File size: 5,763 Bytes
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import json
import glob
import os
from pathlib import Path
import sys

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

import numpy as np
from tqdm import tqdm

from lit_llama import Tokenizer
import lit_llama.packed_dataset as packed_dataset


filenames_sample = [
    "arxiv_sample.jsonl",
    "book_sample.jsonl",
    "c4_sample.jsonl",
    "cc_2019-30_sample.jsonl",
    "cc_2020-05_sample.jsonl",
    "cc_2021-04_sample.jsonl",
    "cc_2022-05_sample.jsonl",
    "cc_2023-06_sample.jsonl",
    "github_sample.jsonl",
    "stackexchange_sample.jsonl",
    "wikipedia_sample.jsonl",
]

filename_sets = {
    "arxiv": "arxiv/arxiv*",
    "book": "book/book*",
    "c4": "c4/c4-train*",
    "common_crawl": "common_crawl/*",
    "github": "github/filtered*",
    "stackexchange": "stackexchange/stackexchange*",
    "wikipedia": "wikipedia/wiki*",
}


def prepare_sample(
    source_path: Path,
    tokenizer_path: Path,
    destination_path: Path,
    chunk_size: int,
    match = ""
) -> None:
    """Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
    destination_path.mkdir(parents=True, exist_ok=True)

    tokenizer = Tokenizer(tokenizer_path)

    for name in filenames_sample:
        if match and match not in name:
            continue

        filepath = source_path / name

        if not filepath.is_file():
            raise RuntimeError(
                f"Input file not found at {filepath}. \n"
                "Make sure you download the data, e.g. wget -i https://data.together.xyz/redpajama-data-1T/v1.0.0/urls.txt or through \n"
                "https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T \n"
                "https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample \n"
            )

        prefix, _ = os.path.splitext(name)

        builder = packed_dataset.PackedDatasetBuilder(
            outdir=destination_path,
            prefix=prefix,
            chunk_size=chunk_size,
            sep_token=tokenizer.bos_id,
            dtype="auto",
            vocab_size=tokenizer.vocab_size,
        )

        print(f"Processing {name}")

        with open(filepath, encoding="utf-8") as f:
            for row in tqdm(f):
                text = json.loads(row)["text"]
                text_ids = tokenizer.encode(text)
                builder.add_array(np.array(text_ids, dtype=builder.dtype))

        builder.write_reminder()


def prepare_full(
    source_path: Path,
    tokenizer_path: Path,
    destination_path: Path,
    chunk_size: int,
    match: str = ""
) -> None:
    """Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
    import zstandard as zstd

    destination_path.mkdir(parents=True, exist_ok=True)

    tokenizer = Tokenizer(tokenizer_path)

    for set_name, pattern in filename_sets.items():
        if match and match not in set_name:
            continue

        is_cc = set_name == "common_crawl"

        filenames = glob.glob(os.path.join(source_path, pattern), recursive=True)

        if not filenames:
            raise RuntimeError(
                f"No files matching {pattern} found at {source_path}. \n"
                "Make sure you download the data, e.g. wget -i https://data.together.xyz/redpajama-data-1T/v1.0.0/urls.txt or through \n"
                "https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T \n"
                "https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample \n"
            )

        builder = packed_dataset.PackedDatasetBuilder(
            outdir=destination_path,
            prefix=set_name,
            chunk_size=chunk_size,
            sep_token=tokenizer.bos_id,
            dtype="auto",
            vocab_size=tokenizer.vocab_size,
        )

        for name in filenames:
            filepath = source_path / name

            print(f"Processing {name}")

            if is_cc:
                with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
                    for row in tqdm(f):
                        text = json.loads(row)["text"]
                        text_ids = tokenizer.encode(text)
                        builder.add_array(np.array(text_ids, dtype=builder.dtype))
            else:
                with open(filepath, encoding="utf-8") as f:
                    for row in tqdm(f):
                        text = json.loads(row)["text"]
                        text_ids = tokenizer.encode(text)
                        builder.add_array(np.array(text_ids, dtype=builder.dtype))

        builder.write_reminder()


def prepare(
    source_path: Path = Path("data/RedPajama-Data-1T-Sample"),
    tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
    destination_path: Path = Path("data/red_pajama_sample"),
    chunk_size: int = 2049 * 1024,  # 2048 block size + 1 for causal (from LLama), 1024 blocks
    sample: bool = False,
    match: str = "",
) -> None:
    """Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
    if sample:
        prepare_sample(
            source_path=source_path,
            tokenizer_path=tokenizer_path,
            destination_path=destination_path,
            chunk_size=chunk_size,
            match=match,
        )
    else:
        prepare_full(
            source_path=source_path,
            tokenizer_path=tokenizer_path,
            destination_path=destination_path,
            chunk_size=chunk_size,
            match=match,
        )


if __name__ == "__main__":
    from jsonargparse import CLI

    CLI(prepare)