File size: 8,918 Bytes
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
Instruction-tuning with LLaMA-Adapter on the Alpaca dataset following the paper

LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
https://arxiv.org/abs/2303.16199

This script runs on a single GPU by default. You can adjust the `micro_batch_size` to fit your GPU memory.
You can finetune within 1 hour as done in the original paper using DeepSpeed Zero-2 on 8 A100 GPUs by setting the
devices variable to `devices = 8` and `micro_batch_size = 8` (or higher).

Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
"""
import os
import time
from pathlib import Path
import shutil

import lightning as L
import numpy as np
import torch

from generate import generate
from lit_llama.adapter import LLaMA, LLaMAConfig, mark_only_adapter_as_trainable, adapter_state_from_state_dict
from lit_llama.tokenizer import Tokenizer
from scripts.prepare_alpaca import generate_prompt
from lightning.fabric.strategies import DeepSpeedStrategy


eval_interval = 600
save_interval = 1000
eval_iters = 100
log_interval = 1
devices = 1

# Hyperparameters
learning_rate = 9e-3
batch_size = 64 / devices
micro_batch_size = 4
gradient_accumulation_steps = batch_size // micro_batch_size
epoch_size = 50000  # train dataset size
num_epochs = 5
max_iters = num_epochs * epoch_size // devices
weight_decay = 0.02
max_seq_length = 256  # see scripts/prepare_alpaca.py
warmup_steps = epoch_size * 2 // micro_batch_size // devices  # 2 epochs

ds_config = {
    "train_micro_batch_size_per_gpu": micro_batch_size,
    "gradient_accumulation_steps": gradient_accumulation_steps,
    "zero_optimization": {"stage": 2},
}


def main(
    data_dir: str = "data/alpaca", 
    pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
    out_dir: str = "out/adapter/alpaca",
):

    fabric = L.Fabric(
        accelerator="cuda", 
        devices=devices, 
        strategy=(DeepSpeedStrategy(config=ds_config) if devices > 1 else "auto"), 
        precision="bf16-true",
    )
    fabric.launch()
    fabric.seed_everything(1337 + fabric.global_rank)

    if fabric.global_rank == 0:
        os.makedirs(out_dir, exist_ok=True)

    train_data, val_data = load_datasets(data_dir=data_dir)

    config = LLaMAConfig(block_size=max_seq_length)

    if not os.path.isfile(pretrained_path):
        raise FileNotFoundError(
            f"Can't find the pretrained weights at {pretrained_path}."
            " Please follow the instructions in the README to download them."
        )
    checkpoint = torch.load(pretrained_path)

    with fabric.init_module():
        model = LLaMA(config)
        # strict=False because missing keys due to adapter weights not containted in state dict
        model.load_state_dict(checkpoint, strict=False)

    mark_only_adapter_as_trainable(model)

    num_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
    print(f"Number of trainable parameters: {num_params}")

    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    model, optimizer = fabric.setup(model, optimizer)
    train(fabric, model, optimizer, train_data, val_data, out_dir)

    # Save the final checkpoint at the end of training
    save_model_checkpoint(fabric, model, os.path.join(out_dir, "lit-llama-adapter-finetuned.pth"))


def train(
    fabric: L.Fabric,
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    train_data: np.ndarray,
    val_data: np.ndarray,
    out_dir: str,
) -> None:
    """The training loop.

    Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
    """
    step_count = 0

    for iter_num in range(max_iters):

        if step_count <= warmup_steps:
            # linear warmup
            lr = learning_rate * step_count / warmup_steps
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        t0 = time.time()

        input_ids, targets = get_batch(fabric, train_data)
        logits = model(input_ids)
        loss = loss_fn(logits, targets)
        with fabric.no_backward_sync(model, enabled=((iter_num + 1) % gradient_accumulation_steps != 0)):
            fabric.backward(loss / gradient_accumulation_steps)

        if (iter_num + 1) % gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
            step_count += 1
                
            if step_count % eval_interval == 0:
                val_loss = validate(fabric, model, val_data)
                fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
                fabric.barrier()

            if step_count % save_interval == 0:
                print(f"Saving adapter weights to {out_dir}")
                # TODO: Provide a function/script to merge the adapter weights with pretrained weights
                save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}.pth"))

        dt = time.time() - t0
        if iter_num % log_interval == 0:
            fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")


def generate_response(model, instruction, input=""):
    tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
    sample = {"instruction": instruction, "input": input}
    prompt = generate_prompt(sample)
    encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)

    output = generate(
        model,
        idx=encoded,
        max_seq_length=max_seq_length,
        max_new_tokens=100,
        temperature=0.8,
    )
    output = tokenizer.decode(output)
    return output # output.split("### Response:")[1].strip()


@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
    fabric.print("Validating ...")
    model.eval()
    losses = torch.zeros(eval_iters)
    for k in range(eval_iters):
        input_ids, targets = get_batch(fabric, val_data)
        logits = model(input_ids)
        loss = loss_fn(logits, targets)
        losses[k] = loss.item()
    val_loss = losses.mean()

    # produce an example:
    instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
    output = generate_response(model, instruction)
    fabric.print(instruction)
    fabric.print(output)

    model.train()
    return val_loss.item()

def loss_fn(logits, targets):
    # shift the targets such that output n predicts token n+1
    logits = logits[..., :-1, :].contiguous()
    targets = targets[..., 1:].contiguous()
    loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
    return loss
    

def get_batch(fabric: L.Fabric, data: list):
    ix = torch.randint(len(data), (micro_batch_size,))

    input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
    labels = [data[i]["labels"].type(torch.int64) for i in ix]

    max_len = max(len(s) for s in input_ids)

    def pad_right(x, pad_id):
        # pad right based on the longest sequence
        n = max_len - len(x)
        return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))

    x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
    y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
    x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
    return x, y


def load_datasets(data_dir):
    train_data = torch.load(os.path.join(data_dir, "train.pt"))
    val_data = torch.load(os.path.join(data_dir, "test.pt"))
    return train_data, val_data


def save_model_checkpoint(fabric, model, file_path):
    file_path = Path(file_path)

    if isinstance(fabric.strategy, DeepSpeedStrategy):
        from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint

        tmp_path = file_path.with_suffix(".tmp")
        fabric.save(tmp_path, {"model": model})
        fabric.barrier()
        if fabric.global_rank == 0:
            # Create a consolidated checkpoint with the same name next to the deepspeed checkpoint
            # and only keep the adapter weights
            state_dict = get_fp32_state_dict_from_zero_checkpoint(tmp_path)
            state_dict = adapter_state_from_state_dict(state_dict)
            torch.save(state_dict, file_path)
            shutil.rmtree(tmp_path)
    else:
        state_dict = adapter_state_from_state_dict(model.state_dict())
        if fabric.global_rank == 0:
            torch.save(state_dict, file_path)
        fabric.barrier()


if __name__ == "__main__":
    # Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
    # torch.backends.cuda.enable_flash_sdp(False)
    torch.set_float32_matmul_precision("high")

    from jsonargparse.cli import CLI

    CLI(main)