy_(llama_mlp.c_fc2.weight)
orig_llama_mlp.w2.weight.copy_(llama_mlp.c_proj.weight)
def copy_attention(llama_attn, orig_llama_attn) -> None:
n_embd = llama_attn.c_attn.weight.shape[1]
orig_llama_attn.wq.weight.copy_(llama_attn.c_attn.weight[:n_embd])
orig_llama_attn.wk.weight.copy_(llama_attn.c_attn.weight[n_embd:-n_embd])
orig_llama_attn.wv.weight.copy_(llama_attn.c_attn.weight[-n_embd:])
orig_llama_attn.wo.weight.copy_(llama_attn.c_proj.weight)
def copy_block(llama_block, orig_llama_block) -> None:
orig_llama_block.attention_norm.weight.copy_(llama_block.rms_1.scale)
copy_attention(llama_block.attn, orig_llama_block.attention)
orig_llama_block.ffn_norm.weight.copy_(llama_block.rms_2.scale)
copy_mlp(llama_block.mlp, orig_llama_block.feed_forward)
def copy_weights(llama_model, orig_llama_model) -> None:
orig_llama_model.tok_embeddings.weight.copy_(llama_model.transformer.wte.weight)
for llama_block, orig_llama_block in zip(llama_model.transformer.h, orig_llama_model.layers):
copy_block(llama_block, orig_llama_block)
orig_llama_model.norm.weight.copy_(llama_model.transformer.ln_f.scale)
orig_llama_model.output.weight.copy_(llama_model.lm_head.weight)
@torch.no_grad()
def test_to_orig_llama(lit_llama, orig_llama) -> None:
block_size = 64
vocab_size = 32000
n_layer = 16
n_head = 16
n_embd = 32
llama_config = lit_llama.LLaMAConfig(
block_size=block_size, vocab_size=vocab_size, n_layer=n_layer, n_head=n_head, n_embd=n_embd
)
orig_llama_config = orig_llama.ModelArgs(
dim=n_embd, n_layers=n_layer, n_heads=n_head, vocab_size=vocab_size, norm_eps=1e-5, max_seq_len=block_size
)
batch_size = 3
token_sample = torch.randint(
0, orig_llama_config.vocab_size, size=(batch_size, orig_llama_config.max_seq_len), dtype=torch.int64
)
llama_model = lit_llama.LLaMA(llama_config)
llama_model.apply(llama_model._init_weights)
orig_llama_model = orig_llama.Transformer(orig_llama_config)
copy_weights(llama_model, orig_llama_model)
orig_llama_embed = orig_llama_model.tok_embeddings(token_sample)
llama_embed = llama_model.transformer.wte(token_sample)
assert torch.allclose(orig_llama_embed, llama_embed)
seq_len = token_sample.shape[1]
mask = torch.full((1, 1, seq_len, seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
orig_llama_block_out = orig_llama_model.layers[0](orig_llama_embed, 0, orig_llama_model.freqs_cis[:seq_len], mask)
llama_block_out = llama_model.transformer.h[0](llama_embed)
assert torch.allclose(orig_llama_block_out, llama_block_out)
expected = orig_llama_model(token_sample, 0)
out = llama_model(token_sample)
assert torch.allclose(out, expected)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires CUDA")
@torch.no_grad()
def test_bfloat16_llama_init(lit_llama, orig_llama) -> None:
from lit_llama.utils import EmptyInitOnDevice
block_size = 64
vocab_size = 32000
n_layer = 16
n_head = 16
n_embd = 32
llama_config = lit_llama.LLaMAConfig(
block_size=block_size,
vocab_size=vocab_size,
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
)
llama_model = lit_llama.LLaMA(llama_config)
llama_model.apply(llama_model._init_weights)
batch_size = 3
token_sample = torch.randint(
0, vocab_size, size=(batch_size, block_size), dtype=torch.int64
)
expected = llama_model(token_sample)
with EmptyInitOnDevice(device="cuda", dtype=torch.bfloat16):
llama_model2 = lit_llama.LLaMA(llama_config)
llama_model2.load_state_dict(llama_model.state_dict(keep_vars=True))
out = llama_model2(token_sample.cuda()).float().cpu()
torch.testing.assert_close(out, expected, atol=5e-3, rtol=1e-3)
def copy_adapter_weights(llama_model, orig_llama_model) -> None:
# copy the gating parameter
for llama_block, orig_llama_block in zip(llama_model.transformer.h, orig_llama_model.layers):
if hasattr(llama_block.attn, "gating_factor"):
llama_block.attn.gating_factor.copy_(orig_llama_block.attention.gate)
# In the original model, there is one embedding layer for all blocks combined
orig_adapter_wte = orig_llama_model.adapter_query.weight.reshape(
orig_llama_model.params.adapter_layer, orig_llama_model.params.adapter_len, orig_llama_model.params.dim
)
# In ours, the embedding layer is split across the individual attention layers
index = 0
for llama_block in llama_model.transformer.h:
if hasattr(llama_block.attn, "adapter_wte"):
llama_block.attn.adapter_wte.weight.copy_(orig_adapter_wte[index])
index += 1
def enable_gate(model):
for name, param in model.named_parameters():
if "gating_factor" in name or "gate" in name:
param.fill_(1)
@torch.no_grad()
def test_adapter_parity(orig_llama_adapter):
"""Test parity between our implementation of LLaMA-Adapter and the reference code."""
import lit_llama.adapter as lit_llama
orig_llama = orig_llama_adapter
block_size = 32
vocab_size = 100
n_layer = 2
n_head = 4
n_embd = 16
adapter_prompt_length: int = 10
adapter_start_layer: int = 0
llama_config = lit_llama.LLaMAConfig(
block_size=block_size, vocab_size=vocab_size, n_layer=n_layer, n_head=n_head, n_embd=n_embd,
adapter_prompt_length=adapter_prompt_length, adapter_start_layer=adapter_start_layer,
)
orig_llama_config = orig_llama.ModelArgs(
dim=n_embd, n_layers=n_layer, n_heads=n_head, vocab_size=vocab_size, norm_eps=1e-5, max_seq_len=block_size,
adapter_len=adapter_prompt_length, adapter_layer=(n_layer - adapter_start_layer),
)
batch_size = 3
token_sample = torch.randint(
0, orig_llama_config.vocab_size, size=(batch_size, orig_llama_config.max_seq_len), dtype=torch.int64
)
llama_model = lit_llama.LLaMA(llama_config)
llama_model.apply(llama_model._init_weights)
orig_llama_model = orig_llama.Transformer(orig_llama_config)
copy_weights(llama_model, orig_llama_model)
copy_adapter_weights(llama_model, orig_llama_model)
# make the gate non-zero, otherwise the adapter is disabled and the model
# identical to regular LLaMA
enable_gate(llama_model)
enable_gate(orig_llama_model)
expected = orig_llama_model(token_sample, 0)
out = llama_model(token_sample)
assert torch.allclose(out, expected)
@pytest.mark.skipif(sys.platform in ("win32", "darwin"), reason="torch.compile not supported on this platform")
def test_model_compile(lit_llama):
llama_config = lit_llama.LLaMAConfig(
block_size=8,
vocab_size=8,
n_layer=2,
n_head=2,
n_embd=4,
)
model = lit_llama.LLaMA(llama_config)
model.apply(model._init_weights)
model = torch.compile(model)
sample = torch.randint(model.config.vocab_size, size=(2, model.config.block_size), dtype=torch.int64)
for _ in range(3):
_ = model(sample)