|
import os |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import torch |
|
from sentencepiece import SentencePieceProcessor, SentencePieceTrainer |
|
|
|
|
|
class Tokenizer: |
|
"""Tokenizer for LLaMA.""" |
|
|
|
def __init__(self, model_path: Path) -> None: |
|
self.processor = SentencePieceProcessor(model_file=str(model_path)) |
|
self.bos_id = self.processor.bos_id() |
|
self.eos_id = self.processor.eos_id() |
|
self.pad_id = self.processor.pad_id() |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return self.processor.vocab_size() |
|
|
|
def encode( |
|
self, |
|
string: str, |
|
bos: bool = True, |
|
eos: bool = False, |
|
max_length: int = -1, |
|
pad: bool = False, |
|
device: Optional[torch.device] = None |
|
) -> torch.Tensor: |
|
tokens = self.processor.encode(string) |
|
if bos: |
|
tokens = [self.bos_id] + tokens |
|
if eos: |
|
tokens = tokens + [self.eos_id] |
|
if max_length > 0: |
|
tokens = tokens[:max_length] |
|
if pad and len(tokens) < max_length: |
|
tokens += [self.pad_id] * (max_length - len(tokens)) |
|
|
|
return torch.tensor(tokens, dtype=torch.int, device=device) |
|
|
|
def decode(self, tokens: torch.Tensor) -> str: |
|
return self.processor.decode(tokens.tolist()) |
|
|
|
@staticmethod |
|
def train(input: str, destination: str, vocab_size=32000) -> None: |
|
model_prefix = os.path.join(destination, "tokenizer") |
|
SentencePieceTrainer.Train(input=input, model_prefix=model_prefix, vocab_size=vocab_size) |
|
|