File size: 8,918 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
"""
Instruction-tuning with LLaMA-Adapter on the Alpaca dataset following the paper
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
https://arxiv.org/abs/2303.16199
This script runs on a single GPU by default. You can adjust the `micro_batch_size` to fit your GPU memory.
You can finetune within 1 hour as done in the original paper using DeepSpeed Zero-2 on 8 A100 GPUs by setting the
devices variable to `devices = 8` and `micro_batch_size = 8` (or higher).
Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
"""
import os
import time
from pathlib import Path
import shutil
import lightning as L
import numpy as np
import torch
from generate import generate
from lit_llama.adapter import LLaMA, LLaMAConfig, mark_only_adapter_as_trainable, adapter_state_from_state_dict
from lit_llama.tokenizer import Tokenizer
from scripts.prepare_alpaca import generate_prompt
from lightning.fabric.strategies import DeepSpeedStrategy
eval_interval = 600
save_interval = 1000
eval_iters = 100
log_interval = 1
devices = 1
# Hyperparameters
learning_rate = 9e-3
batch_size = 64 / devices
micro_batch_size = 4
gradient_accumulation_steps = batch_size // micro_batch_size
epoch_size = 50000 # train dataset size
num_epochs = 5
max_iters = num_epochs * epoch_size // devices
weight_decay = 0.02
max_seq_length = 256 # see scripts/prepare_alpaca.py
warmup_steps = epoch_size * 2 // micro_batch_size // devices # 2 epochs
ds_config = {
"train_micro_batch_size_per_gpu": micro_batch_size,
"gradient_accumulation_steps": gradient_accumulation_steps,
"zero_optimization": {"stage": 2},
}
def main(
data_dir: str = "data/alpaca",
pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
out_dir: str = "out/adapter/alpaca",
):
fabric = L.Fabric(
accelerator="cuda",
devices=devices,
strategy=(DeepSpeedStrategy(config=ds_config) if devices > 1 else "auto"),
precision="bf16-true",
)
fabric.launch()
fabric.seed_everything(1337 + fabric.global_rank)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data, val_data = load_datasets(data_dir=data_dir)
config = LLaMAConfig(block_size=max_seq_length)
if not os.path.isfile(pretrained_path):
raise FileNotFoundError(
f"Can't find the pretrained weights at {pretrained_path}."
" Please follow the instructions in the README to download them."
)
checkpoint = torch.load(pretrained_path)
with fabric.init_module():
model = LLaMA(config)
# strict=False because missing keys due to adapter weights not containted in state dict
model.load_state_dict(checkpoint, strict=False)
mark_only_adapter_as_trainable(model)
num_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
print(f"Number of trainable parameters: {num_params}")
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
model, optimizer = fabric.setup(model, optimizer)
train(fabric, model, optimizer, train_data, val_data, out_dir)
# Save the final checkpoint at the end of training
save_model_checkpoint(fabric, model, os.path.join(out_dir, "lit-llama-adapter-finetuned.pth"))
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_data: np.ndarray,
val_data: np.ndarray,
out_dir: str,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
for iter_num in range(max_iters):
if step_count <= warmup_steps:
# linear warmup
lr = learning_rate * step_count / warmup_steps
for param_group in optimizer.param_groups:
param_group['lr'] = lr
t0 = time.time()
input_ids, targets = get_batch(fabric, train_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
with fabric.no_backward_sync(model, enabled=((iter_num + 1) % gradient_accumulation_steps != 0)):
fabric.backward(loss / gradient_accumulation_steps)
if (iter_num + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
step_count += 1
if step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_data)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
if step_count % save_interval == 0:
print(f"Saving adapter weights to {out_dir}")
# TODO: Provide a function/script to merge the adapter weights with pretrained weights
save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}.pth"))
dt = time.time() - t0
if iter_num % log_interval == 0:
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
def generate_response(model, instruction, input=""):
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
sample = {"instruction": instruction, "input": input}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
output = generate(
model,
idx=encoded,
max_seq_length=max_seq_length,
max_new_tokens=100,
temperature=0.8,
)
output = tokenizer.decode(output)
return output # output.split("### Response:")[1].strip()
@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
losses[k] = loss.item()
val_loss = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
output = generate_response(model, instruction)
fabric.print(instruction)
fabric.print(output)
model.train()
return val_loss.item()
def loss_fn(logits, targets):
# shift the targets such that output n predicts token n+1
logits = logits[..., :-1, :].contiguous()
targets = targets[..., 1:].contiguous()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
def get_batch(fabric: L.Fabric, data: list):
ix = torch.randint(len(data), (micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
max_len = max(len(s) for s in input_ids)
def pad_right(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
return x, y
def load_datasets(data_dir):
train_data = torch.load(os.path.join(data_dir, "train.pt"))
val_data = torch.load(os.path.join(data_dir, "test.pt"))
return train_data, val_data
def save_model_checkpoint(fabric, model, file_path):
file_path = Path(file_path)
if isinstance(fabric.strategy, DeepSpeedStrategy):
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
tmp_path = file_path.with_suffix(".tmp")
fabric.save(tmp_path, {"model": model})
fabric.barrier()
if fabric.global_rank == 0:
# Create a consolidated checkpoint with the same name next to the deepspeed checkpoint
# and only keep the adapter weights
state_dict = get_fp32_state_dict_from_zero_checkpoint(tmp_path)
state_dict = adapter_state_from_state_dict(state_dict)
torch.save(state_dict, file_path)
shutil.rmtree(tmp_path)
else:
state_dict = adapter_state_from_state_dict(model.state_dict())
if fabric.global_rank == 0:
torch.save(state_dict, file_path)
fabric.barrier()
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse.cli import CLI
CLI(main)
|