File size: 8,639 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
"""Full definition of a LLaMA Language Model, all of it in this single file.
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
# mypy: ignore-errors
import math
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing_extensions import Self
from lit_llama.utils import find_multiple
@dataclass
class LLaMAConfig:
block_size: int = 2048
vocab_size: int = 32000
padded_vocab_size: Optional[int] = None
n_layer: int = 32
n_head: int = 32
n_embd: int = 4096
def __post_init__(self):
if self.padded_vocab_size is None:
self.padded_vocab_size = find_multiple(self.vocab_size, 64)
@classmethod
def from_name(cls, name: str) -> Self:
return cls(**llama_configs[name])
llama_configs = {
"7B": dict(n_layer=32, n_head=32, n_embd=4096),
"13B": dict(n_layer=40, n_head=40, n_embd=5120),
"30B": dict(n_layer=60, n_head=52, n_embd=6656),
"65B": dict(n_layer=80, n_head=64, n_embd=8192),
}
class LLaMA(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
assert config.padded_vocab_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=RMSNorm(config.n_embd),
)
)
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
def forward(self, idx: torch.Tensor) -> torch.Tensor:
_, t = idx.size()
assert (
t <= self.config.block_size
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
# forward the LLaMA model itself
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (b, t, vocab_size)
return logits
@classmethod
def from_name(cls, name: str) -> Self:
return cls(LLaMAConfig.from_name(name))
class Block(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
self.rms_1 = RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.rms_2 = RMSNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.rms_1(x))
x = x + self.mlp(self.rms_2(x))
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.block_size = config.block_size
self.rope_cache: Optional[torch.Tensor] = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
head_size = C // self.n_head
k = k.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
if self.rope_cache is None:
# cache for future forward calls
self.rope_cache = build_rope_cache(
seq_len=self.block_size,
n_elem=self.n_embd // self.n_head,
dtype=x.dtype,
device=x.device,
)
q = apply_rope(q, self.rope_cache)
k = apply_rope(k, self.rope_cache)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
# efficient attention using Flash Attention CUDA kernels
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
hidden_dim = 4 * config.n_embd
n_hidden = int(2 * hidden_dim / 3)
n_hidden = find_multiple(n_hidden, 256)
self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
x = self.c_proj(x)
return x
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization.
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
super().__init__()
self.scale = nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
# NOTE: the original RMSNorm paper implementation is not equivalent
# norm_x = x.norm(2, dim=self.dim, keepdim=True)
# rms_x = norm_x * d_x ** (-1. / 2)
# x_normed = x / (rms_x + self.eps)
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
return self.scale * x_normed
def build_rope_cache(seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000) -> torch.Tensor:
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).float()
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
# this is to mimic the behaviour of complex32, else we will get different results
if dtype in (torch.float16, torch.bfloat16, torch.int8):
cache = cache.half()
return cache
def apply_rope(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
# truncate to support variable sizes
T = x.size(1)
rope_cache = rope_cache[:T]
# cast because the reference does
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
], -1)
x_out2 = x_out2.flatten(3)
return x_out2.transpose(1, 2).type_as(x)
|