test_model / lit_llama /adapter.py
khoicrtp's picture
init
12001a9
raw
history blame
6.05 kB
"""Implementation of the paper:
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
https://arxiv.org/abs/2303.16199
"""
# mypy: ignore-errors
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import lit_llama.model as llama
from lit_llama.model import build_rope_cache, apply_rope, RMSNorm, MLP
@dataclass
class LLaMAConfig(llama.LLaMAConfig):
adapter_prompt_length: int = 10
adapter_start_layer: int = 2
class CausalSelfAttention(nn.Module):
"""A modification of `lit_llama.model.CausalSelfAttention` that adds the attention
over the adaption prompt."""
def __init__(self, config: LLaMAConfig, block_idx: int) -> None:
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
if block_idx >= config.adapter_start_layer:
# adapter embedding layer
self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
# gate for adaption
self.gating_factor = torch.nn.Parameter(torch.zeros(1))
self.n_head = config.n_head
self.n_embd = config.n_embd
self.block_size = config.block_size
self.block_idx = block_idx
self.adapter_prompt_length = config.adapter_prompt_length
self.adapter_start_layer = config.adapter_start_layer
self.rope_cache = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
head_size = C // self.n_head
k = k.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
if self.rope_cache is None:
# cache for future forward calls
self.rope_cache = build_rope_cache(
seq_len=self.block_size,
n_elem=self.n_embd // self.n_head,
dtype=x.dtype,
device=x.device,
)
q = apply_rope(q, self.rope_cache)
k = apply_rope(k, self.rope_cache)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
# efficient attention using Flash Attention CUDA kernels
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
if self.block_idx >= self.adapter_start_layer:
prefix = self.adapter_wte.weight.reshape(1, self.adapter_prompt_length, self.n_embd)
aT = prefix.size(1)
_, ak, av = self.c_attn(prefix).split(self.n_embd, dim=2)
ak = ak.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2)
av = av.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2)
amask = torch.ones(q.shape[-2], ak.shape[-2], dtype=torch.bool, device=x.device)
ay = F.scaled_dot_product_attention(q, ak, av, attn_mask=amask, dropout_p=0.0, is_causal=False)
y = y + self.gating_factor * ay
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class Block(nn.Module):
"""The implementation is identical to `lit_llama.model.Block` with the exception that
we replace the attention layer where adaption is implemented."""
def __init__(self, config: LLaMAConfig, block_idx: int) -> None:
super().__init__()
self.rms_1 = RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config, block_idx)
self.rms_2 = RMSNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.rms_1(x))
x = x + self.mlp(self.rms_2(x))
return x
class LLaMA(llama.LLaMA):
"""The implementation is identical to `lit_llama.model.LLaMA` with the exception that
the `Block` saves the layer index and passes it down to the attention layer."""
def __init__(self, config: LLaMAConfig) -> None:
nn.Module.__init__(self)
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
h=nn.ModuleList([Block(config, i) for i in range(config.n_layer)]),
ln_f=RMSNorm(config.n_embd),
)
)
@classmethod
def from_name(cls, name: str):
return cls(LLaMAConfig.from_name(name))
def mark_only_adapter_as_trainable(model: LLaMA) -> None:
"""Sets `requires_grad=False` for all non-adapter weights."""
for name, param in model.named_parameters():
param.requires_grad = "adapter_wte" in name or "gating_factor" in name
def adapter_state_from_state_dict(state_dict: dict) -> dict:
"""Returns the model state dict with only the adapter weights for saving."""
return {name: param for name, param in state_dict.items() if "adapter_wte" in name or "gating_factor" in name}