File size: 5,763 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import json
import glob
import os
from pathlib import Path
import sys
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
import numpy as np
from tqdm import tqdm
from lit_llama import Tokenizer
import lit_llama.packed_dataset as packed_dataset
filenames_sample = [
"arxiv_sample.jsonl",
"book_sample.jsonl",
"c4_sample.jsonl",
"cc_2019-30_sample.jsonl",
"cc_2020-05_sample.jsonl",
"cc_2021-04_sample.jsonl",
"cc_2022-05_sample.jsonl",
"cc_2023-06_sample.jsonl",
"github_sample.jsonl",
"stackexchange_sample.jsonl",
"wikipedia_sample.jsonl",
]
filename_sets = {
"arxiv": "arxiv/arxiv*",
"book": "book/book*",
"c4": "c4/c4-train*",
"common_crawl": "common_crawl/*",
"github": "github/filtered*",
"stackexchange": "stackexchange/stackexchange*",
"wikipedia": "wikipedia/wiki*",
}
def prepare_sample(
source_path: Path,
tokenizer_path: Path,
destination_path: Path,
chunk_size: int,
match = ""
) -> None:
"""Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
destination_path.mkdir(parents=True, exist_ok=True)
tokenizer = Tokenizer(tokenizer_path)
for name in filenames_sample:
if match and match not in name:
continue
filepath = source_path / name
if not filepath.is_file():
raise RuntimeError(
f"Input file not found at {filepath}. \n"
"Make sure you download the data, e.g. wget -i https://data.together.xyz/redpajama-data-1T/v1.0.0/urls.txt or through \n"
"https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T \n"
"https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample \n"
)
prefix, _ = os.path.splitext(name)
builder = packed_dataset.PackedDatasetBuilder(
outdir=destination_path,
prefix=prefix,
chunk_size=chunk_size,
sep_token=tokenizer.bos_id,
dtype="auto",
vocab_size=tokenizer.vocab_size,
)
print(f"Processing {name}")
with open(filepath, encoding="utf-8") as f:
for row in tqdm(f):
text = json.loads(row)["text"]
text_ids = tokenizer.encode(text)
builder.add_array(np.array(text_ids, dtype=builder.dtype))
builder.write_reminder()
def prepare_full(
source_path: Path,
tokenizer_path: Path,
destination_path: Path,
chunk_size: int,
match: str = ""
) -> None:
"""Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
import zstandard as zstd
destination_path.mkdir(parents=True, exist_ok=True)
tokenizer = Tokenizer(tokenizer_path)
for set_name, pattern in filename_sets.items():
if match and match not in set_name:
continue
is_cc = set_name == "common_crawl"
filenames = glob.glob(os.path.join(source_path, pattern), recursive=True)
if not filenames:
raise RuntimeError(
f"No files matching {pattern} found at {source_path}. \n"
"Make sure you download the data, e.g. wget -i https://data.together.xyz/redpajama-data-1T/v1.0.0/urls.txt or through \n"
"https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T \n"
"https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample \n"
)
builder = packed_dataset.PackedDatasetBuilder(
outdir=destination_path,
prefix=set_name,
chunk_size=chunk_size,
sep_token=tokenizer.bos_id,
dtype="auto",
vocab_size=tokenizer.vocab_size,
)
for name in filenames:
filepath = source_path / name
print(f"Processing {name}")
if is_cc:
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for row in tqdm(f):
text = json.loads(row)["text"]
text_ids = tokenizer.encode(text)
builder.add_array(np.array(text_ids, dtype=builder.dtype))
else:
with open(filepath, encoding="utf-8") as f:
for row in tqdm(f):
text = json.loads(row)["text"]
text_ids = tokenizer.encode(text)
builder.add_array(np.array(text_ids, dtype=builder.dtype))
builder.write_reminder()
def prepare(
source_path: Path = Path("data/RedPajama-Data-1T-Sample"),
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
destination_path: Path = Path("data/red_pajama_sample"),
chunk_size: int = 2049 * 1024, # 2048 block size + 1 for causal (from LLama), 1024 blocks
sample: bool = False,
match: str = "",
) -> None:
"""Prepare the "Red Pajama" dataset. We assume tokenizer has been trained (i.e. we reuse LLaMA's tokenizer model)."""
if sample:
prepare_sample(
source_path=source_path,
tokenizer_path=tokenizer_path,
destination_path=destination_path,
chunk_size=chunk_size,
match=match,
)
else:
prepare_full(
source_path=source_path,
tokenizer_path=tokenizer_path,
destination_path=destination_path,
chunk_size=chunk_size,
match=match,
)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(prepare)
|