File size: 21,537 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
from contextlib import contextmanager
import warnings
import math
import torch
# configuration for bitsandbytes before import
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization",
)
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
warnings.filterwarnings(
"ignore",
message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable.",
)
try:
import bitsandbytes as bnb # noqa: E402
except:
bnb = None
try:
import triton # noqa: E402
import triton.language as tl # noqa: E402
except:
triton = None
if bnb is not None:
class Linear8bitLt(bnb.nn.Linear8bitLt):
"""Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and
re-quantizaton when loading the state dict.
This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0)
# We quantize the initial weight here so we don't end up filling the device
# memory with float32 weights which could lead to OOM.
self._quantize_weight(self.weight.data)
def _load_from_state_dict(self, local_state_dict, *args, **kwargs):
# There is only one key that ends with `*.weight`, the other one is the bias
weight_key = next(
(name for name in local_state_dict.keys() if name.endswith("weight")),
None,
)
if weight_key is None:
return
# Load the weight from the state dict and re-quantize it
weight = local_state_dict.pop(weight_key)
self._quantize_weight(weight)
# If there is a bias, let nn.Module load it
if local_state_dict:
super()._load_from_state_dict(local_state_dict, *args, **kwargs)
def _quantize_weight(self, weight: torch.Tensor) -> None:
# This code is taken and adapted from `bnb.nn.Int8Params.cuda()`
B = weight.contiguous().half().cuda()
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.weight.data = CB
setattr(self.weight, "CB", CB)
setattr(self.weight, "SCB", SCB)
if triton is not None:
# This is adapted from the OpenAI Triton matmul example.
@triton.autotune(
configs=[
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=3,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 256,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=3,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 256,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=5,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=5,
num_warps=2,
),
],
key=["M", "N", "K"],
)
@triton.jit
def linear_kernel_4bit_weight(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
bscales_ptr,
bzeros_ptr,
# bdequant,
# Matrix dimensions
M,
N,
K,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. stride_am is how much to increase a_ptr
# by to get the element one row down (A has M rows)
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""Kernel for computing the matmul C = A x B.T.
A has shape (M, K), B has shape (N, K) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse
# See above `L2 Cache Optimizations` section for details
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# b_ptrs is a block of [BLOCK_SIZE_K, BLOCK_SIZE_n] pointers
# see above `Pointer Arithmetics` section for details
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
a_mask = offs_am[:, None] < M
b_mask = offs_bn[None, :] < N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (
(offs_k[:, None] // 2) * stride_bk + offs_bn[None, :] * stride_bn
)
bscales_ptrs = bscales_ptr + offs_bn[None, :]
bzeros_ptrs = bzeros_ptr + offs_bn[None, :]
scale = tl.load(bscales_ptrs)
zero = tl.load(bzeros_ptrs)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, K, BLOCK_SIZE_K):
# wasteful as it is to load everything twice, my attempts at avoiding it lead to slower code
b12 = tl.load(b_ptrs, mask=b_mask)
# Note that for simplicity, we don't apply a mask in K here.
a = tl.load(a_ptrs, mask=a_mask).to(tl.float32)
b = (
((b12.to(tl.uint8) >> ((offs_k[:, None] % 2) * 4)) & 0xF).to(tl.float32)
- zero
) * scale
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
c = accumulator
# -----------------------------------------------------------
# Write back the block of the output matrix C
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
def qlinear_4bit_weight(inp, weight, scales, zeros):
weight = weight.t().contiguous()
c_shape = inp.shape[:-1] + weight.shape[-1:]
inp = inp.reshape(-1, inp.shape[-1]).contiguous()
# we pad the input to amortize triton compilation cost better
PAD_TO = 256
if inp.shape[0] % PAD_TO != 0:
c_crop = inp.shape[0]
new_inp_shape0 = inp.shape[0] + PAD_TO - inp.shape[0] % PAD_TO
inp2 = inp.new_empty((new_inp_shape0, inp.shape[1]))
inp2[: inp.shape[0]] = inp
inp2[inp.shape[0] :].zero_()
inp = inp2
else:
c_crop = None
assert inp.shape[1] == weight.shape[0] * 2, "incompatible dimensions"
assert scales.shape == (weight.shape[1], 1)
assert zeros.shape == (weight.shape[1], 1)
scales = scales.contiguous()
zeros = zeros.contiguous()
K, N = weight.shape
M, K = inp.shape
assert (
K % 32 == 0
), "We don't check memory-out-of-bounds with K so K must be divisible by BLOCK_SIZE_K"
# allocates output
c = torch.empty((M, N), device=inp.device, dtype=inp.dtype)
# 1D launch kernel where each block gets its own program.
grid = lambda META: (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
linear_kernel_4bit_weight[grid](
inp,
weight,
c,
scales,
zeros,
M,
N,
K,
inp.stride(0),
inp.stride(1),
weight.stride(0),
weight.stride(1),
c.stride(0),
c.stride(1),
)
return c[:c_crop].reshape(c_shape)
else:
qlinear_4bit_weight = None
# for correctness but with terrible perf
class ColBlockQuantizedLinear(torch.nn.Module):
def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.tile_cols = tile_cols if tile_cols != -1 else self.in_features
self.bits = bits
self.entries_per_byte = 8 // bits
assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8
assert in_features % self.entries_per_byte == 0
self.register_buffer(
"quant_weight",
torch.empty(
(self.out_features, self.in_features // self.entries_per_byte),
dtype=torch.uint8,
)
.t()
.contiguous()
.t(),
)
self.register_buffer(
"scales",
torch.empty(
(
self.out_features,
(self.in_features + self.tile_cols - 1) // self.tile_cols,
)
),
)
self.register_buffer("zeros", torch.empty_like(self.scales))
assert isinstance(bias, bool)
if bias:
self.register_buffer("bias", torch.empty((self.out_features,)))
else:
self.register_buffer("bias", None)
def pack_weight(self, weight):
weight = weight.to(device=self.quant_weight.device, copy=True)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] /= self.scales[
:, j : j + 1
]
weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] += self.zeros[
:, j : j + 1
]
weight = weight.clamp_(min=0, max=2**self.bits - 1).to(dtype=torch.uint8)
self.quant_weight.zero_()
for nr in range(self.entries_per_byte):
self.quant_weight += weight[:, nr :: self.entries_per_byte] << (
nr * self.bits
)
def get_weight(self, dtype=torch.float):
weight = torch.empty(
(self.out_features, self.in_features),
device=self.quant_weight.device,
dtype=dtype,
)
mask = (1 << self.bits) - 1
for nr in range(self.entries_per_byte):
weight[:, nr :: self.entries_per_byte] = (
(self.quant_weight >> (nr * self.bits)) & mask
).float()
self.quant_weight.to(dtype)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] -= self.zeros[
:, j : j + 1
]
weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] *= self.scales[
:, j : j + 1
]
return weight
def forward(self, inp):
if (
triton is not None
and self.bits == 4
and self.quant_weight.device.type == "cuda"
and self.zeros.shape[1] == 1
and self.quant_weight.shape[1] % 32 == 0
):
return qlinear_4bit_weight(inp, self.quant_weight, self.scales, self.zeros)
weight = self.get_weight(dtype=inp.dtype)
return torch.nn.functional.linear(inp, weight, self.bias)
class GPTQQuantizer:
# The algorithm and code has been taken from https://github.com/IST-DASLab/gptq/
# E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
# portions copyright by the authors licensed under the Apache License 2.0
# All errors are our own.
def __init__(
self,
linear_module,
*,
bits,
perchannel=True,
sym=False,
blocksize=128,
percdamp=0.01,
groupsize=-1,
actorder=False
):
assert isinstance(linear_module, torch.nn.Linear)
self.linear_module = linear_module
self.dev = self.linear_module.weight.device
self.rows = linear_module.weight.shape[0]
self.columns = linear_module.weight.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.bits = bits
self.maxq = 2**bits - 1
self.perchannel = perchannel
self.sym = sym
self.blocksize = blocksize
self.percdamp = percdamp
self.groupsize = groupsize
self.actorder = actorder
self.tile_cols = self.columns if groupsize == -1 else groupsize
self.scales = torch.zeros(
(self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols),
dtype=self.linear_module.weight.dtype,
device=self.dev,
)
self.zeros = torch.zeros_like(self.scales)
assert not (
self.actorder and self.groupsize != -1
), "The permutation trick does not work for grouped quantization"
@staticmethod
def quantize_weight(x, scale, zero, maxq):
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
x_rec = scale * (q - zero)
return x_rec
def find_params_weight(self, x):
dev = x.device
shape = x.shape
if self.perchannel:
x = x.flatten(1)
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
scale = (xmax - xmin) / self.maxq
if self.sym:
zero = torch.full_like(scale, (self.maxq + 1) / 2)
else:
zero = torch.round(-xmin / scale)
if not self.perchannel:
tmp = shape[0]
scale = scale.repeat(tmp)
zero = zero.repeat(tmp)
shape = [-1] + [1] * (len(shape) - 1)
scale = scale.reshape(shape)
zero = zero.reshape(shape)
return scale, zero
def collect_input_stats(self, _1, inp, _2):
inp = inp[0].detach()
self.last_inp = inp
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def quantize(self):
W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True)
scale, zero = self.find_params_weight(W)
self.scales[:] = scale
self.zeros[:] = zero
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
if self.actorder:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = self.percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
for i1 in range(0, self.columns, self.blocksize):
i2 = min(i1 + self.blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if self.groupsize != -1:
if (i1 + i) % self.groupsize == 0:
scale, zero = self.find_params_weight(
W[:, (i1 + i) : (i1 + i + self.groupsize)]
)
self.scales[:, (i1 + i) // self.groupsize] = scale
self.zeros[:, (i1 + i) // self.groupsize] = zeros
q = self.quantize_weight(w.unsqueeze(1), scale, zero, self.maxq)
q = q.squeeze(1)
assert q.dim() == 1
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if self.actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
weight = Q.reshape(self.linear_module.weight.shape).to(
self.linear_module.weight.data.dtype
)
error = torch.sum(Losses).item()
q_module = ColBlockQuantizedLinear(
self.linear_module.in_features,
self.linear_module.out_features,
self.linear_module.bias is not None,
bits=self.bits,
tile_cols=self.groupsize,
).to(self.dev)
q_module.scales = self.scales
q_module.zeros = self.zeros
q_module.pack_weight(weight)
q_module.bias = self.linear_module.bias
return q_module, error
|