File size: 5,924 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# This mimics GPTQ's evaluation metrics: https://github.com/IST-DASLab/gptq/
# Thanks to E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
import math
import sys
import time
from pathlib import Path
from typing import Optional
import lightning as L
import torch
import tqdm
from lit_llama import Tokenizer
from lit_llama.adapter import LLaMA
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup
from scripts.prepare_alpaca import generate_prompt
from datasets import load_dataset
def load_eval_data(dataset_name: str) -> str:
# this mimics gptq datautils
if dataset_name == "wikitext":
# traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
testdata = "\n\n".join(testdata["text"])
elif dataset_name == "ptb":
testdata = load_dataset("ptb_text_only", "penn_treebank", split="test")
testdata = "\n\n".join(testdata["sentence"])
elif dataset_name == "c4":
testdata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
split="validation",
)
testdata = " ".join(testdata[:1100]["text"])
else:
raise ValueError("invalid dataset name (wikitext, ptb, c4 are allowed)")
return testdata
def main(
datasets: str = "wikitext,ptb,c4",
*,
# compilation fails as it does not support torch.complex64 for RoPE
# compile: bool = False,
accelerator: str = "auto",
adapter_path: Optional[Path] = None,
checkpoint_path: Optional[Path] = None,
tokenizer_path: Optional[Path] = None,
dtype: str = "float32",
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
datasets: The datasets to use as a comma separated string
# compile: Whether to compile the model.
accelerator: The hardware to run on. Possible choices are:
``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
adapter_path: Path to the checkpoint with trained adapter weights, which are the output of
`finetune_adapter.py`.
checkpoint_path: The checkpoint path to load.
tokenizer_path: The tokenizer path to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
"""
if not adapter_path:
adapter_path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned.pth")
if not checkpoint_path:
checkpoint_path = Path(f"./checkpoints/lit-llama/7B/lit-llama.pth")
if not tokenizer_path:
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model")
assert adapter_path.is_file()
assert checkpoint_path.is_file()
assert tokenizer_path.is_file()
fabric = L.Fabric(accelerator=accelerator, devices=1)
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
):
print("Loading model ...", file=sys.stderr)
t0 = time.time()
pretrained_checkpoint = lazy_load(checkpoint_path)
adapter_checkpoint = lazy_load(adapter_path)
name = llama_model_lookup(pretrained_checkpoint)
model = LLaMA.from_name(name)
# 1. Load the pretrained weights
model.load_state_dict(pretrained_checkpoint, strict=False)
# 2. Load the fine-tuned adapter weights
model.load_state_dict(adapter_checkpoint, strict=False)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
# if compile:
# model = torch.compile(model)
total_toks = 0
model = fabric.setup_module(model)
tokenizer = Tokenizer(tokenizer_path)
for dsname in datasets.split(","):
test_string = load_eval_data(dsname)
sample = {"instruction": test_string, "input": input}
test_string = generate_prompt(sample)
encoded_text = tokenizer.encode(
test_string, bos=True, eos=False, device=fabric.device
)
encoded_text = encoded_text[
None, : 256 * model.config.block_size
] # add batch dimension, trim like gptq implementation
t0 = time.perf_counter()
nlls = 0
toks = 0
with torch.inference_mode():
block_size = 2048 # this is for compat with gptq, and indeed we get much worse beyond this (https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/llama/model.py#L30)
for i in tqdm.tqdm(range(0, encoded_text.shape[1], block_size)):
inp = encoded_text[:, i : i + block_size]
logits = model(inp)[0]
nll = torch.nn.functional.cross_entropy(
logits[:-1], inp[0, 1:].to(dtype=torch.long), reduction="sum"
)
toks += inp.size(1) - 1
nlls += nll.item()
print(encoded_text.shape, logits.shape)
encoded_text = encoded_text[:, : logits.shape[0]]
ppl = math.exp(nlls / toks)
print(f"Perplexity on {dsname}: {ppl:.2f}")
total_toks += toks
t = time.perf_counter() - t0
print(
f"\n\nTime for inference: {t:.02f} sec total, {total_toks / t:.02f} tokens/sec",
file=sys.stderr,
)
print(
f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB",
file=sys.stderr,
)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
CLI(main)
|