khanhld
commited on
Commit
·
dde0efe
1
Parent(s):
75f5473
update readme
Browse files- README.md +104 -59
- examples/VIVOSDEV02_R005.wav +0 -0
- examples/common_voice_vi_30519757.mp3 +0 -0
README.md
CHANGED
@@ -3,6 +3,8 @@ language: vi
|
|
3 |
datasets:
|
4 |
- vivos
|
5 |
- common_voice
|
|
|
|
|
6 |
metrics:
|
7 |
- wer
|
8 |
pipeline_tag: automatic-speech-recognition
|
@@ -10,21 +12,17 @@ tags:
|
|
10 |
- audio
|
11 |
- speech
|
12 |
- Transformer
|
|
|
|
|
13 |
license: cc-by-nc-4.0
|
|
|
|
|
|
|
|
|
|
|
14 |
model-index:
|
15 |
- name: Wav2vec2 Base Vietnamese 160h
|
16 |
results:
|
17 |
-
- task:
|
18 |
-
name: Speech Recognition
|
19 |
-
type: automatic-speech-recognition
|
20 |
-
dataset:
|
21 |
-
name: Common Voice vi
|
22 |
-
type: common_voice
|
23 |
-
args: vi
|
24 |
-
metrics:
|
25 |
-
- name: Test WER
|
26 |
-
type: wer
|
27 |
-
value: 0
|
28 |
- task:
|
29 |
name: Speech Recognition
|
30 |
type: automatic-speech-recognition
|
@@ -35,7 +33,7 @@ model-index:
|
|
35 |
metrics:
|
36 |
- name: Test WER
|
37 |
type: wer
|
38 |
-
value:
|
39 |
- task:
|
40 |
name: Speech Recognition
|
41 |
type: automatic-speech-recognition
|
@@ -46,60 +44,107 @@ model-index:
|
|
46 |
metrics:
|
47 |
- name: Test WER
|
48 |
type: wer
|
49 |
-
value:
|
50 |
---
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
1. [
|
55 |
-
2. [
|
56 |
-
3. [Usage](#
|
57 |
-
4. [
|
|
|
58 |
|
59 |
-
<a name = "
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
</br>
|
63 |
-
All documents related to this repo can be found here:
|
64 |
-
- [Wav2vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
|
65 |
-
- [Tutorial](https://huggingface.co/blog/fine-tune-wav2vec2-english)
|
66 |
-
- [Code reference](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
<a name = "
|
70 |
-
|
71 |
-
```
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
python train.py -c config.toml
|
86 |
-
```
|
87 |
-
- Continue to train from resume:
|
88 |
-
```
|
89 |
-
python train.py -c config.toml -r
|
90 |
-
```
|
91 |
-
- Load specific model and start training:
|
92 |
-
```
|
93 |
-
python train.py -c config.toml -p path/to/your/model.tar
|
94 |
-
```
|
95 |
-
|
96 |
-
<a name = "logs" ></a>
|
97 |
-
## Logs and Visualization
|
98 |
-
The logs during the training will be stored, and you can visualize it using TensorBoard by running this command:
|
99 |
```
|
100 |
-
# specify the <name> in config.json
|
101 |
-
tensorboard --logdir ~/saved/<name>
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
datasets:
|
4 |
- vivos
|
5 |
- common_voice
|
6 |
+
- fpt
|
7 |
+
- vlsp 100h
|
8 |
metrics:
|
9 |
- wer
|
10 |
pipeline_tag: automatic-speech-recognition
|
|
|
12 |
- audio
|
13 |
- speech
|
14 |
- Transformer
|
15 |
+
- wav2vec2
|
16 |
+
- automatic-speech-recognition
|
17 |
license: cc-by-nc-4.0
|
18 |
+
widget:
|
19 |
+
- example_title: common_voice example
|
20 |
+
src: examples/common_voice_vi_30519757.mp3
|
21 |
+
- example_title: vivos example
|
22 |
+
src: examples/VIVOSDEV02_R005.wav
|
23 |
model-index:
|
24 |
- name: Wav2vec2 Base Vietnamese 160h
|
25 |
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
- task:
|
27 |
name: Speech Recognition
|
28 |
type: automatic-speech-recognition
|
|
|
33 |
metrics:
|
34 |
- name: Test WER
|
35 |
type: wer
|
36 |
+
value: 10.78
|
37 |
- task:
|
38 |
name: Speech Recognition
|
39 |
type: automatic-speech-recognition
|
|
|
44 |
metrics:
|
45 |
- name: Test WER
|
46 |
type: wer
|
47 |
+
value: 15.05
|
48 |
---
|
49 |
|
50 |
+
# Vietnamese Speech Recognition using Wav2vec 2.0
|
51 |
+
### Table of contents
|
52 |
+
1. [Model Description](#description)
|
53 |
+
2. [Benchmark Result](#benchmark)
|
54 |
+
3. [Example Usage](#example)
|
55 |
+
4. [Evaluation](#evaluation)
|
56 |
+
5. [Contact](#contact)
|
57 |
|
58 |
+
<a name = "description" ></a>
|
59 |
+
### Model Description
|
60 |
+
Fine-tune the Wav2vec2-based model on about 160 hours of Vietnamese speech dataset from different resources including [VIOS](https://huggingface.co/datasets/vivos), [COMMON VOICE](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [FPT](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VLSP 100h](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view). We have not yet incorporated the Language Model (which will be included in future work) into our ASR system but still gained a promising result.
|
61 |
+
<br>
|
62 |
+
We also provide code for Pre-training and Fine-tuning the Wav2vec2 model (not available for now but will release soon). If you wish to train on your dataset, check it out here:
|
63 |
+
1. [Pretrain](https://github.com/khanld/ASR-Wav2vec-Pretrain)
|
64 |
+
2. [Finetune](https://github.com/khanld/ASR-Wa2vec-Finetune)
|
65 |
</br>
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
<a name = "benchmark" ></a>
|
68 |
+
### Benchmark WER Result
|
69 |
+
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|
70 |
+
|---|---|---|
|
71 |
+
|without LM| 15.05 | 10.78 |
|
72 |
+
|with LM| in progress | in progress |
|
73 |
|
74 |
+
<a name = "example" ></a>
|
75 |
+
### Example Usage
|
76 |
+
```python
|
77 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
78 |
+
import librosa
|
79 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
+
|
81 |
+
processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
|
82 |
+
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
|
83 |
+
model.to(device)
|
84 |
|
85 |
+
def transcribe(wav):
|
86 |
+
input_values = processor(wav, sampling_rate=16000, return_tensors="pt").input_values
|
87 |
+
logits = model(input_values.to(device)).logits
|
88 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
89 |
+
pred_transcript = processor.batch_decode(pred_ids)[0]
|
90 |
+
return pred_transcript
|
91 |
+
|
92 |
+
|
93 |
+
wav, _ = librosa.load('path/to/your/audio/file', sr = 16000)
|
94 |
+
print(f"transcript: {transcribe(wav)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
```
|
|
|
|
|
96 |
|
97 |
+
<a name = "evaluation"></a>
|
98 |
+
### Evaluation
|
99 |
+
```python
|
100 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
101 |
+
from datasets import load_dataset
|
102 |
+
import torch
|
103 |
+
import re
|
104 |
+
from datasets import load_dataset, load_metric, Audio
|
105 |
+
|
106 |
+
wer = load_metric("wer")
|
107 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
108 |
+
|
109 |
+
# load processor and model
|
110 |
+
processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
|
111 |
+
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
|
112 |
+
model.to(device)
|
113 |
+
model.eval()
|
114 |
+
|
115 |
+
# Load dataset
|
116 |
+
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test")
|
117 |
+
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))
|
118 |
+
chars_to_ignore = r'[,?.!\-;:"“%\'�]' # ignore special characters
|
119 |
+
|
120 |
+
# preprocess data
|
121 |
+
def preprocess(batch):
|
122 |
+
audio = batch["audio"]
|
123 |
+
batch["input_values"] = audio["array"]
|
124 |
+
batch["transcript"] = re.sub(chars_to_ignore, '', batch["sentence"]).lower()
|
125 |
+
return batch
|
126 |
+
|
127 |
+
# run inference
|
128 |
+
def inference(batch):
|
129 |
+
input_values = processor(batch["input_values"],
|
130 |
+
sampling_rate=16000,
|
131 |
+
return_tensors="pt").input_values
|
132 |
+
logits = model(input_values.to(device)).logits
|
133 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
134 |
+
batch["pred_transcript"] = processor.batch_decode(pred_ids)
|
135 |
+
return batch
|
136 |
+
|
137 |
+
test_dataset = test_dataset.map(preprocess)
|
138 |
+
result = test_dataset.map(inference, batched=True, batch_size=1)
|
139 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_transcript"], references=result["transcript"])))
|
140 |
```
|
141 |
+
**Test Result**: 10.78%
|
142 |
+
|
143 |
+
<a name = "contact"></a>
|
144 |
+
### Contact
|
145 | |
146 |
+
</br>
|
147 |
+
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/)<br>
|
148 |
+
[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/khanhld257/)
|
149 |
+
|
150 |
+
|
examples/VIVOSDEV02_R005.wav
ADDED
Binary file (84 kB). View file
|
|
examples/common_voice_vi_30519757.mp3
ADDED
Binary file (27.7 kB). View file
|
|